Жидкое состояние. Текучесть воды


Жидкости - это... Что такое Жидкости?

Жи́дкость — одно из агрегатных состояний вещества.

Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое.

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в тоже время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

Физические свойства жидкостей

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0°С до приблизительно 4°С.

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из части относительно другой - то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую – энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится "окружить" себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшится.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму - например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

  • Испарение и конденсация

Испарение – постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация – обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация – неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

Смачивание - поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует "прилипание" жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

  • Смешиваемость

Смешиваемость - способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение - охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространятся упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания - вязкость, "классическое поглощение", молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость – внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила - это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила - это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости звтухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества - газообразной или кристаллической - нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием - например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

- Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс - конденсация.

- Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

- Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики — гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика — часть более общей отрасли механики, механики сплошной среды.

Гидромеханика — это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ей можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика.

Гидромеханика подразделяется на гидростатику, в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике. Для решения прикладных задач применяется гидравлика.

Основной закон гидростатики - закон Паскаля.

Движение идеальной несжимаемой жидкости описывается уравнением Эйлера. Для стационарного потока такой жидкости выполняется закон Бернулли. Вытекание жидкости из отверстий описывается формулой Торичелли.

Движение вязкой жидкости описывается уравнением Навье-Стокса, в котором возможен и учёт сжимаемости.

Упругие колебания и волны в жидкости (и в других средах) исследуются в акустике. Гидроакустика - раздел акустики, в котором изучается звук в реальной водной среде для целей подводной локации, связи и др.

Молекулярно-кинетическое рассмотрение

Агрегатное состояние вещества определяется внешними условиями, главным образом давлением P и температурой T. Характерными параметрами являются средняя кинетическая энергия молекулы Ekin(P,T) и средняя энергия взаимодействия между молекулами (в расчете на одну молекулу) Eint(P,T). Для жидкостей эти энергии приблизительно равны: E_{int}\, \approx \, E_{kin} ; для твёрдых тел энергия взаимодействия намного больше кинетической, для газов - намного меньше.

Классификация жидкостей

Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.

1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий азот). Такие молекулы обладают квадрупольным моментом.

3. Жидкие непереходные металлы (натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.

4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

5. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).

6. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы.

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром d, то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

\frac{P}{n\, k\, T} = \frac{1+\eta+\eta^2}{(1 - \eta)^3} \quad , где n - число частиц в единице объёма, \eta = (1/6)\, \pi \, n \, d^3 - безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа: P/ n\, k\, T = 1 . Для предельно больших плотностей,  \eta \to 1 , получается уравнение состояния несжимаемой жидкости: V \, = \, const .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений. В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Одной из современных теорий служит «Кластерная теория». В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру. Энергия частиц отвечает распределению Больцмана, средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия. При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье. Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).

Экспериментальные методы изучения

Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа, электронографии и нейтронографии.

См. также

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

ТЕКУЧЕСТЬ ЖИДКОСТИ - это... Что такое ТЕКУЧЕСТЬ ЖИДКОСТИ?

 ТЕКУЧЕСТЬ ЖИДКОСТИ

ТЕКУЧЕСТЬ ЖИДКОСТИ, характеристика находящейся в движении жидкости, определяемая скоростью ее движения, давлением и плотностью. Эти три параметра определяются тремя основными уравнениями: уравнением неразрывности, которое устанавливает соотношение между количеством жидкости, втекающей в данное место, и количеством жидкости, оттуда вытекающей; уравнением движения ЭЙЛЕРА, которое показывает, как скорость движения жидкости изменяется со временем в данном месте, и уравнением адиабаты, которое описывает теплообмен между разными частями жидкости. При несжимаемом течении, характерном для большинства жидкостей, эти уравнения сравнительно просты. Уравнения для сжимаемого течения необходимы при аэродинамических расчетах для больших скоростей потока. Жидкость называют «идеальной», подразумевая отсутствие всякого внутреннего трения или вязкости. Уравнения для реальных жидкостей сложны настолько, что полного их решения в большинстве случаев не существует. Численные решения должны осуществляться компьютерной техникой.

Научно-технический энциклопедический словарь.

  • ТЕКУЧАЯ СРЕДА
  • ТЕЛЕВЕЩАНИЕ

Смотреть что такое "ТЕКУЧЕСТЬ ЖИДКОСТИ" в других словарях:

  • ТЕКУЧЕСТЬ ЖИДКОСТИ — величина, обратная динамической вязкости жидкости. В Международной системе единиц (СИ) выражается в Па 1• с 1. смотри также Жидкотекучесть …   Металлургический словарь

  • Текучесть — – свойство тел пластически деформироваться под действием механических напряжений. [Блюм Э. Э. Словарь основных металловедческих терминов. Екатеринбург, 2002 г.] Текучесть – свойство сред пластически или вязко деформироваться под… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • ТЕКУЧЕСТЬ — ТЕКУЧЕСТЬ, текучести, мн. нет, жен. (книжн.). 1. отвлеч. сущ. к текучий в 1 знач. || Свойство тел изменять под давлением свою форму, не дробясь на части (физ.). Текучестью обладают газы, жидкости и, под большим давлением, также иногда твердые… …   Толковый словарь Ушакова

  • ТЕКУЧЕСТЬ — свойство тел пластически или вязко деформироваться под действием напряжений; характеризуется величиной, обратной вязкости. У вязких тел (газов, жидкостей) Т. проявляется при любых напряжениях, у пластичных тв. тел лишь при высоких напряжениях,… …   Физическая энциклопедия

  • ТЕКУЧЕСТЬ — жидкости величина, обратная динамич. вязкости жидкости. Единица Т. (в СИ) Па 1*с 1. К ст. Текучести зуб (а напряжение растяжения; Е относительное удлинение) …   Большой энциклопедический политехнический словарь

  • Жидкости — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса …   Википедия

  • текучесть — и; ж. 1. к Текучий. Т. раствора, жидкости. Т. реки. Т. форм обучения. Т. кадров. 2. Физ. Свойство твёрдых тел изменять под давлением свою форму, не разрушаясь. Т. газов. Предел текучести сплава (физ.). * * * текучесть свойство сред пластически… …   Энциклопедический словарь

  • ЖИДКОСТИ — в ва в конденсированном агрегатном состоянии, промежуточном между твёрдым и газообразным. В во находится в состоянии Ж. при давлениях, болъших давления в тройной точке, и при темп pax, заключ. в интервале от темп ры кристаллизации до темп ры… …   Большой энциклопедический политехнический словарь

  • текучесть — и; ж. 1) к текучий Теку/честь раствора, жидкости. Теку/честь реки. Теку/честь форм обучения. Теку/честь кадров. 2) физ. Свойство твёрдых тел изменять под давлением свою форму, не разрушаясь. Тек …   Словарь многих выражений

  • КРЕМНИЙОРГАНИЧЕСКИЕ ЖИДКОСТИ — (силиконовые масла), олигоорганосилоксаны, не содержащие реакционноспособных функц. групп и сохраняющие текучесть в широком диапазоне т р (от 135 до 250 300 °С). Имеют линейное и разветвленное (ф ла I) или циклич. (II) строение: В ф лах R =… …   Химическая энциклопедия

dic.academic.ru

1. Плотность

ред. 09.2006 02-6

02

Основные физические свойства жидкостей и газов.

Все вещества в природе имеют молекулярное строение. По характеру межмолекулярных связей жидкости занимают промежуточное положение между твердыми телами и газами. Свойства жидкостей при высоких температурах и низких давлениях ближе к свойствам газов, а при низких температурах и высоких давлениях – к свойствам твердых тел.

Гипотеза сплошности. Жидкость в целом рассматривают как сплошную среду, непрерывно заполняющую пространство, т.е. принимают, что в жидкости нет пустот или разрывов, что все характеристики жидкости являются непрерывными функциями, имеющими непрерывные частные производные по всем своим аргументам.

Рассмотрим следующие свойства и понятия:

  1. плотность

  2. удельный вес

  3. удельный объем

  4. сжимаемость (модуль упругости, скорость звука)

  5. температурное расширение

  6. вязкость ( закон Ньютона, вискозиметр, текучесть)

  7. сопротивление растяжению

  8. поверхностное натяжение (капиллярность)

  9. растворимость газов в жидкостях (закон Генри, кавитация)

  10. понятие об идеальной жидкости

Замечание о системах единиц

Исторически сложилось так, что одновременно используются 3 системы единиц.

Международная система единиц измерения СИ (система интернациональная) – рекомендована к применению, однако учебники, инструкции и приборы не всегда ей соответствуют. СИ (метр, килограмм массы, секунда)

Физическая СГС (сантиметр, грамм, секунда)

Техническая МКГСС (метр, килограмм силы, секунда)

Плотность – масса единицы объема

Плотность характеризует распределение массы жидкости по объему.

В произвольной точке жидкости плотность,

где – масса, заключенная в объеме, стягиваемом в точку.

Плотность однородной жидкости равна отношению массы жидкости к ее объему:. Единица измерения.

Все жидкости кроме воды характеризуются уменьшением плотности при увеличении температуры. Плотность воды максимальна при 4С1000кг/м3и уменьшается как с уменьшением, так и с увеличением температуры. В этом проявляется одно из аномальных свойств воды. В гидравлических расчетах можно принимать плотность воды неизменной 1000кг/м3.

2. Удельный вес Удельный вес – вес единицы объема.Запомнить:

Единица измерения в системе СИ н/м3.9810н/м3.

В гидравлических расчетах можно принимать g=9.81м/c2.

Точная константа для перевода единиц измерения 9,80665.

3. Удельный объем

Удельный объем – объем единицы массы

По определению величина обратная плотности; единица измерения м3/кг.

4. Сжимаемость

Сжимаемость – способность жидкости изменять объем при изменении давления.

Величина обратная коэффициенту объемного сжатия – модуль (объемной) упругости жидкости (не следует называть «жесткость», как в физике). .2,1103МПа,2,1105МПа.

Сжимаемость воды весьма незначительна. При увеличении давления на 100 кПа (примерно 1 кг/см2) объем воды уменьшится на 1 / 20 000. В гидравлических расчетах можно считать воду несжимаемой средой. Однако это справедливо лишь при небольших давлениях. Так, если бы вода в Мировом океане была абсолютно несжимаема, то уровень воды поднялся бы на 30 метров. Учитывать сжимаемость надо в гидравлических следящих приводах и в теории гидроудара.

В безграничной однородной жидкости или в объеме, ограниченном абсолютно жесткими стенками, скорость распространения звука .

Для воды при 10С=1425 м/с.

5. Температурное расширение

Характеризуется коэффициентом температурного расширения ,С–1, представляющим относительное изменение объема жидкости при изменении температуры на 1С (при постоянном давлении).

(знак «плюс», т.к. при увеличении температуры объем увеличивается).

Величина для воды меняется в зависимости от температуры. Из сказанного ранее следует, что для воды при 0С =0. Удельный объем воды при различных температурах и давлениях могут быть посчитаны по специальным формулам и приводится в таблицах (см. Ривкин, Александров)

6. Вязкость

Вязкость это свойство жидкости оказывать сопротивление относительному сдвигу ее слоев.

Вязкость проявляется в том, что при относительном перемещении слоев жидкости на поверхности их соприкосновения возникают силы сопротивления сдвигу, называемые силами внутреннего тренияилисилами вязкости.

Рассмотрим движение жидкости вдоль стенки. Слой жидкости, непосредственно прилегающий к стенке, прилипает к ней. Существует разность скоростей между соседними слоями и возникает взаимное скольжение слоев, которое приводит к возникновению силы внутреннего трения.

Сила трения . Касательное напряжение сдвига есть сила, отнесенная к площади действия. По закону Ньютона для вязкого трениякасательное напряжение

, ЗАКОН НЬЮТОНА (закон внутреннего трения Ньютона)

где – градиент скорости в направлении, перпендикулярном движущимся слоям жидкости.

Напомним: напряжение это сила, приходящаяся на единицу площади, следовательно силу вязкого трениямежду слоями жидкости площадьюможно найти:

(Коэффициент пропорциональности естьдинамический коэффициент вязкостижидкости (иногда называют абсолютной вязкостью в отличие от кинематического коэффициента вязкости, который отнесен к плотности). Знак в формуле выбирают в зависимости от направления оси и знака градиента скорости так, чтобы касательное напряжение было положительным (ибо отрицательным оно быть не может – всегда тормозит слой с большей скоростью).

Единица измерения динамического коэффициента вязкости в системе СИ Пас.

Единица «пуаз» (в память французского ученого Пуазейля, обозначается П) в 10 раз меньше, т.е. 1Пас =10П.

Для справки: ,.

В гидравлических расчетах кроме динамической вязкости широко используют кинематический коэффициент вязкости (обозначается буквой– «ню», греч.), равную отношению динамической вязкостик плотности жидкости

Единица измерения кинематической вязкости в системе СИ .

Единица «стокс» (в память английского ученого Стокса, обозначается Ст) равна см2/с, следовательно 1м2/с=104 Ст. В справочниках используется «сантистокс», 100сСт=1 Ст.

С повышением температуры кинематическая вязкость газов увеличивается, а вязкость капельных жидкостей уменьшается.

Для воды и воздуха

,Ст

температура, С

Вода

воздух

0 С

0,0179

0,133

20 С

0,0101

0,151

Поэтому с целью уменьшения потерь при транспортировке вязкие жидкости, например мазут, нагревают, а воздуховоды и газопроводы охлаждают.

Для воды вязкость (до 60 С)(Киселев, стр. 13)

Измерение вязкости производят с помощью приборов различных типов и конструкций, называемых вискозиметрами.

Вискозиметр Энглера.Термостат с сосудом объемом 200 см3с отверстием в дне диаметром 3 мм. Вязкость измеряется в градусах Энглера (обозначаетсяЕ). Градусом Энглера называется отношение времени истечения 200 см3исследуемой жидкости к времени истечения такого же объема дистиллированной воды (примерно 50с) при температуре 20С. Для перехода от вязкости жидкости, выраженной в градусах Энглера, к кинематическому коэффициенту вязкости можно пользоваться эмпирической формулой Фогеля

, см2/с . (-)

С свойством вязкости связано свойство текучести.

Текучесть – способность существенно изменять форму под действием слабых внешних воздействий, в частности под действием силы тяжести. (*)

Текучесть свойственна жидкостям и газам в которых частицы легкоподвижны и нет касательных напряжений между слоями в состоянии покоя. Численно текучесть – величина обратная вязкости.

studfiles.net

Жидкое состояние - это... Что такое Жидкое состояние?

Жи́дкость — одно из агрегатных состояний вещества.

Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое.

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в тоже время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

Физические свойства жидкостей

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0°С до приблизительно 4°С.

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из части относительно другой - то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую – энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится "окружить" себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшится.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму - например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

  • Испарение и конденсация

Испарение – постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация – обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация – неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

Смачивание - поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует "прилипание" жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

  • Смешиваемость

Смешиваемость - способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение - охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространятся упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания - вязкость, "классическое поглощение", молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость – внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила - это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила - это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости звтухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества - газообразной или кристаллической - нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием - например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

- Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс - конденсация.

- Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

- Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики — гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика — часть более общей отрасли механики, механики сплошной среды.

Гидромеханика — это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ей можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика.

Гидромеханика подразделяется на гидростатику, в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике. Для решения прикладных задач применяется гидравлика.

Основной закон гидростатики - закон Паскаля.

Движение идеальной несжимаемой жидкости описывается уравнением Эйлера. Для стационарного потока такой жидкости выполняется закон Бернулли. Вытекание жидкости из отверстий описывается формулой Торичелли.

Движение вязкой жидкости описывается уравнением Навье-Стокса, в котором возможен и учёт сжимаемости.

Упругие колебания и волны в жидкости (и в других средах) исследуются в акустике. Гидроакустика - раздел акустики, в котором изучается звук в реальной водной среде для целей подводной локации, связи и др.

Молекулярно-кинетическое рассмотрение

Агрегатное состояние вещества определяется внешними условиями, главным образом давлением P и температурой T. Характерными параметрами являются средняя кинетическая энергия молекулы Ekin(P,T) и средняя энергия взаимодействия между молекулами (в расчете на одну молекулу) Eint(P,T). Для жидкостей эти энергии приблизительно равны: E_{int}\, \approx \, E_{kin} ; для твёрдых тел энергия взаимодействия намного больше кинетической, для газов - намного меньше.

Классификация жидкостей

Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.

1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий азот). Такие молекулы обладают квадрупольным моментом.

3. Жидкие непереходные металлы (натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.

4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

5. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).

6. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы.

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром d, то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

\frac{P}{n\, k\, T} = \frac{1+\eta+\eta^2}{(1 - \eta)^3} \quad , где n - число частиц в единице объёма, \eta = (1/6)\, \pi \, n \, d^3 - безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа: P/ n\, k\, T = 1 . Для предельно больших плотностей,  \eta \to 1 , получается уравнение состояния несжимаемой жидкости: V \, = \, const .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений. В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Одной из современных теорий служит «Кластерная теория». В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру. Энергия частиц отвечает распределению Больцмана, средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия. При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье. Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).

Экспериментальные методы изучения

Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа, электронографии и нейтронографии.

См. также

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru


Смотрите также