еВода — Другой взгляд на воду. Вода метан


Метан - это... Что такое Метан?

Мета́н (лат. Methanum) — простейший углеводород, бесцветный газ (в нормальных условиях) без запаха[2], химическая формула — Ch5. Малорастворим в воде, легче воздуха. При использовании в быту, промышленности в метан обычно добавляют одоранты (обычно меркаптаны) со специфическим «запахом газа». Метан нетоксичен и неопасен для здоровья человека[3]. Однако имеются данные, что метан относится к токсическим веществам, действующим на центральную нервную систему[4]. Накапливаясь в закрытом помещении, метан взрывоопасен. Обогащение одорантами делается для того, чтобы человек вовремя заметил утечку газа. На промышленных производствах эту роль выполняют датчики и во многих случаях метан для лабораторий и промышленных производств остается без запаха.

Метан — первый член гомологического ряда насыщенных углеводородов (алканов), наиболее устойчив к химическим воздействиям. Подобно другим алканам вступает в реакции радикального замещения (галогенирования, сульфохлорирования, сульфоокисления, нитрования и др.), но обладает меньшей реакционной способностью. Специфична для метана реакция с парами воды, которая протекает на Ni/Al2O3 при 800—900 °C или без катализатора при 1400—1600 °C; образующийся синтез-газ может быть использован для синтеза метанола, углеводородов, уксусной кислоты, ацетальдегида и других продуктов.

Взрывоопасен при концентрации в воздухе от 4,4 % до 17 %[5]. Наиболее взрывоопасная концентрация 9,5 %. Является наркотиком; действие ослабляется ничтожной растворимостью в воде и крови. Класс опасности — четвёртый[6].

Источники

Основной компонент природных (77—99 %), попутных нефтяных (31—90 %), рудничного и болотного газов (отсюда другие названия метана — болотный или рудничный газ). В анаэробных условиях (в болотах, переувлажнённых почвах, рубце жвачных животных) образуется биогенно. Получается также при коксовании каменного угля, гидрировании угля, гидрогенолизе углеводородов в реакциях каталитического риформинга.

Классификация по происхождению:

  • абиогенный — образован как результат химических реакций неорганических соединений;
  • биогенный — образован как результат химической трансформации органического вещества;
  • бактериальный (микробный) — образован в результате жизнедеятельности бактерий;
  • термогенный — образован в ходе термохимических процессов.

Предположительно, что на поверхности Титана (спутник Сатурна) в условиях низких температур (−180 °C) существуют целые озёра и реки из жидкой метано[источник не указан 27 дней]-этановой смеси.

Получение

В лаборатории получают нагреванием натронной извести (смесь гидроксидов натрия и кальция) или безводного гидроксида натрия с ледяной уксусной кислотой.

\mathsf{2NaOH + CH_3COOH \xrightarrow[]{^ot} Na_2CO_3 + CH_4\uparrow}

Для этой реакции важно отсутствие воды, поэтому и используется гидроксид натрия, так как он менее гигроскопичен.

Возможно получение метана сплавлением ацетата натрия с гидроксидом натрия[7]:

\mathsf{CH_3COONa + NaOH \rightarrow CH_4\uparrow + Na_2CO_3}

Также для лабораторного получения метана используют гидролиз карбида алюминия или некоторых металлорганических соединений (например, метилмагнийбромида).

Химические свойства

Горит в воздухе голубоватым пламенем, при этом выделяется энергия около 39 МДж на 1 м³. С воздухом образует взрывоопасные смеси при объёмных концентрациях от 5 до 15 процентов. Точка замерзания −184oС (при нормальном давлении)

Вступает с галогенами в реакции замещения, которые проходят по свободно радикальному механизму:

\mathsf{CH_4 + Cl_2 \rightarrow CH_3Cl + HCl} \mathsf{CH_3Cl + Cl_2 \rightarrow CH_2Cl_2 + HCl} \mathsf{CH_2Cl_2 + Cl_2 \rightarrow CHCl_3 + HCl} \mathsf{CHCl_3 + Cl_2 \rightarrow CCl_4 + HCl}

Выше 1400 °C разлагается по реакции:

\mathsf{2CH_4 \rightarrow C_2H_2 + 3H_2}

Окисляется до муравьиной кислоты при 150—200 °C и давлении 30—90 атм. по цепному радикальному механизму:

\mathsf{CH_4 + 3[O] \rightarrow HCOOH + H_2O}

Соединения включения

Метан образует соединения включения — газовые гидраты, широко распространенные в природе.

Применение метана

  • Топливо.
  • Сырьё в органическом синтезе.

Физиологическое действие

Метан является самым физиологически безвредным газом в гомологическом ряду парафиновых углеводородов. Физиологическое действие метан не оказывает и не ядовит (из-за малой растворимости метана в воде и плазме крови и присущей парафинам химической инертности). Погибнуть человеку в воздухе, с высокой концентрацией метана можно только от недостатка кислорода в воздухе для дыхания при очень высоких концентрациях метана. Так, при содержании в воздухе 25—30 % метана появляются первые признаки асфиксии (учащение пульса, увеличение объёма дыхания, нарушение координации тонких мышечных движений и т. д.). Более высокие концентрации метана в воздухе вызывают у человека кислородное голодание — головную боль, одышку, — симптомы, сходные с горной болезнью.

Так как метан легче воздуха, он не скапливается в проветриваемых подземных сооружениях. Поэтому весьма редки случаи гибели людей от вдыхания смеси метана с воздухом, от асфиксии.

Первая помощь при тяжелой асфиксии: удаление пострадавшего из вредной атмосферы. При отсутствии дыхания немедленно (до прихода врача) искусственное дыхание изо рта в рот. При отсутствии пульса — непрямой массаж сердца.

Хроническое действие метана

У людей, работающих в шахтах или на производствах, где в воздухе присутствуют в незначительных количествах метан и другие газообразные парафиновые углеводороды, описаны заметные сдвиги со стороны вегетативной нервной системы (положительный глазо-сердечный рефлекс, резко выраженная атропиновая проба, гипотония) из-за весьма слабого наркотического действия этих веществ, сходного с наркотическим действием диэтилового эфира.

Метан и экология

Является парниковым газом, в этом отношении, более сильным, чем углекислый газ, из-за наличия глубоких вращательных полос поглощения его молекул в инфракрасном спектре. Если степень воздействия углекислого газа на климат условно принять за единицу, то парниковая активность метана составит 21 единицу[8].

ПДК метана в воздухе рабочей зоны составляет 7000 мг/м3[9].

Ссылки

Примечания

  1. ↑ Обзор: Растворимость некоторых газов в воде
  2. ↑ Статья «Метан» на сайте «Химик»
  3. ↑ З. Гауптман, Ю. Грефе, Х. Ремане «Органическая химия», М. «Химия», 1979, стр. 203.
  4. ↑ Куценко С. А. Основы токсикологии / С.А. Куценко. — СПб.: Фолиант, 2004.
  5. ↑ ГОСТ Р 52136-2003
  6. ↑ Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, н-бутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (УТВ. ГЛАВНЫМ ГОСУДАРСТВЕННЫМ САНИТАРНЫМ ВРАЧОМ РФ 30.03.2003)
  7. ↑ Б. А. Павлов, А. П. Терентьев. Курс органической химии. — Издание шестое, стереотипное. — M.: Химия, 1967. — С. 58.
  8. ↑ EBRD Methodology for Assessment of Greenhouse Gas Emissions, Version 3 February 2009 (англ.)
  9. ↑ Гигиенические нормативы ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны»

dic.academic.ru

применение и опасность для окружающей среды

Метан: происхождение и химические характеристики

Метан – это газ, имеющий органическую природу, лишенный запаха и цвета. Ch5 – такова его химическая формула, а масса вещества меньше, чем масса воздуха. Растворение в воде протекает медленно. Говоря об органической природе метана, имеется в виду, что почти 95% случаев его появления носят естественную природу. К примеру, он выделяется при разложении остатков растений. Поэтому неудивительно, что многие его характеристики были изучены еще до Новой Эры, когда люди наблюдали пузырьки воздуха на поверхности стоячих водоемов. Данные пузырьки были именно метаном, выделяющимся в процессе гниения растений на дне болота.

Среди прочих естественных источников газа можно выделить:

  • Домашний скот. Бактерии, живущие в их желудках, выделяют метан в процессе жизнедеятельности, причем его доля приходится на 20% всего атмосферного газа.
  • Растения. Метан – неотъемлемое вещество, выделяющееся в процессе фотосинтеза.
  • Насекомые. Наиболее активно выделяют метан термиты.
  • Шахты. Под земной поверхностью постоянно происходит медленное разложение каменного угля, в процессе чего образуется метан.
  • Нефтяные скважины. В нефти содержание этого газа просто огромно.
  • Вулканы. Вероятно, там метан также образуется из-за того, что активно разлагаются доисторические органические материи.
  • Океан. Глубоко под водой находятся трещины, через которые может сочиться метан.
  • Горение лесных массивов.
  • Промышленность. Несмотря на кажущуюся активность этих предприятий, их доля выбросов в общей массе мизерна.

Все перечисленные примеры наглядно подтверждают тот факт, что метан постоянно был в атмосфере, его появление не связано с началом активной деятельности человека. Именно поэтому присутствие метана на планете – это признак того, что на ней может быть жизнь или она была там когда-то.

Тем не менее, «натуральность» данного газа не говорит о том, что он не несет нам никакого вреда. Его пары, особенно при повышенной концентрации, вполне способны привести к смерти человека. На первых этапах развития горнодобывающей промышленности часто фиксировались взрывы или сильнейшие отравления шахтеров метаном. Если следить за информацией в СМИ, то эти события имеют место и в современном мире. Чтобы свести к минимуму вероятность метанового отравления, необходимо при первых его признаках оформить заказ на профессиональный анализ воздуха в помещении, при помощи которого удастся точно определить концентрацию.

Метан в современном мире

Газ широко используется в современном мире:

  • Двигатели внутреннего сгорания достаточно часто функционируют на метане.
  • Газ дает возможность производить многие медикаменты, среди которых антисептики и снотворные препараты.
  • Метан – это основа формальдегида и метанола, при помощи которых делаются удобрения и многие иные вещества.
  • Без метана невозможно сделать огнетушители и растворители.
  • Синильная кислота – не просто яд, она находит и широкое практическое применение, а процесс ее производства основан на окислении метановой и аммиачной смеси.

Метан и его опасность для человеческого организма

Опасность метана кроется в следующих факторах:

  • Взрывоопасность. Именно это свойство дало ему название «гремучего газа». Скопление метана, мельчайшая искорка – все это способно привести к разрушительному взрыву. Именно поэтому в местах, где фиксируются скопления или выбросы этого газа, нельзя курить, использовать открытые источники пламени. Но порой даже этих мер безопасности не хватает, газ продолжает забирать человеческие жизни.
  • Нами уже было упомянуто свойство, согласно которому метан может накапливаться в шахтах. В основном его можно найти в пустотах между крупными пластами пород, а также пустотах, созданных шахтерами в процессе добычи. Чем активнее добыча – тем интенсивнее выбросы метана, а потому именно работник шахт чаще всего гибнут от этого газа.
  • Взрывы – это еще не вся опасность, метан может вызывать и сильнейшие отравления. Вдыхание больших его объемов приводит к недостатку кислорода в крови, «звону» в ушах, ощущению «чугунной» головы. Повышение концентрации заставляет сердце биться чаще, человек чувствует общую слабость, страдает от тошноты, кожные покровы могут покраснеть. Самые серьезные последствия – это обмороки, бледность, конвульсии и даже летальные исходы.
  • К сожалению, в чистом виде метан не пахнет, а потому обнаружить его трудно. «Метановый» аромат, который мы можем чувствовать, - это заслуга специальных отдушек, делающих его применение более безопасным и контролируемым.
  • В шахтах, конечно, никакие отдушки к метану не добавляются. Еще с древних времен люди пользуются специальными способами, позволяющими зафиксировать его присутствие в воздухе. Первые шахтеры, к примеру, брали с собой канарейку. Если птичка переставала петь или даже умирала, то необходимо срочно удалиться из забоя.
  • В 50-х годах минувшего века начали пользоваться особыми приборами, позволяющими точно установить процент метана в воздушной смеси. Тем не менее, опытные работники говорили, что канарейка – способ даже лучший, чем новомодные приборы. Конечно, современные устройства более чувствительны и компактны, порой они монтируются непосредственно в каски шахтеров, как и лампы. В шахтах обязательно установлены и стационарные датчики, постоянно передающие сведения специалистам. Опасные повышения заставляют немедленно отключать электричество и эвакуировать персонал. Сейчас также используются и специальные установки, способные локализовать детонации угольной пыли на самых ранних этапах. Перед тем, как начинается рабочая смена, количество метана в шахте снижается до предельно безопасных отметок.

Получается, что опасность метана для человека исходит сразу с двух сторон. Склонность к детонациям, отравляющий эффект, отсутствие запаха и цвета – все это делает «гремучий газ» невероятно опасным. Чтобы не столкнуться с его самыми худшими сторонами, стоит заранее заказать экологическую экспертизу, способную установить уровень метановой концентрации в воздухе.

ekobalans.ru

Гидрат метана – пылающий лед

Гидрат метана на океаническом дне

Гидрат метана – самый таинственный минерал Земли, о котором стало известно только в последние десятилетия. Этот минерал может существовать только в специфических условиях. Например, при земном атмосферном давлении и температуре не выше минус 80 градусов. Если же температура воздуха будет равна 0 градусов Цельсия, то для существования этого минерала необходимо создать высокое давление – 25 бар. Он не может находиться в жидком и газообразном состоянии, его невозможно расплавить. Гидрат метана может быть только твердым.

Что же представляет из себя этот таинственный минерал?Гидрат метана – это лед, имеющий особую структуру в виде кластеров , внутри которых разместились молекулы метана и других соединений метанового ряда (Ch5, C2H6, C3H8, изобутан, и т. п.). Вода и метан связаны между собой непрочными молекулярными связями, и при повышении температуры газ метан просто покидает кластеры и испаряется. Если нагрев происходит быстро – освобождение метана тоже происходит быстро, иногда – взрывообразно.

гидрат метана

Модель гидрата метана

Известны случаи взрывообразного отхождения метана из подтаявшей вечной мерзлоты и осадочных толщ морей. Это приводит к насыщению воды пузырьками метана и понижению её плотности. В результате корабль или подводная лодка могут затонуть. Существует предположение, что именно такое явление было причиной внезапного затопления кораблей в знаменитом Бермудском треугольнике.

При сильных землетрясениях, подвижках литосферных плит, также может происходить нагрев пород и взрывообразное высвобождение метана. Если поднять гидрат метана со дна или извлечь из вечной мерзлоты, из него сразу начнет выходить газ. Этот газ можно поджечь и увидеть удивительную картину – пылающий лед!

Где находятся гидраты метана и почему об этом удивительном соединении стало известно только во второй половине двадцатого века?Этот минерал находится на дне океанов, на шельфе и в толщах пород океанического дна. Но только на определенной глубине, там, где тепло из недр Земли ещё не нагревает осадочные породы. Под вечной мерзлотой, опять же, до определенной глубины. На дне озера Байкал. Природные запасы этого минерала очень велики.

Гидрат метана — источник энергии, так как при его добыче можно получать природный газ в больших количествах. По подсчетам специалистов, это 160 – 180 кубических сантиметров метана из 1 куб. см льда. Так что промышленная разработка скоплений этого минерала может принести немало голубого топлива. Перспектива использования гидрата метана как источника запасов газа подтолкнула к его тщательному изучению в конце 20 и начале 21 века.

Но этот минерал также источник большой опасности для жизни на Земле. Представьте, что температура морской воды вдруг увеличилась, на дне морей и океанов начали извергаться вулканы в большом количестве. Метан сразу выделится в воду и атмосферу. Метан – парниковый газ, также, как и СО2. Парниковый эффект, создаваемый метаном, в разы больше, чем от углекислого газа. Произойдет разогрев атмосферы и океанов. Это приведет к глобальным изменениям климата на Земле, к гибели множества видов животных и растений в морях и на суше. Может быть, и к гибели человека.

Геологи считают, что нечто подобное произошло примерно 252 млн. лет назад (конец пермского геологического периода), когда на севере центральной Сибири упал большой астероид и пробил земную кору. Это привело к излиянию базальтовой лавы на значительной территории, извержению вулканов и землетрясениям на всей планете. Как следствие – поступление в атмосферу не только вулканического пепла, но и метана. В результате погибло 70 процентов видов обиталелей суши и 96% видов обитателей морей и океанов. Мир изменился… Это космическое и геологическое событие известно как «пермская катастрофа». Базальты, излившиеся после падения астероида можно увидеть на геологических картах, они носят название «сибирские траппы».

Усиление вулканической активности и выделение большого количества метана в атмосферу происходило и в позднем палеоцене, что также привело к изменениям в растительном и животном мире, гибели тысяч видов живых организмов.

Вода в солнечной системе есть не только на Земле. Гидраты метана, с большой долей вероятности, есть на планетах солнечной системы, покрытых льдом и имеющих метановую атмосферу . Это Нептун и Уран. Возможно, гидраты метана содержит лед комет.

mineralys.ru

Метан вода, система - Справочник химика 21

области занимают остальную часть пространства, кроме того выделена цилиндрическая поверхность VLH, на которой все три фазы находятся в термодинамическом равновесии. На рис. 2.8 приведено сечение этой диаграммы при 7 = 283 К. В ид-но, что при фиксированном р (р>7,7 МПа) и переменном С (С изменяется от О до 1), последовательно сменяются области [c.29]     В ряде случаев в сложной химической реакции промежуточные вещества могут накапливаться в значительных количествах. Например, при окислении метана наряду с конечными продуктами окисления — СО, СО 2 и водой в системе может накапливаться формальдегид в количестве, соизмеримом с метаном (несколько процентов), который является промежуточным веществом в этой реакции. Такие вещества в дальнейшем будут условно называться стабильными промежуточными веществами. [c.32]

    Значения 0о и 0н возрастают с растворением в неполярной жидкости жирных и нафтеновых кислот. При щелочных водах 00 меньше, чем при жестких водах и дистиллированной воде. Краевые углы смачивания меньше на кварце, чем на кальците и полевом шпате, что указывает на меньшую гидрофильность последних по сравнению с кварцем. При высоких давлениях краевые углы смачивания больше, чем при атмосферном давлении. При насыщении системы азотом 0о с повышением давления возрастает менее интенсивно и имеет меньшие значения при одинаковых давлениях, чем при насыщении метаном. [c.119]

    Обычно в установках низкотемпературной ректификации используется двойной каскад искусственных хладагентов этилен t° кип. = —103,8°) конденсируется пропаном t° кип. = —44,5°), который в свою очередь ожижается водой. Реже применяется тройная каскадная система метан (кип. = = —161,4°), этилен, пропан. [c.165]

    Инициируемое облучением окисление метана и гексана изучали при низких концентрациях кислорода и интенсивности гамма-излучения кобальта-60 10 и 10 рад ч. Частичное термическое окисление метана до формальдегида не может давать высокие выходы, так как при Требуемой температуре инициирования формальдегид менее стабилен, чем метан, и происходит разветвление цепи [35], ведущее к образованию окиси и двуокиси углерода и воды в качестве основных продуктов реакции. Обширные работы по изучению системы метан — кислород (в молярном отношении 2 1) при общем давлении 5—10 ат показали, что окисление можно инициировать при сравнительно низкой температуре (260° С), при которой термическая реакция не протекает. Тем не менее ни в одном случае никаких продуктов, кроме окиси и двуокиси углерода, не обнаружили. Другими словами, кислородные производные углеводородов в этих условиях не образовались. [c.140]

    В табл. 33 приведено содержание воды в газовой фазе системы метан — вода, полученное пересчетом данных из [Olds R. H., Sage В. H., La ey W. N., 1942 r.], при этом коэффициент сжимаемости газового раствора г) принимался рав- [c.51]

    Система метан — вода имеет двойную гомогенную критическую точку при 352°С (рис. 27). Критические кривые у этих систем имеют необычный вид. Так, в системе метан — этан критическая кривая идет вначале в сторону низких температур, доходит до минимума критической температуры в двойной гомогенной критической точке, после чего возвращается к высоким температурам при резком возрастании давления [Намиот А. Ю 1976]. [c.53]

    Метод оценки коэффициентов фугитивности твердой фазы, разработанный Пэрришем и Праузницем [541], позволяет рассчитывать давления при диссоциации смесей газов, как образующих, так и не образующих гидраты. На рис. 9.24 представлена диаграмма давление — состав в диапазоне образования гидратов для системы пропан + метан + вода. В целях предотвращения образования гидратов в газопроводах широко применяется впрыскивание метанола, гликоля или аммиака. В последнее время было проведено изучение количественной стороны подобных процессов. Ментен, Пэрриш и Слоун (неопубликованная работа, 1982) проанализировали эффект применения ингибиторов путем исследования их воздействия на коэффициент активности воды. Макогоном [84] выполнен обзор современных методов решения проблем, связанных с образованием гидратов газов. [c.471]     Сравнение расчетных (Р) и експериментальных (Э) значений составов паровой и жидкой фаз дяя системы метан - вода / 2 / [c.7]

    Очевидно, адсорбция породой различного количества асфальтенов приводит не только к различной степени гидрофобности породы, но и к различным свойствам граничного слоя нефти. Следовательно, будет меняться в определенной степени и характер вытеснения. Поэтому следует остановиться на исследованиях Н. Н. Таирова и М. М. Кусакова [175], которые показали, что при изменении давления в системе углеводородная жидкость—вода— кварц, создаваемого метаном, меняется краевой угол смачивания кварца углеводородной жидкостью. [c.177]

    Впоследствии на линии подачи воды в реактор был установлен регулирующий клапан с дистанционным включеиием из операторного помещения, а средства автоматического регулирования расходов метан-водородной и этан-этиленовой фракций были усовершенствованы. Перед холодильником были установлены сепараторы была смонтирована система блокировок, отключающая подачу метан-водородной фракции при прекращении поступления этан-этиленовой фракции и завышениях температуры в реакторе установлена звуковая и световая сигнализации на все возможные отклонения от нормального режима для определения концентрации водорода в газовой смеси, поступающей на гидрирование, был дополнительно установлен поточный хроматограф были смонтированы приборы регистрации перепада давлений в холодильнике и регулирования режима в реакторе при минимальных нагрузках. [c.335]

    На рис. 11.16 представлена упрощенная принципиальная схема процесса синтеза аммиака. Азото-водородная смесь (AB ) поступает после подсистемы I компримиро-вания, где сжимается от 0,1 до 30 мПа, в смеситель II. Здесь происходит смешение свежей AB с потоком 15. После смешения AB поступает в катализаторную коробку ИИ колонны синтеза III, где AB подогревается за счет теплоты отходящих газов из реакционного пространства 111 колонны. Выходящий из колонны синтеза аммиака газ (поток 7) охлаждается в подсистеме IV (охлаждение и получение пара) водой. Выделение аммиака происходит в двух конденсаторах V и VIII сначала при умеренном охлаждении в конденсаторе V, а затем при глубоком охлаждении в конденсаторе VIII. Глубокое охлаждение происходит в аммиачном испарителе. Накапливающиеся инертные газы (аргон, метан) периодически частично удаляют из системы путем вывода из цикла синтеза части циркулирующего газа (поток 11) ъ аппарате VI. Параметры, характеризующие потоки, приведены в табл. II.6. [c.58]

    Карбиды — кристаллические тела. Природа химической связи в них может быть различной. Так, многие карбиды металлов главных иод эупп I, П и И1 групп периодической системы представляют собой солеобразные соединения с преобладанием ионной связи. К их числу относятся карбиды алюминия AI4 3 и кальция СаСг. 11ервыи из них можно рассматривать как продукт замеш,е-ния водорода на металл в метане СН4, а второй — в ацетилене С2Н2. Действительно, при взаимодействии карбида алюминия с водой образуется метан [c.437]

    Источники загрязнения окружающей среды. Воздушные выбросы из системы газоочистки содержат метан, этилен и кетен. Их обычно сжигают. Также сжигают тяжелые остатки-из колонны уксусного ангидрида и уксусной кислоты. Сточные воды из системы газоочистки содержат NaOH и ацетат натрия. [c.279]

    Для образования гидрата обязательно наличие свободной воды. Например, метан образует гидрат, имеюш,ий формулу СН4-6Н20. Для связывания 1 кг метана в гидрат, соответствующий этой формуле, требуется 6,5 кг воды. Естественно, что такое количество воды нельзя получить из паровой фазы газовой системы. [c.217]

    Реакция диспропорционирования радикалов ароматических углеводородов является одним из частных случаев одного из наибо.хее общих законов, управляющих процессами в органической химии. Этот закон может быть сформулирован следующим образом реакции самопроизвольного превращения органических молекул, без участия посторонних соединений, всегда идут в сторону накопления в одной части системы максимально обуглеро-женных молекул или частей молекулы, а в другой — соединений или частей молекулы, обогащенных водородом, кислородом, серой и азотом органическая молекула стремится к состоянию минимального уровня свободной энергии, перестраивая "свою структуру в направлении возникновения группировок атомов, близких к углекислоте, воде, метану, графи. у, сероводороду, aMMHaiiy и другим веществам, т. е. к соединениям с минимальным уровнем термодинамического химического потенциала. [c.111]

    На заводе фирмы Хехст , ФРГ [10а], сооружена промышленная установка производительностью 45 тыс. ткод ацетилена и этилена, вырабатываемых из углеводородного сырья при помощи процесса, известного под названием высокотемпературного пиролиза. Здесь применен реактор специальной конструкции имеется система очистки газов. Схема процесса представлена на рис. 6. В охлаждаемой водой металлической камере сгорания водород, метан или отходящий газ процесса сжигаются с приблизительно стехиометриче-ским количеством кислорода, к которому добавляют водяной пар. Горячие газы сгорания проходят через реакционное устройство одновременно подается (предпочтительно в парофазпом состоянии) соответствующее углеводородное сырье. За счет тепла газов сгорания нагревается углеводородное сырье, из которого в результате протекающих реакций образуются ацетилен и этилен. Выходящий из реактора газ подвергают закалочному охлаждению в устройстве специальной конструкции. Образования элементарного углерода (сажи) при этом процессе не наблюдается. Жидкие побочные продукты (тяжелое ароматическое масло) удаляют на стунени охлаждения и используют в дальнейшем как тяжелое топливо. [c.242]

    В 40-х гг. 19 в. была создана т. н. унитарная система (О. Лоран, Ш. Жерар, Дюма), в основу к-рой, в противоположность дуалистич. системе, легло представление о молекуле как едином целом, образованном иэ атомов хим. элементов. Вместе с законом Авогадро эта система позволила разграничить понятия атом, молекула, эквивалент. Она окончательно утвердилась в X. после упомянутого выше конгресса в Карлсруэ и составила основу атомно-мол. учения. В 1853 Жерар изложил в законченном виде теорию типов, согласно к-рой все в-ва построены подобно немногим неорг. соед., или типам, и м. б. произведены от последних путем замещения атомов водорода атомами др. элементов илп радикалами. Осн. типами в-в Жерар предложил считать водород, воду, хлористый водород и аммиак в 1857 А. Кекуле добавил к ним метан. В 1852 Э. Франкланд ввел представ- [c.652]

chem21.info

ПОТЕНЦИАЛЬНАЯ УГРОЗА СТАБИЛЬНОСТИ КЛИМАТА |

 

 

Газогидраты – это нестехиометрические соединения клеточного типа природных газов с водой (клатраты, лат. clathratus – помещенный в клетку), образующие твердую фазу в определенных термобарических условиях. Внешне они схожи с рыхлым льдом или снегом. В стабильном состоянии они не способны перемещаться в недрах (рис.1).

Как образовался газогидрат метана?

 

Гидрат метана был получен с помощью анаэробного распада органического вещества в плейстоценовом периоде. Когда температура окружающей среды близка к тому, что вода замерзнет, и давление чрезвычайно высоко (26 атмосфер или больше), метан соединяется с водой и конденсируется в виде гидрата метана, который выглядит как сухой лед (рис.2).  Анализ предыдущих исследований газогидратов указывает на то, что формирование и возникновение гидрата газа зависит от температуры формирования, порового давления, химического состава газов, минерализацией поровой воды, наличием газа и воды. В свою очередь газ и вода мигрируют по каналам и осаждаются в породах коллекторах и закупориваются там.

 2

 

 

Где залегает газогидрат метана?

 

Огромные количества гидрата залегает на континенте и на морском дне (рис.3). Месторождения метана обнаружены вдоль внешних континентальных окраин, где имеется достаточный запас органического вещества и очень низкая температура воды. Перспективные запасы гидратов метана были обнаружены на Аляске, в Антарктиде, в канадской Арктике, Индии, на континентальном шельфе у берегов Японии, Нигерии, Южно-Китайского моря, Норвегии, Перу и Австралии. Наиболее перспективными для США являются Северный склон Аляски, хребет Блейка, и в Мексиканском заливе.

gazogidrat-3

 

 

Каковы запасы гидрата метана?

 

По общему мнению, ученых в настоящее время подсчитывается, что объем гидрата метана составляет 21 х 1015 м3. Эта оценка была сделана независимо друг от друга Квенволденом в 1988 и Макдональдом в 1990 годах.

По оценкам, в Сибири насчитывается около 1,400 миллиарда тонн метана газовых гидратов. Несмотря на то, что открыты месторождения в Антарктиде, объем газовых гидратов там не подсчитан. Там, как полагают, значительно больше гидрата метана чем в Арктике.

gazogidrat-4

На рисунке 4 показан запас газовых гидратов.

 

 

Чем газогидраты угрожают климату?

 

Замерзшая вода, содержащая в себе метан либо, уже начала таять, либо начнет таять из-за глобального потепления. Как только мерзлота растает, газ метан, который был в ловушке во льду выходит в атмосферу. Потепление океанов также вызывает процесс, который ведет к таянию мерзлоты на дне океанов.

Таяние вечной мерзлоты с последующим увеличением концентрации метана наблюдается учеными на Аляске, в Сибири и Арктике. Ученые также наблюдали утечки метана со дна океана у побережья Норвегии, которые, как полагают, происходят из-за недавнего потепления океана. Раньше считалось, что утечки метана со дна океана, при прохождении через воду, растворялись в воде и превращались в СО2 в результате химической реакции. Однако исследование по заказу Всемирного фонда дикой природы показало, что некоторая часть метана, выходящего с мелкой глубины арктического шельфа достигает атмосферы без растворения. В то время как большая часть метана растворяется в морской воде, прежде чем он достигнет атмосферы, проявление метана является эпизодическим и непредсказуемым, но иногда также возможен и более энергичный отток метана в атмосферу (рис.5) .

Отложенный более 100 лет, метан является в 25 раз более мощным, чем CO2, также он находится в атмосфере около 12 лет. Межправительственная группа экспертов по изменению климата ставит отметку 72 метану как потенциалу глобального потепления эта величина в 100 раз больше СО2. Согласно группе экспертов метан классифицируется как длительное атмосферное загрязнение. Однако выбросы метана продолжают нагревание и спустя 12 лет, потому что это время жизни связано с атмосферным окислением других парниковых газов, в частности, водяного пара и СО2. Если метан высвобождается из-за таяния вечной мерзлоты, то он будет накапливаться в атмосфере быстрее, чем он превращается в CO2 и, следовательно, атмосферная концентрация метана возрастет. Считается, что если 10% метана, хранящегося в вечной мерзлоте будет выпущен, то он будет иметь эффект, похожий на десятикратное увеличение СО2.

Внезапное потепление будет происходить, если концентрация метана, или CO2, увеличится внезапно, это в свою очередь вызовет дальнейшее таяние вечной мерзлоты и выпуска еще более древних отложений метана, что приведет к еще большему усилению глобального потепления. Это явление известно, как «положительная обратная связь». Даже если метан накапливается с более медленными темпами, он все равно будет усиливать глобальное потепление путем окисления до CO2, который является менее мощным парниковым газом, но с гораздо более длительным сроком службы, около 230 лет.

5

 

 

Был ли метан связан с историческими изменениями климата?

Увеличение концентрации метана в атмосфере было связано с экологическими изменениями во время термического максимума палеоцена-эоцена около 55,5 млн. лет назад. В течении данного периода температура атмосферы увеличилась на 5оС, что способствовало обширному таянию арктических льдов. Увеличение температуры и подкисление океана, которое произошло во время термического максимума, привело ученых к предположению, что наиболее вероятными кандидатами для высвобождения углерода были газы CO2 и Ch5. Для объяснения начала термического максимума палеоцена-эоцена требуется сведения более чем по одному источнику углерода.

Исследования Михаила Рюля объясняют то, что метан повлиял на массовое вымирание в течение конца триасового периода 199 миллионов лет назад. Результатом воздействия метана стало исчезновение половины форм жизни, как известно, существовавшее в то время. Первоначально предполагалось, что широко распространенные извержения вулканов, которые происходили в тот период, способствовали разогреву почвы Земли, что в последствии привело к массовой гибели. Исследования позволяют предположить, что первоначальное потепление воздуха в атмосфере, в связи с извержением, вызвало положительную обратную связь с вечной мерзлотой и растопило ее, таким образом метан вышел в атмосферу и усилил потепление еще больше. В результате освобождения метана от газогидратного состояния на Земле возникли неблагоприятные условия жизни, которые привели к массовому вымиранию организмов.

eco-today.ru

Метан будущего сохранится в сухой воде

Метан и другие газообразные углеводороды, добываемые в природных месторождениях, традиционно транспортируют по трубопроводам или в баллонах. У данного способа есть свои преимущества и свои недостатки, в основном экономические. Сегодня химики разрабатывают новый вид транспорта газа — в виде порошка.

Группа учёных под руководством профессора Эндрю Купера (Andrew Cooper) из университета Ливерпуля (University of Liverpool) придумала, как хранить природный газ в «сухой воде».

Купер и его коллеги обнаружили, что газообразный метан (Ch5) можно аккумулировать в смеси, которую условно можно назвать «сухой водой». Она образована из мелкодисперсного кварца и воды (на вид обычный белый порошок).

Метан реагирует с водой, образуя кристаллический материал (газовый гидрат метана), в котором отдельные молекулы газа сидят в водяных «клетках» (отсюда другое название этих соединений – клатраты).

Подобное вещество образуется и в природе, когда вода смешивается с простейшим углеводородом при высоком давлении и низкой температуре. Известно, что крупные залежи кристаллической субстанции существуют глубоко на морском дне.

Повышение уровня общемировой температуры может привести к разложению гидрата на составляющие и высвобождению этого парникового газа, а значит, к дальнейшему повышению температуры атмосферы. Именно этот механизм привёл к драматическим изменениям климата в далёком прошлом. Но об этом мы лучше поговорим в другой статье, а пока посмотрим, что же сулит «сухой метан» на практике.

В первую очередь новая разработка найдёт применение в транспортировке природного газа (большую часть которого составляет именно Ch5). Новый материал может быть использован как альтернатива трубопроводам.

Профессор Денди Слоан (Dendy Sloan) из горно-технического училища Колорадо (Colorado School of Mines), не принимавший участия в данном исследовании, отмечает, что затея имеет смысл, так как 70% природных хранилищ этого газа невелики по размерам и к ним экономически невыгодно тянуть трубы.

Отметим, что нечто подобное уже пытались разрабатывать многие научные группы мира, для этих целей использовались гелий и азот, простые соединения углерода, полимеры и множество куда более экзотических веществ. А японская фирма Mitsui Engineering and Shipbuilding даже создала опытный проект корабля, создающего «сухой метан», перевозящего его, а заодно и потребляющего часть для собственных нужд.

Другой вариант практического применения: сухое горючее для автомобилей. Отметим, что транспортные средства на метане (например вот такие усовершенствованные) не только меньше загрязняют окружающую среду, но и имеют больший КПД двигателя.

Однако не всё так просто, ведь химикам из Ливерпуля до сих пор не удалось решить ряд проблем.

Как мы уже сказали, гидрат образуется только при низкой температуре и высоком давлении, да и то очень медленно. Всё из-за того что образующаяся на поверхности капель воды плёнка вещества перекрывает центры для нового роста. Эту преграду можно было бы преодолеть, интенсивно перемешивая воду с газом. Однако организация подобного процесса сложна и стоит больших денег.

Впрочем, группа Купера нашла решение, заменив обычную воду «сухой». Учёные фактически разделили массив жидкости на множество мелких стабильных капель, тем самым значительно увеличив площадь поверхности, которая контактирует с газом.

Помол гранул осуществляли в обычном кухонном миксере. Внизу показаны микрофотографии гранул, полученных на разных скоростях измельчения (иллюстрация Cooper et al./ACS).

Помол гранул осуществляли в обычном кухонном миксере. Внизу показаны микрофотографии гранул, полученных на разных скоростях измельчения (иллюстрация Cooper et al./ACS).

Что же представляет собой «сухая вода»? Смесь собственно жидкости и особой формы диоксида кремния, называемой гидрофобный пирогенный кремнезём (последний составляет 5 весовых процентов). Это мельчайшие гранулы кварца (те же самые, что образуют песок), покрытые слоем водоотталкивающего вещества. Такие частицы «налипают» на поверхность капель воды, не давая им объединяться.

Так вот: всего шесть граммов такой смеси могут поглощать (а точнее — образовывать гидрат) с литром метана уже при температуре замерзания воды (90% поглощения происходит в первые 160 минут процесса).

Преимущества этого способа синтеза гидрата перед другими методами очевидны, пишут английские химики в статье, опубликованной в журнале Американского химического общества (Journal of the American Chemical Society). Прежде всего это высокая способность к поглощению и использование простых материалов.

Механическая смесь обычной воды и кварцевых песчинок почти не поглощала газ (чёрная кривая). Измельчение (разными цветами показаны разные скорости) увеличивает эффективность поглощения: чем меньше размер капли воды, тем выше скорость протекания реакции. Все процессы происходили при комнатной температуре (иллюстрация Cooper et al./ACS).

Механическая смесь обычной воды и кварцевых песчинок почти не поглощала газ (чёрная кривая). Измельчение (разными цветами показаны разные скорости) увеличивает эффективность поглощения: чем меньше размер капли воды, тем выше скорость протекания реакции. Все процессы происходили при комнатной температуре (иллюстрация Cooper et al./ACS).

А теперь поговорим о недостатках. Газовый гидрат метана стабилен, только если хранится при температуре -70°C (атмосферное давление), соответственно при нагревании вещества выше этой точки Ch5 снова высвобождается.

Купер и его коллеги пытались решить проблему, подмешивая в воду тетрагидрофуран и тетрабутиламмоний бромид, тогда гидрат оставался стабильным даже при комнатной температуре. Но эти соединения дестабилизировали «сухую воду». Справятся ли с этим английские химики, покажет время.

Другое ограничение — низкое количество циклов внедрения и высвобождения метана. Через некоторое время капли воды начинают коагулировать, а также снижается скорость их реакции с газом. Впрочем, порошку можно вернуть начальные свойства, если хорошо перемешать смесь, но этот этап усложняет весь процесс.

Всё это означает, что до коммерциализации разработки ещё очень далеко, не говоря уже о её массовом применении. Но первые шаги, несомненно, сделаны.

Источник: http://www.membrana.ru/

www.ewater.ru

Метан

Мета́н (лат. Methanum) — простейший углеводород, бесцветный газ (в нормальных условиях) без запаха, химическая формула — Ch5. Малорастворим в воде, легче воздуха. При использовании в быту, промышленности в метан обычно добавляют одоранты (обычно тиолы) со специфическим «запахом газа». Метан нетоксичен и неопасен для здоровья человека.

Однако имеются данные, что метан относится к токсическим веществам, действующим на центральную нервную систему.

Накапливаясь в закрытом помещении, метан взрывоопасен. Обогащение одорантами делается для того, чтобы человек вовремя заметил утечку газа. На промышленных производствах эту роль выполняют датчики, и во многих случаях метан для лабораторий и промышленных производств остаётся без запаха.

Метан — первый член гомологического ряда насыщенных углеводородов (алканов), наиболее устойчив к химическим воздействиям. Подобно другим алканам вступает в реакции радикального замещения (галогенирования, сульфохлорирования, сульфоокисления, нитрования и др.), но обладает меньшей реакционной способностью. Специфична для метана реакция с парами воды, которая протекает на Ni/Al2O3 при 800—900 °C или без катализатора при 1400—1600 °C; образующийся синтез-газ может быть использован для синтеза метанола, углеводородов, уксусной кислоты, ацетальдегида и других продуктов.

Взрывоопасен при концентрации в воздухе от 4,4 % до 17 %. Наиболее взрывоопасная концентрация 9,5 %. Является наркотиком; действие ослабляется ничтожной растворимостью в воде и крови. Класс опасности — четвёртый.

Сэр Гемфри Дэви (учёный-химик) ещё в 1813 г. заключил из своих анализов, что рудничный газ есть смесь метана Ch5 с небольшим количеством азота N2 и угольного ангидрида СО2 — т.е., что он качественно тождественен по составу с газом, выделяющимся из болот.

Содержание

  • 1 Нахождение в природе
  • 2 В промышленности
  • 3 Классификация по происхождению
  • 4 Получение
  • 5 Химические свойства
  • 6 Соединения включения
  • 7 Применение метана
  • 8 Физиологическое действие
    • 8.1 Хроническое действие метана
  • 9 Биологическая роль
  • 10 Метан и экология
  • 11 Ссылки
  • 12 Примечания
  • 13 Литература

Нахождение в природе

Основной компонент природного газа (77—99 %), попутных нефтяных газов (31—90 %), рудничного и болотного газов (отсюда произошли другие названия метана — болотный или рудничный газ). В анаэробных условиях (в болотах, переувлажнённых почвах, кишечнике жвачных животных) образуется биогенно в результате жизнедеятельности некоторых микроорганизмов.

По современным данным, в атмосферах планет-гигантов солнечной системы в заметных концентрациях содержится метан.

Предположительно, на поверхности Титана в условиях низких температур (−180 °C) существуют целые озёра и реки из жидкой метано-этановой смеси. Велика доля метановых льдов и на поверхности Седны.

В промышленности

Образуется при коксовании каменного угля, гидрировании угля, гидрогенолизе углеводородов в реакциях каталитического риформинга.

Классификация по происхождению

  • абиогенный — образован в результате химических реакций неорганических соединений, например, при взаимодействии карбидов металлов с водой;
  • биогенный — образован как результат химической трансформации органического вещества;
  • бактериальный (микробный) — образован в результате жизнедеятельности бактерий;
  • термогенный — образован в ходе термохимических процессов.

Получение

В лаборатории получают нагреванием натронной извести (смесь гидроксидов натрия и кальция) или безводного гидроксида натрия с ледяной уксусной кислотой.

Для этой реакции важно отсутствие воды, поэтому и используется гидроксид натрия, так как он менее гигроскопичен.

Возможно получение метана сплавлением ацетата натрия с гидроксидом натрия:

Также для лабораторного получения метана используют гидролиз карбида алюминия или некоторых металлорганических соединений (например, метилмагнийбромида).

Химические свойства

Горит в воздухе голубоватым пламенем, при этом выделяется энергия около 33,066 МДж на 1 м³. С воздухом образует взрывоопасные смеси при объёмных концентрациях от 4,4 % до 17 %. Точка замерзания −184oС (при нормальном давлении)

Вступает с галогенами в реакции замещения, которые проходят по свободно-радикальному механизму:

Выше 1400 °C разлагается по реакции:

Реакция горения метана:

Окисляется до муравьиной кислоты при 150—200 °C и давлении 30—90 атм. по цепному радикальному механизму:

Соединения включения

Метан образует соединения включения — газовые гидраты, широко распространенные в природе.

Применение метана

  • Топливо.
  • Сырьё в органическом синтезе.

Физиологическое действие

Метан является самым физиологически безвредным газом в гомологическом ряду парафиновых углеводородов. Физиологическое действие метан не оказывает и не ядовит (из-за малой растворимости метана в воде и плазме крови и присущей парафинам химической инертности). Погибнуть человеку в воздухе, с высокой концентрацией метана можно только от недостатка кислорода в воздухе для дыхания при очень высоких концентрациях метана. Так, при содержании в воздухе 25—30 % метана появляются первые признаки асфиксии (учащение пульса, увеличение объёма дыхания, нарушение координации тонких мышечных движений и т. д.). Более высокие концентрации метана в воздухе вызывают у человека кислородное голодание — головную боль, одышку, — симптомы, характерные для горной болезни.

Так как метан легче воздуха, он не скапливается в проветриваемых подземных сооружениях. Поэтому весьма редки случаи гибели людей от вдыхания смеси метана с воздухом от асфиксии.

Первая помощь при тяжелой асфиксии: удаление пострадавшего из вредной атмосферы. При отсутствии дыхания немедленно (до прихода врача) искусственное дыхание изо рта в рот. При отсутствии пульса — непрямой массаж сердца.

Хроническое действие метана

У людей, работающих в шахтах или на производствах, где в воздухе присутствуют в незначительных количествах метан и другие газообразные парафиновые углеводороды, описаны заметные сдвиги со стороны вегетативной нервной системы (положительный глазосердечный рефлекс, резко выраженная атропиновая проба, гипотония) из-за весьма слабого наркотического действия этих веществ, сходного с наркотическим действием диэтилового эфира.

Биологическая роль

Показано, что эндогенный метан способен вырабатываться не только метаногенной микрофлорой кишечника, но и клетками эукариот, и что его образование значительно возрастает при экспериментальном вызывании клеточной гипоксии, например, при нарушении работы митохондрий при помощи отравления организма экспериментального животного азидом натрия, известным митохондриальным ядом. Высказывается предположение, что образование метана клетками эукариот, в частности животных, может быть внутриклеточным или межклеточным сигналом испытываемой клетками гипоксии.

Также показано увеличение образования метана клетками животных и растений под влиянием различных стрессовых факторов, например, бактериальной эндотоксемии или её имитации введением бактериального липополисахарида, хотя, возможно, этот эффект наблюдается не у всех видов животных (в эксперименте исследователи получили его у мышей, но не получили у крыс). Возможно, что образование метана клетками животных в подобных стрессовых условиях играет роль одного из стрессовых сигналов.

Предполагается также, что метан, выделяемый кишечной микрофлорой человека и не усваиваемый организмом человека (он не метаболизируется и частично удаляется вместе с кишечными газами, частично всасывается и удаляется при дыхании через лёгкие), не является «нейтральным» побочным продуктом метаболизма бактерий, а принимает участие в регуляции перистальтики кишечника, а его избыток может вызывать не только вздутие живота, отрыжку, повышенное газообразование и боли в животе, но и функциональные запоры.

Метан и экология

Является парниковым газом, в этом отношении, более сильным, чем углекислый газ, из-за наличия глубоких вращательных полос поглощения его молекул в инфракрасном спектре. Если степень воздействия углекислого газа на климат условно принять за единицу, то парниковая активность того же молярного объема метана составит 21-25 единиц.

ПДК метана в воздухе рабочей зоны составляет 7000 мг/м3.

Ссылки

  • Термодинамические свойства метана.

Примечания

  1. ↑ Справочник химика / Редкол.: Никольский Б.П. и др.. — 3-е изд., испр. — Л.: Химия, 1971. — Т. 2. — 1168 с.
  2. ↑ Обзор: Растворимость некоторых газов в воде
  3. ↑ Статья «Метан» на сайте «Химик»
  4. ↑ Львов М. Д. Болотный газ или метан // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  5. ↑ З. Гауптман, Ю. Грефе, Х. Ремане «Органическая химия», М. «Химия», 1979, стр. 203.
  6. ↑ Куценко С. А. Основы токсикологии / С.А. Куценко. — СПб.: Фолиант, 2004.
  7. ↑ ГОСТ Р 52136-2003
  8. ↑ Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, н-бутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (УТВ. ГЛАВНЫМ ГОСУДАРСТВЕННЫМ САНИТАРНЫМ ВРАЧОМ РФ 30.03.2003)
  9. ↑ Atreya, S.K.; Mahaffy, P.R.; Niemann, H.B. et al (2003). «Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets». Planetary and Space Sciences 51: 105-112. DOI:10.1016/S0032-0633(02)00144-7.
  10. ↑ Tidal effects of disconnected hydrocarbon seas on Titan
  11. ↑ Б. А. Павлов, А. П. Терентьев. Курс органической химии. — Издание шестое, стереотипное. — M.: Химия, 1967. — С. 58.
  12. ↑ Eszter Tuboly , Andrea Szabó , Dénes Garab , Gábor Bartha , Ágnes Janovszky , Gábor Ero″s , Anna Szabó , Árpád Mohácsi , Gábor Szabó , József Kaszaki , Miklós Ghyczy , Mihály Boros Methane biogenesis during sodium azide-induced chemical hypoxia in rats // American Journal of Physiology - Cell Physiology. — 15 January 2013. — Т. 304, вып. 304(2). — № 2. — С. 207-214. — DOI:10.1152/ajpcell.00300.2012 — PMID 23174561.
  13. ↑ Tuboly E, Szabó A, Erős G, Mohácsi A, Szabó G, Tengölics R, Rákhely G, Boros M. Determination of endogenous methane formation by photoacoustic spectroscopy. // J Breath Res.. — Dec 2013. — Т. 7, вып. 7(4). — № 4. — DOI:10.1088/1752-7155/7/4/046004 — PMID 24185326.
  14. ↑ Sahakian AB, Jee SR, Pimentel M. Methane and the gastrointestinal tract. // Dig Dis Sci. — Aug 2010. — Т. 55, вып. 55(8). — № 8. — С. 2135-2143. — DOI:10.1007/s10620-009-1012-0 — PMID 19830557.
  15. ↑ EBRD Methodology for Assessment of Greenhouse Gas Emissions, Version 7, 6 July 2010 (англ.)
  16. ↑ Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation (ed. J. van Ham, Springer 2000, ISBN 9780792361992): 4. Impact of methane on climate, page 30 "On a molar basis, an additional mole of methane in the current atmosphere is about 24 times more effective at absorbing infrared radiation and affecting climate than an additional mole of carbon dioxide (WMO, 1999)"
  17. ↑ Гигиенические нормативы ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны»

Литература

  • Львов М. Д. Болотный газ или метан // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
  Углеводороды Алканы Алкены Алкины Диены Другие ненасыщеные Циклоалканы Ароматические Полициклические
Метан • Этан • Пропан • Бутан • Пентан • Гексан • Гептан • Октан • Нонан • Декан • Ундекан • Додекан • Тридекан • Тетрадекан • Гексадекан • Октадекан • Нонадекан • Эйкозан • Докозан • Гектан
Этилен • Пропен • Бутены • Пентены • Гексены • Гептены • Октен
Ацетилен • Пропин • Бутин
Пропадиен • Бутадиен • Изопрен • Циклобутадиен
Винилацетилен • Диацетилен  • Каротин
Циклопропан • Циклобутан • Циклопентан • Циклогексан • Декалин • Индан • Инден
Бензол • Толуол • Диметилбензолы • Этилбензол • Пропилбензол • Кумол • Стирол • Фенилацетилен • Индан • Дифенил • Дифенилметан • Трифенилметан • Тетрафенилметан • Инден
Нафталин • Антрацен • Бензантрацен • Пентацен • Фенантрен • Пирен • Бензпирен • Азулен • Хризен

Метан Информация о

МетанМетан

Метан Информация Видео

Метан Просмотр темы.

Метан что, Метан кто, Метан объяснение

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com


Смотрите также

">