Необычные свойства обычной воды. Необычные свойства воды


Необычные свойства обычной воды

Содержание

Введение

1.Распространение воды на планете Земля .

2.Изотопный состав воды.

3.Строение молекулы воды.

4.Физические свойства воды, их аномальность.

4.1.Аномалия плотности.

4.2.Переохлажденная вода.

4.3.Аномалия сжимаемости.

4.4.Поверхностное натяжение.

4.5.Аномалия теплоемкости.

5.Структура и формы льда.

6.Структура и перестройка структуры воды.

7.Диаграмма состояния воды.

8.Заключение.

9.Литература.

Введение

Вода в нашей жизни - самое обычное и самое распространенное вещество. Однако с научной точки зрения это самая необычная, самая загадочная жидкость. Пожалуй, только жидкий гелий может соперничать с ней. Но необычные свойства жидкого гелия (такие, как сверхтекучесть) проявляются при очень низких температурах (вблизи абсолютного нуля) и обусловлены специфическими квантовыми законами. Поэтому жидкий гелий - это экзотическое вещество. Вода же в нашем сознании является прообразом всех жидкостей, и тем более удивительно, когда мы называем ее самой необычной. Но в чем же заключается необычность воды? Дело в том, что трудно назвать какое-либо ее свойство, которое не было бы аномальным, то есть ее поведение (в зависимости от изменения температуры, давления и других факторов) существенно отличается от такового у подавляющего большинства других жидкостей, у которых это поведение похоже и может быть объяснено из самых общих физических принципов. К таким обычным, нормальным жидкостям относятся, например, расплавленные металлы, сжиженные благородные газы (за исключением гелия), органические жидкости (бензин, являющийся их смесью, или спирты).Вода имеет первостепенное значение при большинстве химических реакций, в частности и биохимических. Древнее положение алхимиков – «тела не действуют, пока не растворены» – в значительной степени справедливо. Человек и животные могут в своем организме синтезировать первичную ("ювенильную") воду, образовывать ее при сгорании пищевых продуктов и самих тканей. У верблюда, например, жир содержащийся в горбу, может путем окисления дать 40 л воды. Связь между водой и жизнью столь велика, что даже позволила В. И. Вернадскому «рассматривать жизнь, как особую коллоидальную водную систему... как особое царство природных вод». Вода – вещество привычное и необычное. Известный советский ученый академик И.В.Петрянов свою научно – популярную книгу о воде назвал “Самое необыкновенное вещество в мире”. А доктор биологических наук Б.Ф.Сергеев начал свою книгу “Занимательная физиология” с главы о воде – “Вещество, которое создало нашу планету”. Ученые правы: нет на Земле вещества более важного для нас, чем обыкновенная вода, и в то же время не существует другого такого же вещества, в свойствах которого было бы столько противоречий и аномалий, сколько в её свойствах.

1.Распространение воды на планете Земля.

Почти ¾ поверхности нашей планеты занято океанами и морями. Твёрдой водой – снегом и льдом – покрыто 20% суши. Из общего количества воды на Земле, равного 1 млрд. 386 млн. кубических километров, 1 млрд. 338 млн. кубических километров приходится на долю солёных вод Мирового океана, и только 35 млн. кубических километров приходится на долю пресных вод. Всего количества океанической воды хватило бы на то, чтобы покрыть ею земной шар слоем более 2,5 километров. На каждого жителя Земли приблизительно приходится 0,33 кубических километров морской воды и 0,008 кубических километров пресной воды. Но трудность в том, что подавляющая часть пресной воды на Земле находится в таком состоянии, которое делает её труднодоступной для человека. Почти 70% пресных вод заключено в ледниковых покровах полярных стран и в горных ледниках, 30% - в водоносных слоях под землёй, а в руслах всех рек содержатся одновременно всего лишь 0,006% пресных вод.

Молекулы воды обнаружены в межзвёздном пространстве. Вода входит в состав комет, большинства планет солнечной системы и их спутников.

2.Изотопный состав воды.

Атомы водорода и кислорода, образующие воду, или окись водорода, могут иметь различные массовые числа и отличаться друг от друга своими физико-химическими свойствами, но при этом они имеют одинаковый электрический заряд атомных ядер и поэтому занимают в периодической системе элементов одно и то же место. Такие разновидности атомов одного и того же химического элемента называются изотопами. Известны пять водородов и пять кислородов. Правда, по два из них (4 H, 5 H, 14 O и 15 O) радиоактивны и очень короткоживущи. Например, длительность существования водорода –4—4*10-11 сек. Наиболее широко известны следующие изотопы водорода: протий 1 H( с относительной атомной массой 1), дейтерий 2 H, или D ( c относительной атомной массой 2) и тритий 3 H, или T ( c относительной атомной массой 3), наиболее тяжелый, но слаборадиоактивный водород ( его период полураспада 12,3 года), и изотопы кислорода: 16 O, 17 O и 18 O. Эти шесть изотопов могут образовывать 18 изотопических разновидностей воды: 1 Н216 О; 1 НD16 О; D216 О ; 1 НT16 О; DT16 О; T2 О16 ; 1 Н217 О; 1 НD17 О; D217 О; 1 НT17 О; DT17 О; T217 О; 1 Н218 О; 1 НD18 О; D218 О; 1 НT18 О; DT18 О; T218 О.

На Земле на 6800 атомов протия приходится один атом дейтерия, а в межзвездочном пространстве один атом дейтерия приходится уже на 200 атомов протия.

3.Строение молекулы воды.

Молекула воды состоит из двух атомов водорода (Н) и одного атома кислорода (О). Все многообразие свойств воды и необычность их проявления в конечном счете определяются физической природой этих атомов и способом их объединения в молекулу. В отдельной молекуле воды ядра водорода и кислорода расположены так относительно друг друга, что образуют как бы равнобедренный треугольник со сравнительно крупным ядром кислорода на вершине и двумя мелкими ядрами водорода у основания. В молекуле воды имеются четыре полюса зарядов: два отрицательных за счет избытка электронной плотности у кислородных пар электронов и два положительных - вследствие недостатка электронной плотности у ядер водорода - протонов. Такая ассиметричность распределения электрических зарядов воды обладает ярко выраженными полярными свойствами; она является диполем с высоким дипольным моментом -1,87 дебай

Благодаря этому молекулы воды стремятся нейтрализовать электрическое поле. Под воздействием диполей воды на поверхности погруженных в нее веществ межатомные и межмолекулярные силы ослабевают в 80 раз. Столь высокая диэлектическая проницаемость из всех известных веществ присуща только воде. Этим объясняется ее способность быть универсальным растворителем.

Помогая" контактирующим с ней молекулам разлагаться на ионы (например, солям кислот), сама вода проявляет большую устойчивость. Из 1 млрд. молекул воды диссоциированными при обычной температуре оказываются лишь две, при этом протон не сохраняется всвободном состоянии, а вероятнее всего входит в состав иона гидроксония. (Гидроксоний (Н3 О+ ) - это гидратированный ион водорода; существует в водных растворах кислот)

Вода химически не изменяется под действиям большинства тех соединений, которые она растворяет, и не изменяет их. Это характеризует ее инертным растворителем, что важно для живых организмов на нашей планете, поскольку необходимые их тканям питательные вещества поступают в водных растворах в сравнительно устойчивом виде. Как растворитель вода многократно используется, неся в своей структуре память о ранее растворенных в ней веществах. Молекулы в объеме воды сближаются противоположными зарядами, возникают межмолекулярные водородные связи между ядрами водорода и неподеленными электронами кислорода, насыщая электронную недостаточность водорода одной молекулы воды и фиксируя его по отношению к кислороду другой молекулы. Тетраэдрическая направленность водородного облака позволяет образовать четыре водородные связи для каждой водной молекулы, которая благодаря этому может ассоциировать с четырьмя соседними. В такой модели углы между каждой парой линий, соединяющих центр (атом О) с вершинами, равны 109,5 С .

Водородные связи в несколько раз слабее ковалентных связей, объединяющих атомы кислорода и водорода. Микромолекулярная структура воды с большим количеством полостей позволяет ей, разрывая водородные связи, присоединять молекулы или части молекул других веществ, способствуя их растворению.Сравнивая воду - гидрид кислорода с гидридами элементов, входящих в одну с кислородом подгруппу периодической системы Д.И. Менделеева, следовало бы ожидать, что вода должна кипеть при - 70 о С, а замерзать при - 90 о С. Но в обычных условиях вода замерзает при Такое резкое отклонение от установленной закономерности как раз и объясняется тем, что вода является ассоциированной жидкостью. Ассоциированность ее сказывается и на очень высокой теплоте парообразования. Так, для того чтобы испарить 1 г воды, нагретой до 100 о С, требуется в шестеро больше тепла, чем для нагрева такого же количества воды от 0 до 80 о С. Благодаря этому вода является мощнейшим энергоносителем на нашей планете. По сравнению с другими веществами, она способна воспринимать гораздо больше тепла, существенно не нагреваясь. Вода выступает как бы регулятором температуры, сглаживая благодаря своей большой теплоемкости резкие температурные колебания. В интервале от 0 до 37 о С теплоемкость ее падает и только после 37 о С начинает повышаться. Минимум теплоемкости воды соответствует температуре 36 - 39 о С - нормальной температуре человеческого тела. Благодаря этому возможна жизнь теплокровных животных, в том числе и человека. 0 о С и закипает при 100 о С.

mirznanii.com

Необычные свойства воды

Проектная деятельность учащихся на уроках по окружающему миру

Беляева Ольга Александровна

В настоящее время преподавание в школе должно соответствовать требованиям ФГОС второго поколения. Это предполагает использование разнообразных новых методов и приемов работы. Один из них это - проектная деятельность учащихся. Данная деятельность используется как в старшей, так и в начальной школе. Проектная  деятельность может использоваться и в урочное время , и во внеурочной работе. Создание проектов - это увлекательная, но трудоемкая работа, которая предполагает постановку  целей, выдвижение гипотезы, доказательство или исследование и выводы.

Проект « Необычные свойства воды» разработан по теме « Вода» 3 класс УМК « Школа 21 00. В данном проекте учащиеся рассматривали те свойства воды, которые не описываются в учебнике. При работе над проектом в течении нескольких месяцев учащиеся класса доказывали необычные свойства воды, проводя различные опыты, изучая дополнительную литературу. Данный проект дети с успехом защитили на школьной научной конференции.

Необычные свойства воды

 

Содержание

 

Введение

3

1глава

Основные физические свойства воды

4

2глава

Удивительные свойства воды

7

 

Выводы

12

 

Список литературы

13

Тема: Необычные свойства воды.

Обоснование выбора темы. С водой мы сталкиваемся ежедневно и она занимает важнейшее место в жизни всего живого. С одной стороны- нет ничего более простого и доступного на планете, как вода,  с другой – более загадочного и уникального.

Гипотеза- предположим, что вода обладает уникальными свойствами.

Объект- вода.

Цель исследования-  доказать, что вода необычное вещество.

Задачи исследования:

  • проанализировать литературу и информацию в Интернете по данной проблеме;
  • провести наблюдения за основными состояниями воды, её физическими свойствами;
  • определить и выделить удивительные свойства воды;
  • провести эксперименты, доказывающие  её уникальность;
  • понаблюдать, как человек использует необычные свойства воды;
  • сделать выводы.

Методы исследования: анализ, наблюдение, эксперимент(опыт).

Введение

«Вода! У тебя нет ни вкуса, ни запаха, тебя не опишешь, тобой наслаждаешься, не понимая, что ты такое. Ты просто необходима для жизни, ты есть сама жизнь. Ты величайшее в мире богатство, но и самое непрочное. Ты не терпишь примесей, не выносишь ничего чужеродного. Ты божество, которое так легко спугнуть» .

(французский писатель Антуан де Сент- Экзюпери).

Что такое вода? Разве она только та бесцветная жидкость, что налита в стакан? Океан, покрывающий почти всю нашу планету - это вода. В нём миллионы лет назад зародилась жизнь. Тучи, облака, туманы, несущие влагу всему живому на земной поверхности, - это ведь тоже вода. Бескрайние ледяные пустыни полярных областей, снеговые покровы, застилающие почти половину планеты, - и это вода. Без неё не возможна жизнь и деятельность человека. Вода- наиболее распространенное, доступное  и дешевое вещество. Она и дорога, и среда обитания животных, и «добытчик» электрического тока, и «транспортное средство» питательных веществ к клеткам растений и животных. И наконец, без неё не обойтись в быту. Вода- это чудо природы. (приложение рис.1)

Нынешняя наука, с легкостью рассуждает о галактиках и черных  дырах, но не всегда может пояснить, как «работает» элементарная вода.

В своей исследовательской работе мы собрали информацию о воде из разных источников- из книг,  научно- популярных фильмов и Инетернета. Проанализировали её и выделили свойства  воды, которые придают ей уникальность.

1 глава

Основные физические свойства воды

 

Мы провели наблюдения и доказали, что объект нашего исследования уникален по сравнению с другими веществами на Земле. Не одно вещество не может «похвастаться» таким количеством свойств, которые делают его незаменимым в нашей жизни. Выделим некоторые из них:

  • не имеет запаха, вкуса и формы;
  • текучее;
  • прозрачное и бесцветное;
  • растворяет другие вещества. (приложение рис. 2)

 

Единственное вещество на планете, которое может находится в 3х состояниях:

  • жидком- вода;
  • твердом- лед;
  • газообразном- пар; (приложение рис. 3)

 

Ученым известно, что тело человека почти на 2/3 состоит из воды.

 

Человек может прожить без воды не более восьми дней, а в пустыне смертельное обезвоживание организма наступает уже через сутки. Потеря 6-8% воды от общего веса тела приводит к обмороку. Потеря же 25% жидкости смертельна для человека. Учеными подсчитано, что для того чтобы себя хорошо чувствовать, взрослому жителю умеренных широт необходимо выпивать от двух до трёх литров воды в сутки, а человеку, живущему в пустыне - семь с половиной литров. Можно рассчитать необходимое количество воды для себя. Это 40 граммов на килограмм массы тела. Т.е. если участник проекта Рита весит 30 кг, то ей нужно выпить 1,2 литра в день, а участник Рома -40кг соответственно – 1,6 литра в день. Если не придерживаться этих норм, то снижается работоспособность, появляется усталость.

Вода занимает 3/4 поверхности земного шара

Из воды состоит  4/5 растения.

Докажем, что вода находится в растениях. Для этого проведем опыт.

Опыт №1.

Выделим из свежей древесины воду. Мы поместим кусочек в сухую банку, закроем крышкой и поставим на горячую батарею.

Результат: при нагревании на стенках банки образовались мелкие капельки воды. (приложение рис. 4)

Вывод: вода содержится в растениях.

 

Докажем, что вода «нужна всем».

Опыт №2.

Возьмём две фасолины, одну положим на сухую ватку, другую на мокрую.

Результат: через 3 дня на мокрой ватке у фасоли появился росток, а на сухой фасоль засохла. (приложение рис. 5)

Вывод: вода необходима для начала и продолжения жизни.

Мы рассмотрели основные физические свойства воды, всем известные. Но есть и удивительные.  Мы их используем в повседневной жизни, не замечая их уникальность. Эти свойства и представляют для нашего проекта наибольший интерес.

2 глава

Удивительные свойства воды

  • Хотите получить награду в 1 тысячу фунтов стерлингов от Британского Королевского химического общества? Надо всего лишь объяснить с научной точки зрения, почему в некоторых случаях горячая вода замерзает быстрее, чем холодная!

Еще  в древности Аристотель обращал внимание на это. В средние века ученые пытались объяснить данный феномен. Затем об этом неудобном факте забыли. И только в 1968 году «вспомнили» благодаря школьнику Эрасто Мпембе из далекой от всякой науки Танзании, который случайно заметил этот факт.

Проведем эсперимент и понаблюдаем за горячей и холодной водой в морозильной камере.

Опыт № 3.

В ячейки для льда  нальём  теплую воду 35 ° С и поставим в морозильную камеру, засечем время превращения воды в лёд.

Тоже самое проделаем с холодной водой-0,5 ° С.

Результат: тёплая вода  превратилась в лед через 20 минут;

холодная вода превратилась в лед через  25 минут;

Для опыта необходима вода пределенной температуры.

Вывод: горячая вода замерзает быстрее, чем холодная при определенных условиях. (приложение рис. 6)

Производители мороженого и бармены используют этот эффект в своей повседневной работе, но никто в действительности не знает, почему это работает.

  • В ходе работы над проектом мы обратили внимание, что вода может перемещаться самостоятельно.

Опыт №4.

Возьмем 3 стакана, в два из них нальём воду. Третий оставим пустым и к нему перекинем «мостики» из бумажных салфеток.

Результат: вода по «мостикам» « перешла» в пустой стакан, уровень воды в 3х стаканах стал почти одинаковый.

Вывод:вода может подниматься вверх без посторонней помощи. (приложение рис. 7)

Это удивительное свойство помогает растениям получать влагу из почвы и перемещать от корней по стеблям к листьям. Зная такую способность воды, можно домашние растения надолго оставлять без полива. Для этого необходимо  сделать нехитрое устройство. (приложение  рис. 8)

  • Мы задумались, а какая вода быстрее будет подниматься вверх?

Опыт №5.

Возьмет 2 стакана: №1- с теплой водой и №2 -с холодной водой;

две полоски картона, один конец которых  окрашен в разные цвета маркерами;

опустим концы полосок картона в стаканы;

Результат: краски маркера на полоске в тёплой воде поднялись вверх быстрее и выше, чем в холодной. (приложение рис. 9)

Вывод: теплая вода поднимается вверх быстрее холодной.

Теперь нам понятно почему растения нужно поливать теплой водой. Не потому что от холодной они могут «простудиться» и «заболеть», а потому что теплая вода доставит  необходимые питательные вещества из почвы и живительную влагу быстрее.

  • Когда мы любуемся рыбками в аквариуме, они всегда кажутся нам больше, чем есть на самом деле. Выясним почему?

Опыт №6.

В один  прозрачный стакан нальём воду, другой оставим пустым. Поставим игрушечную фигурку сначала за пустой, затем за наполненный водой.

Результат: за пустым стаканом размеры фигурки не изменились, а за стаканом с водой значительно увеличились. (приложение рис.10)

Вывод: вода  зрительно увеличивает предметы.

  • В холодное время года наши квартиры теплые благодаря паровому отоплению. А почему именно вода в батареях?

Опыт №7.

Поставим металлический ковшик на плиту.Через 10 секунд его нельзя взять в руки-он раскален. В этот же ковшик нальем стакан воды и поставим на плиту. Доводим до кипения, на это нужно уже больше времени. Переливаем горячую воду из ковша в стакан с ложкой.

Результат: Через десять минут ковш остыл, а стакан нельзя взять в руки. Вода нагрела  ложку и стенки стакана.(приложение рис.11 )

Вывод: У воды есть свойство долго удерживать тепло. Оно и самое доступное текучее вещество. Поэтому именно вода в наших батареях.

  • Всем известно, что зимой необходимо поддерживать паровое отопление. Иначе вода остынет, замерзнет и батареи лопнут.

Опыт № 8.

Возмём  бутылку, нальём воду и поместим её в морозильную камеру холодильника.

Результат: вода замерзла и расширилась, её объём  увеличился и бутылка треснула.(приложение рис.12)

Вывод:

1. вода при низких температурах превращается в лед;

2. вода при замерзании расширяется.

  • Многие ученые, изучающие воду, утверждают, что она способна  менять свою структуру под воздействием любой информации. Даже эмоции человека оказывают сильное влияние на воду.

Опыт №9.

Возьмем три горшка, поместим их в одинаковые условия и посадим  фасоль. Возьмем 3 банки с одинаковой водой. Каждой горшок поливаем «своей» водой. Поливая фасоль,  будем передавать воде информацию разного характера:

№1 -добрые, хвалебные слова, петь песни, читать стихи;

№2- молчим;

№3- ругаем воду;

Результат: росток фасоли пророс в горшке

№1- на 3-й день,

№2- на 4-й день,

№3- на 5-й день.

Вывод: вода способна накапливать, передавать информацию другим объектам, состоящим из воды .

(приложение рис. 13)

Объект нашего исследования кажется будничным и естественным только на первый взгляд. Опытным путем мы убедились в необычности многих  его свойств. Эти свойства- подарок всему живому на Земле.

ВЫВОДЫ:

В таблице представлены  удивительные свойства воды,  которые мы доказали опытами.

Таблица № 1.

Свойства воды.

1

содержится в растениях

2

необходима для начала и продолжения жизни

3

горячая замерзает быстрее, чем холодная при определенных условиях

4

может подниматься вверх без посторонней помощи

5

теплая  поднимается вверх быстрее холодной

6

вода  зрительно увеличивает предметы

7

долго сохраняет тепло

8

расширяется при замерзании

9

может менять свои свойства под воздействием информации

 

Свойства уникальны

 

Вода- необычное вещество

 

Задачи проекта

 

Гипотеза

выполнены

подтверждена

 

 

 

Цель исследования

достигнута

 

Список литературы и источников.

  1. «Тайная жизнь воды» ЭмотоМасару.
  2. «Тайны воды» Олег Арсенов.
  3. Журнал «GEO.
  4. «Наука и жизнь».Электронное  издание. http://www.nkj.ru/
  5. «Знание-сила»-научно-популярный журнал http://www.znanie-sila.ru/

Фильмы:

«Необычные свойства воды»

http://www.youtube.com/watch?v=NQQbrgjGukI

«Великая тайна воды»

http://www.youtube.com/watch?v=YuyQiBBGxvs

«Вода. Новое измерение» http://www.youtube.com/watch?v=u4y1mNHW8is

Список

 

 

 

ext.spb.ru

Необычные свойства обычной воды - часть 2

4.Физические свойства воды, их аномальность.

Чистая вода представляет собой б есцветную без вкуса запаха прозрачную жидкость. Плотность воды при переходе ее из твердого состояния в жидкое не уменьшается, как почти у всех других веществ, а возрастает.

Как хорошо известно, вода принята за образец меры – эталон для всех других веществ. Казалось бы, за эталон для физических констант следовало бы выбрать такое вещество, которое ведет себя самым нормальным, обычным образом. А получилось как раз наоборот.

И первое, самое поразительное, свойство воды заключается в том, что вода принадлежит к единственному веществу на нашей планете, которое в обычных условиях температуры и давления может находиться в трех фазах, или трех агрегатных состояниях: в твердом (лед), жидком и газообразном (невидимый глазу пар).

4.1. Аномалия плотности.

Всем известна аномалия плотности. Она двоякая. Во-первых, после таяния льда плотность увеличивается, проходит через максимум при 4 о С и только затем уменьшается с ростом температуры. В обычных жидкостях плотность всегда уменьшается с температурой. И это понятно. Чем больше температура, тем больше тепловая скорость молекул, тем сильнее они расталкивают друг друга, приводя к большей рыхлости вещества. Разумеется, и в воде повышение температуры увеличивает тепловую скорость молекул, но почему-то это приводит в ней к понижению плотности только при высоких температурах.

Вторая аномалия плотности состоит в том, что плотность воды больше плотности льда (благодаря этому лед плавает на поверхности воды, вода в реках зимой не вымерзает до дна и т.д.). Обычно же при плавлении плотность жидкости оказывается меньше, чем у кристалла. Это тоже имеет простое физическое объяснение. В кристаллах молекулы расположены регулярно, обладают пространственной периодичностью - это свойство кристаллов всех веществ. Но у обычных веществ молекулы в кристаллах, кроме того, плотно упакованы. После плавления кристалла регулярность в расположении молекул исчезает, и это возможно только при более рыхлой упаковке молекул, то есть плавление обычно сопровождается уменьшением плотности вещества. Такого рода уменьшение плотности очень мало: например, при плавлении металлов она уменьшается на 2 - 4%. А плотность воды превышает плотность льда сразу на 10%! То есть скачок плотности при плавлении льда аномален не только по знаку, но и по величине.

4.2.Переохлажденная вода.

В последнее время много внимания уделяется изучению свойств переохлажденной воды, то есть остающейся в жидком состоянии ниже точки замерзания 0 о С. (Переохладить воду можно либо в тонких капиллярах, либо - еще лучше - в виде эмульсии: маленьких капелек в неполярной среде - "масле"). Что же происходит с аномалией плотности при переохлаждении воды? Она ведет себя странно. С одной стороны, плотность воды сильно уменьшается по мере переохлаждения (то есть первая аномалия усиливается), но, с другой стороны, она приближается к плотности льда при понижении температуры (то есть вторая аномалия ослабевает).

4.3.Аномалия сжимаемости.

Вот еще пример аномалии воды: необычное температурное поведение ее сжимаемости, то есть степени уменьшения объема при увеличении давления . Обычно сжимаемость жидкости растет с температурой: при высоких температурах жидкости более рыхлы (имеют меньшую плотность) и их легче сжать. Вода обнаруживает такое нормальное поведение только при высоких температурах. При низких же сжимаемость ведет себя противоположным образом, в результате чего в ее температурном поведении появляется минимум при 45 о С.

На этих двух примерах мы видим, что необычные свойства воды характеризуются экстремальным поведением, то есть появлением максимумов (как в плотности) или минимумов (как в сжимаемости) на кривых их зависимостей от температуры. Такие экстремальные зависимости означают, что в воде имеет место противоборство двух процессов, каждый из которых обусловливает противоположное поведение рассматриваемого свойства. Один процесс - это обычное тепловое движение, усиливающееся с ростом температуры и делающее воду (как и любую другую жидкость) более раз упорядоченной; другой процесс необычный, присущий только воде, за счет него вода становится более упорядоченной при низких температурах. Разные свойства воды по-разному чувствительны к этим двум процессам, и поэтому положение экстремума наблюдается для каждого свойства при своей температуре.

4.4.Поверхностное натяжение

Среди необычных свойств воды трудно обойти вниманием еще одно - ее исключительно высокое поверхностное натяжение 0,073 Н/м (при 20o С). Из всех жидкостей более высокое поверхностное натяжение имеет только ртуть. Оно проявляется в том, что вода постоянно стремится стянуть, сократить свою поверхность, хотя она всегда принимает форму емкости, в которой находится в данный момент. Вода лишь кажется бесформенной, растекаясь по любой поверхности. Сила поверхностного натяжения заставляет молекулы ее наружного слоя сцепляться, создавая упругую внешнюю пленку. Свойства пленки также определяются замкнутыми и разомкнутыми водородными связями, ассоциатами различной структуры и разной степени упорядоченности. Благодаря пленке некоторые предметы, будучи тяжелее воды, не погружаются в воду (например, осторожно положенная плашмя стальная иголка). Многие насекомые (водомерки, ногохвостки и др.) не только передвигаются по поверхности воды, но взлетают с нее и садятся, как на твердую опору. Более того, живые существа приспособились использовать даже внутреннюю сторону водной поверхности. Личинки комаров повисают на ней с помощью не смачиваемых щетинок, а маленькие улитки - прудовики и катушки - ползают по ней в поисках добычи. Высокое поверхностное натяжение позволяет воде принимать шарообразную форму при свободном падении или в состоянии невесомости: такая геометрическая форма имеет минимальную для данного объема поверхность. Струя химически чистой воды сечением 1 см2 по прочности на разрыв не уступает стали того же сечения. Водную струю как бы цементирует сила поверхностного натяжения. Поведение воды в капиллярах подчиняется и более сложным физическим закономерностям. Сент-Дьердьи отмечал, что в узких капиллярах возникают структурно упорядоченные слои воды вблизи твердой поверхности. Структурирование распространяется в глубь жидкой фазы на толщину слоя порядка десятков и сотен молекул (ранее предполагали, что упорядоченность ограничивается лишь мономолекулярным слоем воды, примыкающим к поверхности). Особенности структурирования воды в капиллярных системах позволяют с определенным основанием говорить о капиллярном состоянии воды. В природных условиях это состояние можно наблюдать у так называемой поровой воды. В виде тончайшей пленки она устилает поверхность полостей, пор, трещин пород и минералов земной коры. Развитые межмолекулярные контакты с поверхностью твердых тел, особенности структурной упорядоченности, вероятно, и являются причиной того, что поровая вода замерзает при более низкой температуре, чем обычная - свободная - вода. Исследования показали, что при замерзании связанной воды проявляются не только изменения ее свойств, - иными становятся и свойства тех горных пород, с которыми она непосредственно соприкасается.

4.5.Аномалия теплоемкости.

Что же это за необычный процесс, происходящий в воде и делающий ее непохожей на другие жидкости? Чтобы уяснить его физическую сущность, рассмотрим еще одну, на мой взгляд, самую сильную аномалию воды - температурное поведение ее теплоемкости. Величина теплоемкости, как известно, показывает, сколько нужно затратить тепла, чтобы поднять температуру вещества на один градус. Для подавляющего числа веществ теплоемкость жидкости после плавления кристалла увеличивается незначительно - никак не более 10%. Другое дело - вода. При плавлении льда теплоемкость скачет от 9 до 18 кал/моль " град, то есть в два раза! Такого огромного скачка теплоемкости при плавлении не наблюдается ни у одного другого вещества: здесь вода абсолютный рекордсмен.Во льду энергия, подводимая для нагревания, тратится в основном на увеличение тепловой скорости молекул. Скачок теплоемкости после плавления означает, что в воде открываются какие-то новые процессы (и очень энергоемкие), на которые тратится, подводимое тепло и которые обусловливают появление избыточной теплоемкости. Такая избыточная теплоемкость и, следовательно, упомянутые энергоемкие процессы существуют во всем диапазоне температур, при которых вода находится в жидком состоянии. Она исчезает только в паре, то есть эта аномалия является свойством именно жидкого состояния воды. Теплоемкость воды аномальна не только по своему значению. Удельная теплоемкость разная при различных температурах, причем характер температурного изменения удельной теплоемкости своеобразен: она снижается по мере увеличения температуры в интервале от 0 до 37o С, а при дальнейшем увеличении температуры - возрастает. Минимальное значение удельной теплоемкости воды обнаружено при температуре 36,79o С, а ведь это нормальная температура человеческого тела! Нормальная температура почти всех теплокровных живых организмов также находится вблизи этой точки.При сильном переохлаждении теплоемкость сильно возрастает, то есть аномальный вклад в нее еще больше увеличивается. Переохлажденная вода еще более аномальна, чем обычная.

5.Структура и формы льда.

Вода при охлаждении в нормальных условиях ниже 0о С кристаллизируется, образуя лед, плотность которого меньше, а объем почти на 10% больше объема исходной воды. Охлаждаясь, вода ведет себя как многие другие соединения: понемногу уплотняется-уменьшает свой удельный объем. Но при 4 о С ( точнее, при 3,98 о С) наступает кризисное состояние: при дальнейшем понижении температуры объем воды уже не уменьшается, а увеличивается. С этого момента начинается упорядочение взаимного расположения молекул, складывается характерная для льда гексагональная кристаллическая структура. Каждая молекула в структуре льда соединена водородными связями с четырьмя другими. Это приводит к тому, что в фазе льда образуется ажурная конструкция с " каналами" между фиксированными молекулами воды. В водных растворах некоторых органических веществ вокруг молекул примесей возникают упорядоченные группы водных молекул своеобразные зоны "жидкого льда", имеющие кубическую структуру, которая отличается большой рыхлостью по сравнению с гексагональной. Появление такого льда вызывает значительное расширение всей замерзшей массы. При появлении льда разрушаются связи не только дальнего, но и ближнего порядка. Так, при 0 о С 9- 15% молекул Н2 О утрачивают связи с соединениями, в результате увеличивается подвижность части молекул и они погружаются в те полости, которыми богата ажурная структура льда. Этим объясняется сжатие льда при таянии и большая по сравнению с ним плотность образующейся воды. При переходе " лед-вода" плотность возрастает примерно на 10%, и можно считать, что эта величина определенным образом характеризует количество молекул Н2 О, попавших в полости.

mirznanii.com

Польза и вред воды с необычной точки зрения / Портал Обучения и Саморазвития

В этой статье мы посмотрим на пользу и вред воды, под не совсем обычным углом. Вода самое простое и распространенное вещество на земле. Ею покрыто 70% всей поверхности планеты.

Это мировой океан, моря, озера, реки. Ее запасы хранятся в ледниках, в парообразном состоянии в виде облаков. В подземных реках и полостях, мантии земной коры.

Значение воды на Земле

Вода в живых организмах является основой строения всего живого на Земле. К примеру, человек в зависимости от возраста состоит из воды на 80 – 60%. В нашем с вами мозгу  90% жидкости. Тела обитателей морских глубин-медуз на 98% состоят из воды. Вода содержится даже в скальных породах, правда уже в гораздо меньших пропорциях.

Значение воды на Земле невозможно переоценить, ибо это сама жизнь! С нее все начинается и без нее все умирает. Поэтому рассуждать о пользе воды для жизни все равно, что вести полемику о пользе сердца или мозга в нашем организме.

Жизнь зародилась в воде

Человечество давно вышло из воды на сушу, жабры заменили легкие, а плавники стали руками и ногами. Но жизнь человека и сегодня зарождается в воде. В околоплодной жидкости развивается человеческий эмбрион. На ранних стадиях развития зародыш имеет жабры.

Есть даже сторонники родов воде. Считается, что этот способ физиологически более естественный. Новорожденные испытывают гораздо меньший шок от появления в «нашем мире». И действительно новорожденные чувствуют себя в воде очень даже комфортно. Потому как  эта среда в течение девяти месяцев была для них «домом».

Наша с вами жизнь зародилась в воде, и состав нашей крови напоминает состав соленой океанической воды. Вы думаете это случайность?

Необычные свойства воды

Вода обладает уникальными свойствами, невзирая на свою простоту. Этот элемент в различных условиях ведет себя не похоже на все остальные вещества, известные человеку:

  • Вода может находиться в трех состояниях.
  • Вода это универсальный растворитель.
  • При замерзании вопреки остальным элементам, вода расширяется.
  • У воды огромная теплоемкость именно благодаря свойствам теплообмена биосфера земли не выгорает под излучением нашей звезды днем и не замерзает в лед ночью.
  • Не до конца понятно, каким образом вода поднимается вверх по капиллярам деревьев, преодолевая атмосферное давление?

И это далеко не все загадки.

Сравнительно недавно учёные открыли новые необычные свойства воды. Это – память воды и ее способность мгновенно передавать информация, насколько угодно большие расстояния. «Перестроечное» поколение помнит Алана Чумака, который по утрам для всей страны заряжал воду. Мы дружно посмеивались над этим, но «втихаря» ставили литровую банку перед телевизором.

Память воды

Как вода помнит все? На самом деле вода это не хаотическое движение молекул. Как может показаться на первый взгляд. В воде имеются прочные связи, напоминающие решётку, которые и являются ячейками памяти.

Молекулы воды в них не статичны, они постоянно перемещаются, как только одна молекула покидает ячейку памяти другая тут же встает на ее место, не разрушив ее структуру. И память воды может сохраняться сколько угодно долго.

Есть очень смелая гипотеза о том, что вода как вещество появилась не в процессе эволюции нашей планеты, а существует на много дольше. Настолько долго, что именно вода является матрицей эволюции не только биосферы в целом, но и планет. Именно она хранит всю необходимую информацию и активно участвует в сотворении жизни в пространстве.

Еще один довод в полемику о пользе воды для жизни на Земле. Однако поверить в это нашему рациональному уму достаточно сложно. Также сложно, как и нашим предкам, которые считали что земля плоская. И беспощадно жгли на кострах инквизиции, тех, кто смел, утверждать иное.

Что такое живая вода?

Японский учёный Масару Эмото проводил интересные эксперименты. Доказав что вода живая. И может отвечать не внешнее воздействие. Он подвергал воду различным внешним воздействиям.

  • СВЧ излучению.
  • воздействовал на образцы различной музыкой.
  • обращался к воде словами.

После этого замораживал и изучал полученный результат под микроскопом. Выяснилось, что вода реагировала на воздействия. Во всех образцах кристаллы имели неповторимую, различную друг от друга структуру.

Польза и вред воды

Как вода может навредить?

Речь пойдет не о вредных примесях в воде. Химический состав воды мы здесь рассматривать не будем. Все давно уже пользуются бытовыми фильтрами для доочистки воды от взвесей. А многие предпочитают пить минеральную воду.

Кто-то покупает бутилированную воду. Даже если допустить, что фильтры эффективны, а производители добросовестны, и вода не содержит вредных веществ, как вода может навредить организму?

А, если мы скажем, что может? Судите сами, сколько километров через лабиринты  труб городского водоснабжения она прошла прежде, чем попасть к вам? Сколько натерпелась в системах водозабора и промышленных системах очистки? Какие химические вещества в ней растворяли для обеззараживания? Все это остается в памяти воды. Подумайте, пользу или вред такая вода несет организму?

Вода в бутылках тоже имеет очень долгий путь. И через какие руки она проходит, чьи мысли и намерения запоминает – тоже остается загадкой. Остается сильно сомневаться в пользе этой воды для жизни. Как же быть?

Как сделать воду полезной?

Не все так печально. Вода имеет уникальное свойство самоочищаться, в том числе, и от лишней информации. Происходит это в процессе смены ее состояния. То есть переходе из жидкого состояния в газообразное или твердое.

Лишняя память стирается, и такая вода уже обладает уникальными свойствами, восстанавливая свою структуру. Собирать дождевую воду не самая удачная идея, а вот замораживать очень даже можно.

Как сделать воду полезной?

  • Воду из-под крана пропустить через бытовой фильтр.
  • Перелить в эмалированную емкость и поставить в морозилку.
  • Рекомендуют первую корочку льда снять и выбросить.
  • Достать емкость, проткнуть тонкую корочку льда посередине.
  • Слить не замерзшую воду.
  • Ждать когда лед превратиться естественным образом в воду.

Размороженная вода сохраняет свои полезные свойства в течение двадцати часов. Сколько воды нужно пить каждый день, вы сможете узнать из статьи на нашем сайте.

Но это только полдела. Пища, которую вы едите тоже, содержит воду. И обработка ее подобным образом вряд ли принесёт результат. В этом случае соблюдайте достаточно простые правила:

  • Не читайте во время еды о плохих новостях.
  • Не кушайте перед телевизором за просмотром фильмов ужасов.
  • Прекрасная традиция приступать к трапезе после молитвы благодарности. Если вам, конечно, позволяет мировоззрение.

Если помните, воды в живых организмах больше половины, и мы тоже состоим из нее. Как вода внутри нас может навредить организму? Если вода нашего организма в течение жизни зарядится злобой, ненавистью и завистью, то начнутся болезни и мы умрем! Достаточно понятно?

Мы сами можем изменить память воды, удалив лишние вредные воспоминания. Не верите? Попробуйте! Но, в этом случае потребуется более сложная работа:

  • Измените свое отношение к жизни на положительное восприятие.
  • Думайте что говорите. Следите за своими мыслями.
  • Избавьте себя от негативного окружения.
  • Чаще улыбайтесь.
  • Говорите спасибо и не заводите врагов.
  • Помогайте окружающим и откликайтесь на чужие беды.

И вся вода, которая снаружи и внутри вашего тела, со временем станет полезной водой для жизни. Несмотря на сложность и необычность теории, правила, как сделать воду полезной, достаточно просты и, поверьте, не новы.

Будьте здоровы, радуйтесь жизни в самые трудные дни и не останавливайтесь на достигнутом. Тогда вы согласитесь, что польза и вред воды, которую мы пьем, зависит только от нас. В этом мире гораздо больше прекрасного. Спасибо что дочитали статью до конца.

samosoverhenstvovanie.ru

Живая и неживая

Мы не знаем точно, откуда берутся мифы о воде. На эту тему существует множество спекуляций, затрагивающих и биологическую роль воды, и ее культурное значение, и даже тот факт, что с точки зрения физики и химии вода действительно представляет собой очень необычную жидкость. Но поскольку «очень необычную» не означает «волшебную и загадочную», мы решили отделить зерна от плевел и вспомнить самые популярные поверья о свойствах воды. А заодно и разобраться, что с ними не так. Этот материал мы подготовили совместно с компанией «Аквафор».

1. Память воды

«Возьмите физику и выбросьте ее в мусорное ведро: у воды есть память! И хотя ее память о крохотной капельке лукового сока кажется бесконечной, обо всем дерьме, что в ней плавало, она почему-то забывает...» — Тим Минчин, «Шторм».

Что утверждается?Вода обладает способностью запоминать, какие вещества в ней были растворены. И не только запоминать, но и воспроизводить свойства растворов, притом что ни одной молекулы нужного вещества в растворе фактически нет. Достигается такой эффект за счет того, что молекулы воды определенным якобы образом выстраиваются вокруг молекул растворенного вещества и впоследствии сохраняют эту структуру.

Откуда это взялось?Популярный термин «память воды» появился благодаря работам французского иммунолога Жака Бенвениста в конце 1980-х — начале 1990-х годов. В серии экспериментов по активации базофилов (разновидностей лейкоцитов, играющих важную роль в аллергических реакциях организма) команда под руководством Бенвениста показала, что при последовательном уменьшении концентрации антител, активирующих базофилы, наблюдался отклик последних даже в том случае, когда статистически в пробе не могло остаться ни одного антитела. К чести исследователей надо отметить, что они не стали предлагать какого-либо революционного теоретического объяснения новым результатам, а в описании методической части их работы не было каких-либо критических ошибок. Тем не менее, полученные ими результаты противоречили имевшимся на тот момент представлениям о физико-химических свойствах воды. По этой причине редактор журнала Nature, в который Бенвенист и коллеги отправили статью по результатам работы, согласился принять публикацию с тем условием, что исследователи проведут повторный эксперимент под наблюдением специальной комиссии.

Статья была опубликована в Nature в июне 1988 года. Вскоре после этого ученые попытались воспроизвести свои результаты под наблюдением комиссии (в которую даже входил профессиональный иллюзионист). Вначале им это удалось, однако при попытке сделать то же самое в слепом тесте (когда экспериментатор не знал, в какой пробирке действующее вещество, а в какой — пустой образец или стандарт для сравнения) все изменилось: вода отказалась что-либо запоминать. До сих пор неизвестно, чем был обусловлен изначальный успех Бенвениста. То ли он сознательно хотел обмануть научное сообщество, то ли искренне поверил в свои невероятные результаты, но ученый так и не признал собственной ошибки, закончил академическую карьеру и продолжил эксперименты в независимой лаборатории.

Как все обстоит на самом деле?Представление о «памяти воды» противоречит современным концепциям физической химии. Несмотря на то, что вода действительно имеет структуру, эта структура постоянно меняется, тогда как понятие «памяти» предполагает наличие определенного состояния в течение продолжительного времени. По крайней мере, до того момента, когда потребуется «считать» информацию, «записанную» ранее. Экспериментально показано, что характерное время жизни структур, образованных молекулами жидкой воды, измеряется пикосекундами, то есть интервалом порядка 10-12 секунды. Этот период определяется временем жизни водородных связей между соседними молекулами воды. Даже без дополнительных оценок понятно, что за время, которое требуется для манипуляции с пробирками, вода успеет многократно поменять свое состояние, «забыв» все, что ей пытались «сообщить» ранее.

Память воды очень часто напрямую соотносят с гомеопатией, что не совсем корректно. Действительно, памятью воды можно было бы объяснить механизм действия гомеопатических разведений, однако она не является основополагающим принципом. Создатель гомеопатии Христиан Ганеман объяснял ее действие принципом «подобное лечится подобным», когда препарат, вызывающий определенные симптомы, в предельно малых разведения якобы воздействует обратным образом, то есть эти самые симптомы исцеляет. Кроме того, гомеопатические препараты часто существуют не в виде водных растворов, а в виде сахарных шариков, поэтому одной памятью воды их действие не объяснить, нужна еще «память сахара».

2. Зарядка воды на расстоянии

«Я попрошу вас приготовить кремы: самые простые, самые нейтральные, с тем, чтобы я в процессе сеанса их зарядил», — Аллан Чумак, телесеанс от заболеваний опорно-двигательного аппарата.

Что утверждается?Воду можно «зарядить» при помощи определенного сигнала, обычно электромагнитного, отчего она приобретет свойства раствора какого-то специфичного вещества. Сигнал, несущий информацию, можно оцифровать и передать на расстояние при помощи любого средства связи. Таким образом, с помощью особых манипуляций, имея в наличии только чистую воду и нужный сигнал, можно воспроизвести свойства определенного раствора, например лекарства. В некоторых случаях считается, что вода запоминает информацию вообще, например эмоции, хорошие или плохие слова.

Откуда это взялось?В академической сфере о зарядке воды на расстоянии впервые заговорил тот же Жак Бенвенист — это был следующий шаг его группы после предполагаемого открытия памяти воды. Однако после провала эксперимента под контролем комиссии Бенвенист потерял авторитет в академических кругах, поэтому все последующие проведенные им эксперименты практически не получили внимания со стороны его коллег.

Другим классическим примером работ в этой области являются произведения японского автора Масару Эмото, который прославился своими заявлениями о том, что вода способна впитывать информацию, причем для этого даже не обязательно ее облучать. Достаточно поместить бумажку с определенным словом на крышку емкости с водой, чтобы эмоция или информация, соответствующая этому слову, записалась в структуру воды. В доказательство своей гипотезы Эмото приводил внешний вид микрокристаллов воды, «заряженной» различной информацией. Как и стоило ожидать, «положительные» эмоции, как и классическая музыка, например, придают кристаллам воды (согласно результатам Эмото) правильную, красивую форму. При этом отрицательные эмоции или музыка в жанрах рок или метал приводят к образованию некрасивых, деформированных кристаллов.

Опыты Бенвениста и Эмото в России не получили такой широкой огласки, как работы другого специалиста по зарядке воды на расстоянии — Аллана Владимировича Чумака. В ходе своих телесеансов целитель заряжал воду (и не только) при помощи пассов руками, хотя вода и не считалась основным объектом воздействия: исцеляться можно было и без нее, просто сидя у телевизора. В отличие от Бенвениста, использующего научную методологию для подтверждения наличия памяти у воды, Чумак объяснял свой талант даром свыше и не апеллировал к французскому ученому, хотя и работал с ним примерно в одно время. Именно потому, что Чумак не использовал псевдонаучных концепций, его действия не привлекли пристального внимания научных комиссий, за исключением упоминания в ряду других телевизионных экстрасенсов — Анатолия Кашпировского и Юрия Лонго.

Как все обстоит на самом деле?Никто из создателей и адептов этого мифа даже не пытался придумать механизм, в соответствии с которым электромагнитное излучение могло бы записывать информацию прямо в воду. Так, Масару Эмото, несмотря на популяризацию собственных экспериментальных данных, никогда не приводил подробной методологии эксперимента, а также не имел рецензированных публикаций, за что не раз подвергался критике со стороны научного сообщества. Поэтому, кроме теории о памяти воды, о которой говорилось выше, обсуждать здесь нечего. От себя добавим, что с точки зрения физической химии не стоит ожидать прямого соответствия между структурой воды и льда. Действительно, при плавлении льда в воде обнаруживаются крупные кластеры, обладающие схожей со льдом структурой, однако при нагревании хотя бы до комнатной температуры эта структура полностью теряется и вода становится аморфной.

Можно ли зарядить воду (если принять гипотезу о существовании ее памяти) при помощи обычного бытового телевизора? Поскольку мы не знаем точного механизма передачи информации воде, можно только предположить, как должен происходить подобный эксперимент. Раз заряженная вода должна определенным образом воздействовать на клеточные процессы, характерный размер кластеров, несущих информацию, должен быть сопоставим с типичными биологическими макромолекулами, то есть не превышать десятков нанометров. Телевизор в основном излучает электромагнитные волны видимого спектра, длина волны которых составляет от 400 до 760 нанометров. Тем не менее, можно вспомнить, что телевизоры во времена трансляций Чумака были кинескопическими, то есть основным их рабочим элементом была электронно-лучевая трубка. В ней формировался пучок электронов, который попадал на флуоресцентный экран. Известно, что в подобных приборах создается вторичное рентгеновское излучение, которое характеризуется длиной волны от 10 нанометров и меньше. К счастью, большая часть рентгеновского излучения кинескопа поглощается специальным металлизированным стеклом. Остаточное же излучение обладает настолько малой интенсивностью, что будет быстро поглощено материалом емкости, в которой вода стоит перед телевизором. Поэтому даже в случае существования памяти воды ее зарядка посредством телевизора выглядит маловероятной.

3. Структурированная вода

— А океаны, в которые впадают замерзшие реки? <...> А ключи, которые питают замерзшие реки и озера, а все подземные источники, питающие эти ключи...— Замерзнут, черт побери! <...>— А дождь?— Коснулся бы земли и превратился в твердые катышки, в лед-девять, и настал бы конец света. (Курт Воннегут, «Колыбель для кошки»)

Что утверждается?Не только память воды как способность воспроизводить определенную информацию, но и структура воды сама по себе играет огромную роль в биологических процессах в организме. Так, вокруг здоровых клеток вода структурируется особым образом, а вблизи больных клеток эта структура теряется. В том случае, если человек пьет структурированную воду (талую воду, свежевыжатые соки, фрукты и овощи, воду из специальных приборов — структуризаторов), организм может сразу же использовать ее в своей работе. Если же вода была неструктурированная (водопроводная, кипяченая, дистиллированная), организм затрачивает значительные усилия на ее структуризацию, что приводит к плохому самочувствию. При этом некоторые способы получения структурированной воды опираются на «естественные» подходы. Так, часто можно встретить рекомендацию готовить талую воду на натуральном зимнем морозе, а не в морозильной камере холодильника. У структурированной воды, по словам ее адептов, существует еще целый ряд более специфических эффектов, но мы в них углубляться не будем.

Откуда это взялось?Точный момент возникновения этой идеи назвать сложно, но можно вспомнить несколько ее предвестников. Один из них — концепция «поливоды», о которой заговорили в СССР в начале 1960-х годов, но которую опровергли к середине 1970-х. В результате пропускания чистой воды через тонкие кварцевые капилляры наблюдалось образование все такой же чистой (предположительно) воды, которая, однако, обладала кардинально новыми свойствами. Так, «поливода» была плотнее, кипела при повышенной, а замерзала — при пониженной температуре, а также обладала колоссальной (по сравнению с обычной водой) вязкостью. Название «поливода» было предложено вслед гипотезе об образовании полимерных цепочек, в которых молекулы воды выступали в качестве мономеров. Существовала даже гипотеза, что поливода может полимеризовать обычную воду при контакте с ней. Эта идея, в частности, обыгрывается в произведении Курта Воннегута «Колыбель для кошки». Когда феноменом поливоды заинтересовались по всему миру, а главное — многим лабораториям удалось воспроизвести результаты советских первооткрывателей, встал вопрос о теоретическом обосновании поливоды. В последующие годы было создано несколько соответствующих теорий, однако при более пристальном контроле эксперимента выяснилось, что все необычные свойства поливоды объяснялись наличием в ней примесей. В отличие от того же Бенвениста, авторы первых работ о поливоде признали собственные ошибки, и о явлении забыли, по крайней мере, в научных кругах.

Как все обстоит на самом деле?В отличие от идей о памяти воды, понятие «водный кластер» не является лженаучным и широко изучается в физической химии. Речь может идти как о малых кластерах, в которые входят от двух до восьми молекул воды, так и более крупных кластерах, включающих несколько сотен молекул. Характерные размеры таких объектов могут достигать нескольких нанометров. Исследование подобных структур играет важную роль в определении роли воды как растворителя во многих химических и биологических процессах. Однако эта тематика не затрагивает существование долгоживущих кластеров, которые были бы способны нести какую-либо информацию на макроскопических временных масштабах. Характерное время жизни кластера все равно не слишком превышает время жизни водородных связей и лежит в пределах нескольких пикосекунд (при комнатной температуре).

В доказательство особых свойств структурированной воды часто приводят опыты по кристаллизации воды из разных источников. Так, водопроводная или дистиллированная вода в этих экспериментах обычно образует «некрасивые» и несимметричные кристаллы, а структурированная вода — красивые и симметричные. Отсутствие детальной методологии этих экспериментов, а также публикаций в рецензируемых научных журналах позволяет лишь предположить, что эти данные не являются воспроизводимыми. Достаточно заметить, что в реальности все обстоит ровно наоборот: чем более химически чиста вода, тем правильнее и «красивее» будут ее кристаллы, так что дистиллят должен занимать чуть ли не первое место в подобном «конкурсе красоты».

4. Кислородная, электролизованная и бездейтериевая вода

«В процессе применения новой специальной технологии расстояние между молекулами воды увеличивается, и это свободное пространство занимают дополнительные молекулы кислорода. Таким образом, обеспечивается длительная устойчивая связь воды и кислорода», — неизвестный автор о кислородной воде.

Что утверждается?Существуют сравнительно простые способы придания обычной питьевой воде уникальных оздоравливающих свойств. К этим способам относится насыщение кислородом, чтобы он попадал в кровь через желудочно-кишечный тракт, электролизация воды с целью образования щелочной воды, кислотной воды и атомарного водорода, которые служат антиоксидантами и способствуют оздоровлению организма, а также удаление из воды примеси более тяжелого изотопа водорода — дейтерия, которого в норме в воде содержится около 0,01 процента. Бездейтериевая, или «легкая», вода также способствует общему оздоровлению организма и оказывает терапевтический эффект при раковых заболеваниях.

Откуда это взялось?Все эти утверждения основаны на желании найти что-то необычное в обычной воде, то есть производить различные манипуляции с составными частями самой воды. Отследить точный момент появления подобных идей оказалось непросто. Так, кислородные коктейли появились в советской медицине еще в 1960-х годах, но, в отличие от собственно кислородной воды, в коктейле кислород удерживается в плотной пенной шапке, способной доставить значительный объем кислорода в желудочно-кишечный тракт. Бездейтериевая вода, с точки зрения биологических применений, впервые упоминается в начале 1990-х годов. Примерно в то же время в Японии набрала популярность электролизованная или ионизированная вода.

Как все обстоит на самом деле?Из трех перечисленных типов воды проще всего разобраться, вероятно, с кислородной водой. Дело в том, что, в отличие от углекислого газа, кислород растворяется в воде не так хорошо: достаточно для рыб, но недостаточно, чтобы оказать реальное влияние на газообмен человека, поэтому сама по себе идея кислородной воды выглядит слабореализуемой с точки зрения физической химии. Именно поэтому при максимальном насыщении воды кислородом то количество газа, которое один литр воды принесет в кишечник (даже если считать его всасываемость 100-процентной), будет сопоставимо с содержанием кислорода в одном вдохе взрослого человека. Таким образом, даже самые простые оценки опровергают заявления о значительном тонизирующем эффекте от употребления кислородной воды. Все утверждения о существовании «особых технологий», позволяющих каким-то иным способом перенасытить воду кислородом при комнатной температуре и в отсутствие дополнительных химических примесей, также не выдерживают простейшей критики со стороны базовой термодинамики.

С электролизованной и бездейтериевой водой все оказывается чуть сложнее, так как в обоих случаях имеются опубликованные исследования, в которых так или иначе демонстрируется положительный эффект этих препаратов. Например, употребление бездейтериевой воды замедляло (PDF) гибель популяции мышей, пораженных раковыми опухолями. Однако исследования, посвященные бездейтериевой и электролизованной воде, оказались очень локализованными (электролизованная вода исследуется и употребляется преимущественно в Азии) и широкого распространения в научном сообществе не получили. Их принципы остаются не до конца понятыми, а зачастую и противоречивыми. В случае с электролизованной водой, например, остается непонятым вопрос о том, чем «кислотная» и «щелочная» вода отличается от раствора кислоты и щелочи соответственно.

5. Серебряная вода

«Жуткий город: девок нет, в карты никто не играет. Вчера в трактире украл серебряную ложку — никто даже не заметил: посчитали, что ее вообще не было», — из кинофильма «Формула любви».

Что утверждается?Вода, настоянная в серебряной посуде или на серебряном предмете (рубле, ложке), долго не портится, обладает сильным бактерицидным эффектом и полезна для внутреннего употребления. Частный случай — святая вода обладает целебными эффектом благодаря тому, что во время обряда освящения используется серебряная утварь.

Откуда это взялось?О целебных свойствах серебра говорится очень давно: первые упоминания можно найти у Геродота и в последующих римских источниках. В основном речь ведется о настаивании воды в серебряной посуде, что якобы увеличивает срок ее хранения. Долгое время серебро в различных формах использовалось для обеззараживания воды и обработки ран, однако с появлением более эффективных антисептиков серебро отошло на второй план. В современной практике серебро в виде растворов его солей или коллоидных частиц можно использовать, например, для «мягкого» обеззараживания воды, например, в некоторых фильтрах для питьевой воды.

Как дело обстоит на самом деле?Данный миф — миф лишь отчасти. Действительно, серебро в ионной форме, как и многие другие тяжелые металлы, например, медь, обладает бактериостатическим и (в высоких концентрациях) бактерицидным эффектом. Это означает, что лишь в сравнительно высоких концентрациях растворы солей серебра способны эффективно убивать бактерии, но чаще они лишь замедляют рост микроорганизмов. Всемирная организация здравоохранения в 2014 году опубликовала большой отчет (PDF) о перспективах применения серебра в качестве дезинфицирующего агента. Вкратце выводы этой работы сводятся к тому, что, несмотря на большой объем современных исследований ионов серебра и его коллоидных растворов, далеко не во всех случаях приведенных данных достаточно для того, чтобы сделать окончательный вывод об эффективности таких препаратов для применения в водоподготовке. В то же время серебро, как и другие тяжелые металлы, накапливается в организме и им вполне можно отравиться (это заболевание называется аргироз), поэтому существует норма предельно допустимой концентрации (ПДК) серебра, превышение которой в питьевой воде ничего хорошего не сулит.

Другой проблемой серебряной воды является тот факт, что серебряная ложка или рубль, опущенные в воду, дают пренебрежимо малый вклад в содержание серебра в ионной форме. Именно поэтому настаивание воды на серебряных предметах обладает довольно слабой эффективностью с точки зрения дезинфекции. По этой же причине касание воды серебряным крестом во время освящения не придает воде никаких особых свойств, за исключением символической ценности, обусловленной ее ролью во многих религиозных обрядах. Важно помнить, что освящение воды не изменяет ее физико-химических свойств, а главное — не очищает ее. Из-за этого происходят и курьезные случаи: анализ выборки святых источников и церемониальных сосудов для воды в Австрии показал, что в 86 процентах случаев исследуемая вода не пригодна для питья из-за присутствия в ней вредоносных микроорганизмов. Возвращаясь к серебру: если все-таки есть потребность насытить воду его ионами, то для этого можно добавить растворимую соль серебра (нитрат, например), или воспользоваться специальным прибором — ионизатором. Его применение действительно позволяет добиться бактерицидного эффекта, однако с его помощью очень легко превысить ПДК серебра в питьевой воде. В этом случае регулярное употребление ионизированной серебряной воды может привести к серьезным последствиям для здоровья.

Как упоминалось выше, этот материал мы подготовили совместно с компанией «Аквафор». Поэтому наш разбор мифов о воде мы завершим простым, но важным напоминанием: пить надо воду, очищенную современными фильтрами, созданными на основе научных данных, а не лженаучных мифов. Такими, как, например, фильтры «Аквафор» — обычный кувшин, система очистки воды с защитой от бактерий и система очистки воды премиум класса с дополнительной минерализацией.

Тарас Молотилин

nplus1.ru


Смотрите также