Плазменная вода. Вездесущая плазма: четвертое состояние вещества

Альтернативная энергия в Республике Молдова. Плазменная вода


Состояние плазмы

Солнечное вещество находится в состоянии плазмы

Солнечное вещество находится в состоянии плазмы

Состояние плазмы практически единогласно признается научным сообществом как четвертое агрегатное состояние. Вокруг данного состояния даже образовалась отдельная наука, изучающая это явление – физика плазмы. Состояние плазмы или ионизованный газ представляется как набор заряженных частиц, суммарный заряд которых в любом объеме системы равен нулю – квазинейтральный газ.

Получение плазмы

Получить высокотемпературную плазму можно двумя способами: посредством сильного нагрева газа, либо при помощи сильного сжатия вещества. При таких условиях электроны не способны удерживаться на орбитах в атомах вещества, в результате чего «сходят» с них. Таким образом возникает набор отдельных положительных частиц (протонов или ядер атомов — ионов) и электронов. Посредством дальнейшего увеличения давления или температуры из состояния плазмы также можно получить кварк-глюонную плазму.

Плазма как четвертое агрегатное состояние

Плазма как четвертое агрегатное состояние

Также существует газоразрядная плазма, которая возникает при газовом разряде. При прохождении электрического тока через газ, первый ионизирует газ, ионизированные частицы которого являются переносчиками тока. Так в лабораторных условиях получают плазму, степень ионизации которой можно контролировать при помощи изменения параметров тока. Однако, в отличие от высокотемпературной плазмы, газоразрядная нагревается за счет тока, и потому быстро охлаждается при взаимодействии с незаряженными частицами окружающего газа.

Электрическая дуга - ионизированный квазинейтральный газ

Электрическая дуга — ионизированный квазинейтральный газ

Свойства и параметры плазмы

В отличие от газа вещество в состоянии плазмы обладает очень высокой электрической проводимостью. И хотя суммарный электрический заряд плазмы обычно равен нулю, она значительно подвержена влиянию магнитного поля, которое способно вызывать течение струй такого вещества и разделять его на слои, как это наблюдается на Солнце.

Спикулы - потоки солнечной плазмы

Спикулы — потоки солнечной плазмы

Другое свойство, которое отличает плазму от газа – коллективное взаимодействие. Если частицы газа обычно сталкиваются по двое, изредка лишь наблюдается столкновение трех частиц, то частицы плазмы, в силу наличия электромагнитных зарядов, взаимодействуют одновременно с несколькими частицами.

В зависимости от своих параметров плазму разделяют по следующим классам:

  • По температуре: низкотемпературная – менее миллиона кельвин, и высокотемпературная – миллион кельвин и более. Одна из причин существования подобного разделения заключается в том, что лишь высокотемпературная плазма способна участвовать в термоядерном синтезе.
  • Равновесная и неравновесная. Вещество в состоянии плазмы, температура электронов которого значительно превышает температуру ионов, называется неравновесной. В случае же когда температура электронов и ионов одинаковая говорят о равновесной плазме.
  • По степени ионизации: высокоионизационная и плазма с низкой степенью ионизации. Дело в том, что даже ионизированный газ, 1% частиц которого ионизированы, проявляет некоторые свойства плазмы. Однако, обычно плазмой называют полностью ионизированный газ (100%). Примером вещества в таком состоянии является солнечное вещество. Степень ионизации напрямую зависит от температуры.

Применение

Наибольшее применение плазма нашла в светотехнике: в газоразрядных лампах, экранах и различных газоразрядных приборах, вроде стабилизатора напряжения или генератора сверхвысокочастотного (микроволнового) излучения. Возвращаясь к освещению – все газоразрядные лампы основаны на протекании тока через газ, что вызывает ионизацию последнего. Популярный в технике плазменный экран представляет собой набор газоразрядных камер, заполненных сильно ионизированным газом. Электрический разряд, возникающий в этом газе порождает ультрафиолетовое излучение, которое поглощается люминифором и далее вызывает его свечение в видимом диапазоне.

Устройство плазменного экрана

Устройство плазменного экрана

Вторая область применения плазмы – космонавтика, а конкретнее – плазменные двигатели. Такие двигатели работают на основе газа, обычно ксенона, который сильно ионизируется в газоразрядной камере. В результате этого процесса тяжелые ионы ксенона, которые к тому же ускоряются магнитным полем, образуют мощный поток, создающий тягу двигателя.

Наибольшее же надежды возлагаются на плазму – как на «топливо» для термоядерного реактора. Желая повторить процессы синтеза атомных ядер, протекающие на Солнце, ученые работают над получением энергии синтеза из плазмы. Внутри такого реактора сильно разогретое вещество (дейтерий, тритий или даже гелий-3) находится в состоянии плазмы, и в силу своих электромагнитных свойств, удерживается за счет магнитного поля. Формирование более тяжелых элементов из исходной плазмы происходит с выделением энергии.

Устройство термоядерного реактора

Устройство термоядерного реактора

Также плазменные ускорители используются в экспериментах по физике высоких энергий.

Плазма в природе

Материалы по теме

Состояние плазмы – наиболее распространенная форма вещества, на которую приходиться около 99% массы всей Вселенной. Вещество любой звезды – это сгусток высокотемпературной плазмы. Помимо звезд, существует и межзвездная низкотемпературная плазма, которая заполняет космическое пространство.

Ярчайшим примером является ионосфера Земли, которая представляет собой смесь нейтральных газов (кислорода и азота), а также сильно ионизированного газа. Ионосфера образуется как следствие облучения газа солнечным излучением. Взаимодействие же космического излучения с ионосферой приводит к полярному сиянию.

На Земле плазму можно наблюдать в момент удара молнии. Электрический искровой заряд, протекающий в атмосфере, сильно ионизирует газ на своем пути, образуя тем самым плазму. Следует отметить, что «полноценная» плазма, как набор отдельных заряженных частиц, образуется при температурах более 8 000 градусов Цельсия. По этой причине утверждение, что огонь (температура которого не превышает 4 000 градусов) – это плазма – лишь популярное заблуждение.

comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 1084

Система Orphus

spacegid.com

Плазменная резка водой. Использование водяного стола

11 Июля 2017

Для начала разберём, как используют воду в плазменной резке и зачем.

Способ первый. Водяной стол, лист металла находится на уровне зеркала воды либо в нескольких мм от него.

Преимущества:

  • Во время резки вода бурлит и контактирует с металлом, кромкой реза, тем самым охлаждая их, следовательно, снижает термические деформации стали, уровень закалки. Окалина практически отсутствует.
  • Степень сгорания активных элементов на кромке снизится, следовательно, кромка будет иметь больший блеск, свойственный стали, а так же снизится степень насыщения кромок газами, в итоге сварной шов таких кромок будет более крепким и надёжным
  • Дым при этом на 95% и более будет удержан в воде. Если Ваше производство находится в жилом секторе, и за любые выбросы дыма в Ваш адрес поступают требования прекратить их, водяной стол одно из решений.

Подробнее о комплектации установок плазменной резки AMN Group водяными столами узнайте у наших специалистов 8 800 700 29

Недостатки:

  • Сталь быстро покрывается поверхностной коррозией, в дальнейшем потребуется проводить тщательную пескоструйную, дробеструйную, иную механическую обработку поверхности перед покраской (организовать участок абразивной подготовки поверхности и окраски изделия порошковыми красками Вам помогут специалисты AMN Group).
  • Появляется потребность в удалении воды, во время резки вода становится тёмной, масляной, кислой жидкостью и её периодически нужно менять.
  • Чтобы заготовки упавшие между оребрением не приходилось искать в толще воды, под рёбрами координатного стола устанавливается мелкая сетка, которую потребуется относительно часто очищать от упавших изделий, что займёт время и снизит производительность.

Способ второй. Водяной стол, лист металла находится под водой на несколько мм (не все системы могут производить поджиг дуги под водой).

Преимущества:

  • При резке под водой улучшится качество кромок, вода ограничивает расширение дуги, тем самым снижая скос кромки. Окалина отсутствует.
  • Расходные материалы будут так же меньше нагреваться, что не значительно увеличит их срок службы.
  • Уровень шума будет значительно снижен, в несколько раз.

Все преимущества присущие первому варианту, присущи и второму.

Недостатки те же.

Способ третий. Использование воды в качестве защитного газа. Иными словами данный процесс называется резка в водяном тумане. В этом случае водяной стол может и не использоваться, т.к. расход воды не столь большой и её большая часть испарится.

Преимущества:

  • Вода подаётся тонкой защитной пленкой, ограничивая расширение плазмы, скос (конусность) реза сводится к минимуму, плазменная дуга становится более плотной и концентрированной.
  • Вдобавок, вода под действием высокой температуры превращается в пар, после чего диссоциирует на кислород и водород – это происходит очень быстро, чем более полно происходит распад пара, тем более плотной и концентрированной становится дуга. К тому же расширяясь пар имеет большую несущую массу, в большей степени выдувается расплавленный металл, следовательно окалины практически отсутствует.

Недостатки отсутствуют.

Одну из таких систем плазменной резки компания Hypertherm выпустила в начале 2017 году – XPR300 с газовой консолью VantedWaterInjection. Специалисты AMN Group имеют опыт производства портальных машин термической резки с системами XPR300 и предоставят Вам подробную техническую консультацию, предоставив индивидуальное решение Ваших производственных задач.

Подведём итоги в таблице.

Параметры сравнения по 3 бальной шкале

Резка, лист на уровне зеркала воды

Резка, лист под водой

Резка в водяном тумане VantedWaterInjection

Снижение деформации стали

2

3

3

Снижение уровня закалки кромок

2

3

3

Снижение уровня шума

1

3

2

Снижение уровня газонасыщения кромок

2

3

3

Блеск кромок реза

3

3

3

Снижение конусности кромки (скоса)

0

2

3

Снижение количества окалины

3

3

3

Количество бесспорных недостатков

3

3

0

Желаете увидеть фото и видео резки черной, нержавеющей стали или алюминия на оборудовании AMN Group, звоните 8 800 700 2931.

Наши специалисты ежедневно совершенствуют свои знания в сфере раскроя металла и его окраски, у нас Вы всегда сможете получить подробную консультацию и информацию о нашем оборудовании.  

К списку новостей

 

 

amntech.ru

Плазменный способ генерации тепла - Альтернативная энергия в Республике Молдова

1. Общие положения

Заставка!

Первоначально направление плазменного электролиза рассматривалось как раздел классической электрохимии, дополненный гипотезой о вкладе в инициирование химических реакций излучения разряда, а позже – радиационно-химических эффектов, вызываемых бомбардировкой поверхности раствора генерируемыми в плазме ионами. При “классическом” электролизе водных растворов электролитов выделение основных газообразных продуктов кислорода и водорода связано с электродными процессами разрядки ионов гидроксила и гидроксония.Если в качестве таких электродов выступает контактирующая с раствором плазма, ситуация меняется. Наблюдается выделение гремучего газа, не описываемое законом Фарадея. Выходы по току кислорода и водорода, наблюдавшиеся в тлеющем и контактном разрядах при всех условиях значительно превышают единицу. Электролитические процессы известны давно и широко используются в химической промышленности. Плазмоэлектролитические процессы выявлены сравнительно недавно, поэтому пока не существует ни физической, ни химической теорий этих процессов. Предварительный анализ показывает, что полное описание плазмоэлектролитического процесса не может базироваться на чисто физических или чисто химических представлениях. Это – взаимосвязанные физико-химические процессы, поэтому разделить их на физические и химические можно лишь условно.

146011_html_3c13f82eУстойчивое получение плазмы достигается при разной площади положительного и отрицательного электродов.При погружении стержневого электрода диаметром 4мм. в электролит более чем на 10мм. и подаче напряжения от 0 до 250-ти вольт плазма не загорается. На электродах с повышением напряжения увеличивается газовыделение и растет ток.

146011_html_m7a93d8e3В случае, когда стрежневой электрод опущен на 3-4мм ниже мениска, то при напряжении на электродах 60-70 вольт начинаются искровые пробои в области газовыделения водорода. Плавно повышая напряжение, растет характерный гул, искровые пробои переходят в стационарное горение плазмы. Превышение напряжения свыше 150 вольт ведет сначала к плавлению вольфрамового стержневого электрода, а затем к его закипанию. Концентрацию электролита и температуру приходится менять в зависимости от параметров ячейки. Основное исследование проводилось в щелочном электролите.Повышение напряжения приводит к изменению силы тока в цепи, характерная закономерность которого показана в приведенном графике.

Вначале, при повышении напряжения линейно, в соответствии с законом Ома, растет сила тока. Затем, при напряжении более 40 Вольт закон Ома нарушается, а при напряжении около 100 Вольт (точки 5 – 6) сила тока уменьшается скачкообразно, и у катода появляется яркое свечение (плазма). Дальнейшее принудительное уменьшение напряжения (точки 6 – 15) незначительно изменяет силу тока. При напряжении около 60 Вольт (точки 14 – 15) свечение у катода исчезает, сила тока скачкообразно увеличивается почти до прежней величины.Свечение в электролите Na2СО3 –оранжевое. При подплавлении электрода и меньшей площади соприкосновения плазмы с электролитом, свечение переходит в фиолетовый цвет. В это время потребление тока уменьшается в несколько раз.

Дозиметрический замер излучения проводился бытовым дозиметром ЮПИТЕР СИН-05 в течении 30 мин. со снятием показаний через 1 мин. до включения установки и после. Дозиметр находился на расстоянии 10см от ячейки. Результаты сведены в нижеприведенную таблицу.

Таблица

Как видно из таблицы горение плазмы сопровождается снижением природного фона радиации около ячейки. Теоретическое объяснение и выводы этого явления еще предстоит сделать. Нас в первую очередь интересовал аномальный выход водорода, вырабатываемый при плазменном электролизе, предсказываемый профессором Канаревым Ф.М. Как он отмечает в своей работе, возможно аномальное тепловыделение и выделение водорода, превышающее выход по току в 10 раз на некоторых режимах работы. Вот эти «некоторые режимы» и предстояло найти.Прежде всего, объем плазмы необходимо было поместить внутрь проточного реактора. С этой целью нами был изготовлен пробный проточный реактор.146011_html_9d13074Изучив поведение плазмы и газовыделение в малом замкнутом объеме, был изготовлен лабораторный реактор из кварцевого стекла большего размера с принудительной циркуляцией электролита.Питание реактора осуществлялось переменным током промышленной частоты, 220 вольт. В качестве большего по площади электрода служила металлическая сетка с мелкой ячейкой. При циркуляции электролита плавление центрального вольфрамового электрода не наблюдалось. По истечении сорока минут работы в таком режиме центральный электрод подвергся эрозии и электролит приобрел бурый оттенок. После отстаивания осевший порошок имел «ржавый» цвет. Из этого следует, что прямое подключение к сети электропитания реактора, недопустимо в длительном режиме.Сравнительные замеры тепловыделения проводили в двух открытых идентичных аквариумах. В одном происходил омический нагрев электролита, в другом нагрев за счет плазменного электролиза. Электрическую энергию измеряли бытовым электросчетчиком (из-за нелинейности потребления тока) по количеству оборотов.

146011_html_372542fbНачальная температура электролита-25°С. Объем-9л. Концентрация Na2СO3 -35г/л. Ток переменный-220 вольт. После включения электропитания, начинали отсчет оборотов электросчетчика. В том и другом случае количество потребленной электроэнергии было одинаковым (480 оборотов). Температура в аквариуме, где горела плазма, была на 9°C выше, чем в аквариуме, где был омический нагрев. Следует также учесть, что теплоотдача в процессе нагрева в окружающую среду у «плазменного» аквариума была- 21мин, а второго-11мин. Разница в тепловыделении увеличивается, если опыт начинать с температуры электролита выше 65°C. На этом этапе не были исследованы все параметры (переменный, постоянный ток, концентрация электролита и его состав, оптимальное напряжение и т.д.) , при которых нагревание электролита плазмой максимально в сравнении с омическим нагревом. Вдохновившись первыми успехами аномального выделения тепла, тем более без учета энергии выделившегося водорода, мы перешли к количественным замерам выделения газов.

Был изготовлена электролитическая установка с водяным затвором  для сбора выделяющихся газов. Дно электролитической ячейки из металла служило плоским анодом. В крышке сделано отверстие под вольфрамовый стержневой катод в фарфоровой трубке.

При включении электропитания загорается плазма, идет выделение газов. В водяном затворе видно появление пузырьков, но их количество интуитивно не соответствует потребляемому току.

1Как оказалось герметичность верхней крышки не способна задержать водород из-за его сильной проникающей способности. Был выбран другой вариант электролитической ячейки. Перевернутая стеклянная емкость, заполненная электролитом, помещалась на кронштейнах в аквариуме. Снизу подводился изолированный электрод (-).Плоский электрод (+) из нержавеющей стали, находился в стороне. Выделение в плазме водорода и паров воды вытесняло электролит из стеклянной мерной емкости. После конденсации паров и остывания емкости до комнатной температуры проводился объемный замер выделившегося водорода. На некоторых режимах работы звуковое излучение плазмы приводило к появлению Большого Кавитационного Пузырька (БКП), описанного в работе Маргулиса М.А.

2

«Звукохимические реакции и сонолюминесценция». Его перемещение в объеме носило хаотический характер. Влияние (БКП) на стимуляцию выделения водорода не исследовалось.По первому закону Фарадея, количество (в нашем случае объем) выделившегося вещества пропорционально току и времени его прохождения через раствор. Сравнительные опыты выделения водорода при плазменном и обычном электролизе показали, что имеет место нарушение закона Фарадея. В нашем эксперименте по плазменному электролизу, водорода выделилось на 2/3 больше. В кислотном электролите h3SO4 этот показатель еще выше, чем в щелочном. Влияние концентрации и температуры электролита на выделение водорода при плазменном электролизе досконально не исследовано. Учитывая аномальное тепловыделение плазмы, плюс энергию, которую содержит выделяющийся водород, мы сочли возможным сделать установку, в которой энергия сгорания водорода будет идти на нагрев электролита и как следствие создание экономичного теплогенератора.

3

Сбор в одной емкости кислорода и водорода в большом количестве опасно по причине взрыва. Поэтому мы разместили электроды (один стержневой и кольцевой электрод на одном держателе) ближе к верхней части толстостенной стеклянной емкости примерно так, чтобы объем был около300мл. Включение установки сопровождается появлением плазмы и интенсивным понижением уровня электролита в колбе. В случае если в колбе находится только один электрод, (-) то водород, вытесняя электролит и «дотронувшись» плазмы, гасит ее и прекращается процесс электролиза. 4Когда же собирается под колбой гремучий газ, то при достижении газовой прослойки плазмы происходит незначительный взрыв, и уровень поднимается в первоначальное положение. Цикл повторяется. Тепловая энергия соединения кислорода и водорода при этом не рассеивается, а идет на нагрев поверхности колбы и электролита. Если поместить всю поверхность колбы в аквариум, то энергия плазменного, омического и рекомбинационного соединения водорода и кислорода, будет отдаваться всему объему электролита. Для проверки этого предположения и замеру теплоотдачи всей установки мы погрузили реакционную колбу ниже уровня электролита в аквариуме. Замер тепловыделения в данном эксперименте связан с определенными трудностями.Связано это с тем, что рекомбинация гремучего газа в объеме колбы зависит от температуры ее стенок. При температуре около 100°C рекомбинация проходит «мягко». В случае если колба опущена в электролит комнатной температуры, то рекомбинация водорода и кислорода происходит более бризантно. Особенно это проявляется в кислотном электролите.

1-1          1-2

Эксперименты со щелочным электролитом показали, что в некоторых случаях сгорание гремучего газа происходит без сильного взрыва, если имеет место интенсивное вспенивание. Также мы наблюдали интересные случаи возникновения языков пламени красного цвета внутри колбы, которые существовали 3-4 сек. При этом хлопка, взрыва, не происходило, а уровень электролита поднимался на прежний уровень.Закономерность появления языков пламени выяснить не удалось. Многочисленные эксперименты добиться «мягкого» сгорания во всех случаях, не привели к выявлению условий, при которых появляется пламя. Попытки все-таки найти способ «невзрывного» горения водорода привели нас к успеху. Изменение конфигурации и расположения электродов позволило обнаружить новый вид плазменного электролиза. В этом виде электролиза почти полностью отсутствует эрозия электродов, что является большим преимуществом.

frdfhbevДля детального изучения этого вида электролиза мы изготовили специальный аквариум с сообщающимися объемами. Внешне работа выглядит следующим образом. При включении установки загорается яркая плазма со свойственным ей потреблением тока. Выделение газов в рабочем объеме понижают уровень электролита, пока разряд не перейдет в новую, обнаруженную нами, форму кольцевого разряда.

Потребление тока при переходе резко снижается примерно в 50-60 раз. На электроде, в среде гремучего газа и паров воды, остается гореть маленькое пламя в виде конуса вершиной обращенной вверх. Испарение паров, выделение водорода и кислорода визуально понижают уровень, при конденсации и рекомбинации гремучего газа уровень поднимается. Устанавливается так называемое «дыхание» с периодом 2-3 сек. и амплитудой до 6-ти мм. Это напоминает работу установки, как в режиме электролизера, так и топливного элемента одновременно. В данном варианте предполагается избыточное многократное тепловыделение, т.к. этот вид кольцевого разряда при установившемся равномерном «дыхании» потребляет минимум электроэнергии. Потребляемая энергия настолько мала, что диск бытового счетчика перестает вращаться, если верхняя часть колбы (объемом 500мл) размещена в воздухе.

колба-1 колба-2Температура верхней части тонко или толстостенной колбы, во время проведения эксперимента в течении 2-х суток, оставалась постоянной на уровне 100°C, при температуре окружающего воздуха в лаборатории 22°C . Ни одного оборота диска электросчетчика за это время не произошло. Существенного уменьшения электролита в эксперименте не выявлено. Собранная револьверная батарея из 6-ти электродов показала устойчивое горение конусного пламени на каждом электроде. При этом важно расположение на одном уровне! Это путь к наращиванию мощности при проектировании нагревательного агрегата.

juhfybxtyyjcnmОграниченность на тот момент, контрольно-измерительного оборудования не позволила выявить все характеристики и степень избыточного тепловыделения обнаруженного нами кольцевого разряда. Накопление в результате других исследований оборудования и опыта мы не возвращались к детальному анализу этого вида разряда.Чтобы выявить природу избыточного энерговыделения мы продолжили исследования процессов происходящих при плазменном электролизе. Следует отметить, что современные представления о холодном синтезе затрагивают пока только ядерные реакции, происходящие либо в кристаллическом веществе (поверхность электрода, мишень), либо в жидкости (сонолюменисценция). Лишь отдельные теоретические работы допускают существование пока неизученного состояния крайне неравновесной плазмы, в которой возможно протекание ядерных превращений при температурах от 1000º до3000ºC . Многие работы касаются взаимодействия водородной или дейтериевой плазмы тлеющего разряда с материалом катода. В частности, Карабут А.Б. (Россия) представил результаты экспериментов, в которых при бомбардировке палладиевого катода ионами дейтерия с энергией 0,5-2кэВ, он зарегистрировал эмиссию фотонов (3МэВ) и альфа частиц (14МэВ). Процесс сопровождался рентгеновским излучением с интенсивностью до 100Р/с и наработкой тяжелых ядер со скоростью порядка 1013с-1. По утверждению автора результаты экспериментов устойчивы и могут быть легко воспроизведены.Представляют также интерес работы японского ученого T. Mizuno по плазменному электролизу обычной воды. В своих экспериментах он использовал обычную воду с добавкой 0,05-0,2M K2CO3, вольфрамовый катод и платиновую сеточку в качестве анода. Фиксировалось количество тепла, отводимого от ячейки, поток водорода и подводимая мощность.146011_html_m1df1599aВ экспериментах был стабильно зарегистрирован аномально большой поток водорода, превышающий выход по току до 20 раз (рис.9).В некоторых опытах процесс переходил в неуправляемую стадию, и стеклянная колба, в которой проводился эксперимент, взрывалась. За 20 секунд до взрыва приборы фиксировали выделение избыточного тепла, превышающее подводимую энергию непосредственно перед взрывом на три порядка. Кроме того, после взрыва на поверхности вольфрамового катода были зарегистрированы элементы, ранее там отсутствующие. Материал, из которого выполнен электрод, не имеет принципиального значения. Например, в своих работах Канарев Ф. М. применял электрод из железа. Содержание химических элементов на поверхности не работавшего катода оказалось таким:

добавкадобавка-2

table-1Нижний луч относится к напряжению, верхний к току. На представленных осциллограммах видно, что в момент пика напряжения, на вершине синусоиды, идет высокочастотный всплеск тока, превышающий его омическую амплитуду в 5-7раз. При правильном подборе, с помощью делителя напряжения, чувствительность сигнала можно настроить так, что становится виден короткий высоковольтный бросок напряжения. Всплески тока и броски напряжения появляются одновременно. Такая же характеристика электрической цепи, питающей плазмоэлектролитическую ячейку, была представлена в работе Канарева Ф.М. с той лишь разницей, что пики тока не связаны во времени с пиками напряжения. Приводим здесь эти осциллограммы:Осциллограмма изменения напряжения в сети питания плазмоэлектролитического реактора.Вольтметр в этот момент показывал устойчиво напряжение 220 Вольт.На осциллограмме видны резкие колебания напряжения. Несущая частота выпрямленного напряжения 100 Гц имеет гармонику с меньшей амплитудой и большей частотой колебаний. Уменьшение амплитуды несущих колебаний интерпретируется просто: кратковременное увеличение тока приводило к кратковременному уменьшению напряжения.

Сложнее объяснить увеличение амплитуды напряжения. Причиной этому может быть наличие в цепи емкости или индуктивности, где энергия может накапливаться и затем высвобождаться, повышая напряжение в питающей сети. Трудно судить о величине емкости ячейки, состоящего из плоского анода и стержневого катода. Индуктивной емкостью обладает трансформатор в цепи питания. Можно признать его роль в формировании колебаний напряжения, амплитуда которых расположена выше амплитуды несущей частоты. Исключением являются три колебания с амплитудой до 600 Вольт и выше . Источником этих колебаний могут быть только процессы, протекающие в реакторе. Эти колебания могут быть связаны с трансмутацией ядер атомов щелочного металла или атомов материала катода.

Осциллограмма изменения тока в цепи питания.

Осциллограмма изменения тока в цепи питания.

Максимальные значения тока достигают 25 Ампер, но эти пики не связаны во времени с пиками увеличения или изменения напряжения. Явно видны промежутки времени при полном отсутствии тока. Средняя величина его оказалась равной 3,8 Ампера.

 

Большинство исследователей, изучающих плазменный электролиз, предпочитают работать с катодной плазмой. С одной стороны потому, что возбудить плазму на катоде легче по техническим соображениям, поскольку для этого требуется относительно малая плотность тока. С другой стороны, судя по спектру, катодная плазма представляет собой ионизированный водород. При малой толщине плазменной оболочки и ускоряющем напряжении в сотни вольт, энергия протонов, бомбардирующих катод, может достигать значительной величины. Это также прельщает авторов, полагающих, что в таких условиях возможны реакции холодного синтеза на катоде (что, кстати, и подтверждается экспериментально). Однако отдельные работы посвящены изучению анодной плазмы. В частности, Бажутов Ю.Н. описывает свои эксперименты по возбуждению плазмы на вольфрамовом аноде. Его установка состояла из стеклянной ячейки с электролитом, помещенной в емкость с охлаждающей водой. В ячейке размещали катод из листовой нержавеющей стали и вольфрамовый стержень, являющийся анодом. В качестве электролита использовался раствор солей щелочных металлов в легкой воде с различными добавками тяжелой воды. При работе ячейки с электролитом 7М KF (50% D2O) наблюдалось интересное и странное явление. Примерно с 40-й минуты плазменного электролиза, в резервуаре охлаждения, со стороны анода вода начинала терять свою прозрачность. Охлаждающая ячейку вода, находящаяся со стороны катода, оставалась прозрачной. Радиационный фон оставался при этом неизменным. Создавалось впечатление, что, вода насыщена метастабильными микроскопическими пузырьками газа. Прозрачность воды восстанавливалась лишь через 10 часов после окончания эксперимента. Авторы полагают, что наблюдали воздействие на воду некоего корпускулярного (или электромагнитного) потока неизвестной природы со стороны плазменного анода.

Нами выявлена возможность возбуждения как анодной, так и катодной плазмы и существенного влияния индуктивности в цепи питания электролитической ячейки.

Краткие выводы:

1)Действительно, при плазменном электролизе количество выделяемого водорода превышает выход по току в щелочном электролите (Na2CO3) в 1,7-2,2 раза. В кислотном (h3SO4) в 2,5-3 раза. Как указывалось в работе Канарева Ф. М. и T. Mizuno превышение по току выхода водорода в 10-20 раз в наших экспериментах достигнуто не было. 2)Каллометрические замеры выделяющего тепла (без учета энергии выделившихся газов) показали, что соотношения вложенной электрической энергии и полученной тепловой (в катодной плазме) имеют в среднем соотношения 1/1,4. При повышении температуры от 20 до 60-ти град.С электролита это соотношение немного растет. 3) Природа избыточной тепловой энергии, по-видимому, связана с изменением элементного состава в микроколичествах на катоде.

2. Катодная и анодная плазма.

Исследования в период с июля 2008г. по май 2009г. открыли практические возможности для применения систем плазменного электролиза в теплотехнике. Основная трудность заключалась в исключении эрозии электродов, т.к. это напрямую связано с эксплуатационными характеристиками агрегата. Отдав некоторое предпочтение анодной плазме, мы нашли физические условия, при которых плазменный электрод не подвергался заметному износу. Были выявлены также моменты аномального поведения анодной плазмы. Аномалия, как мы считаем, заключается в следующем. На нижеприведенной схеме, при подключении дополнительной нагрузки (лампы накаливания) параллельно в цепь постоянного тока, наблюдается снижение потребляемого тока в амперметре А1. При мощности горения плазмы в 1кВт допускается подключение дополнительной нагрузки до 300-т Ватт. Конденсаторы С1 и С2 должны превышать емкость выше 250-ти мкФ, При индуктивности дросселя 0,1 Гн. При подключении дополнительной нагрузки свыше 300-т Ватт, становится заметным влияние на плазму, в виде ее «притухания». Каллометрические замеры в ячейке без энергосодержания выделившихся газов и дополнительной нагрузке в виде ламп накаливания, показали соотношение вложенной электрической энергии и полученной тепловой, как 1/1.

пред-последняя схема

При «зажигании» катодной плазмы, по этой схеме, этот эффект проявлялся в очень незначительной степени. Лампы накаливания еле тлели, а в случае с анодной плазмой лампы светились выше своего номинального режима. Без горения плазмы лампы накаливания не зажигались, т.к. конденсаторы в цепи не пропускают постоянный ток. Присутствие плазменного промежутка в цепи способствует появлению переменной составляющей которая, по-видимому, и отражается в появлении «интересных» эффектов. Тепловые замеры плазмы показали, что предпочтение следует отдать катодной плазме, т.к. при прочих равных условиях, катодная плазма генерирует больше тепла на 20-40%, чем анодная. Кроме того, выделение водорода, как горючего, в катодной плазме больше, чем когда катод является просто металлической пластиной. Кроме этого достоинства следует учесть, что катодная плазма работает почти беззвучно, «мягко». Анодная же издает резкий, иногда гремящий звук.

3.Возможная принципиальная схема плазменного генератора тепла.

gjcnbr

www.alternativenergy.md

Плазмохимические технологии для водоподготовки, очистки воды и сточных вод: принцип работы плазмохимического реактора, перспективы использования на практике :: НПП ЭкоЭнергоМаш

Дата публикации: 04.05.2016

Одной из сфер деятельности Научно-производственного предприятия «Экоэнергомаш» является разработка и внедрение различного Энергосберегающего оборудования и технологий, в технологиях водоподготовки и очистки сточных вод нефтехимических, нефтедобывающих предприятий, как правило имеющих широкий спектр сточных вод как по составу так и по концентрации различных загрязняющих веществ.

Плазмохимия, область химии, в которой изучаются химические процессы в низкотемпературной плазме, закономерности протекания реакций в ней и основы плазмохимической технологии. Плазма с температурой 103 ÷ 2 ×104 К и при давлении 10-6-104 ата, а также неравновесная плазма искусственно получается в устройствах, называется плазматронами.

В настоящее время разработано множество методов очистки воды. Основными из них являются: Механическая фильтрация, биохимические методы, химические методы, озонирование, гидрокавитационная обработка, акустическая обработка, ультрафиолетовая обработка, электроимпульсная обработка, рентгеновская обработка, ударные волны.

Одним из наиболее перспективных методов водоподготовки и очистки сильнозагрязненных сточных вод являются методы основанные на плазмохимических процессах в жидко-газовых средах.

В этом отношении весьма перспективным представляется применение холодной плазмы, которая создаётся непосредственно в обрабатываемых жидкостях и газах или на поверхности стерилизуемых объектов. Взаимодействие активных частиц плазмы с вредными химическими соединениями или микроорганизмами приводит к их разрушению.

Технология плазмохимической обработки воды и промышленных стоков представляет собой так называемый деструктивный метод, в основу которого, в отличие от регенеративных методов, удаляющих примеси из воды в твердую (адсорбция), газовую (десорбция) или неводную жидкую (экстракция), фазы положено внесение химических изменений в структуру и состав молекул примесей. Причем наиболее действенным превращением является окисление веществ, которое также служит наиболее эффективным средством в отношении микроорганизмов, в том числе и патогенных.

Нетермические методы очистки отходящих газов и жидкостей в промышленности и стерилизации в медицине/биологии стали разрабатываться с 90-х годов прошлого столетия.

Несмотря на некоторые успехи, достигнутые при лабораторных испытаниях, холодная плазменная обработка при атмосферном давлении пока не получила широкого распространения на практике. Основная причина связана с тем, что разработанные к настоящему времени источники холодной плазмы технически сложно и экономически невыгодно масштабировать до параметров, необходимых современному потребителю. Другая, не менее важная, причина состоит в том, что общепринятые способы создания плазмы не гарантируют отсутствия локальных разрушений объекта в местах контакта плазмы с обрабатываемой поверхностью.

С середины 90-х годов научными коллективами г.Москвы, г.Казани, г.Томска, - выполнен большой объем научно-исследовательских работ, конструкторских разработок по созданию компактных плазмохимических реакторов для создания холодной плазмы в газово-жидких средах для обработки жидкостей различного состава в различных производственных условиях и прежде всего для различных технологий водоподготовки и очистки сточных вод

На рис. 1 приведен фотографии плазмодинамического реактора (ПД) с объёмно-диффузионным плазменным разрядом и результаты обработки воды содержащей сульфатредуцирующие бактерии (анаэробные).

Объемно-диффузионный разряд в пористом электролите, как разновидность анодного разряда, идеально подходит для обработки биологически и химически сильно загрязненных вод. Развитая поверхность в пузырьковой среде, где на границе раздела вода-воздух идет разряд, позволяет производить глубокую очистку воды с минимальными энергетическими затратами даже при наличии высокостойких микроорганизмов и химических реагентов, дезактивация которых другими методами проблематична.

Принцип работы установки:

Физический принцип работы установки основан на обработке разрядом

V=400 - 800 в микропористой жидкости (пористого электролита). Во время работы разряда создаются акустические и ударные волны в микропористой среде.

Применяется катодно-анодный электрохимический разряд (КАЭРВЭ), для электропитания которого используют стандартное промышленное напряжение 220, 380 или 660 В. На Рис1. приведен реактор на производительность по воде дл 100м3/час, (Ø=120мм, L =300мм).

Работа плазмохимического реактора основана на природной технологии очистки воды, которая близка процессам, происходящим в атмосфере во время дождя и грозы. Вода обрабатывается холодной плазмой электрического разряда, подвергается кавитации, насыщается кислородом до концентрации, выше равновесной при данной температуре.Органические соединения окисляются до углекислого газа и воды. Соли тяжелых металлов переходят в карбонаты и выпадают в осадок. 

Объемно диффузионный разряд в пористом электролите, как разновидность анодного разряда, идеально подходит для обработки сильно загрязненных биологически и химически вод. Развитая поверхность в пузырьковой среде, где на границе раздела вода воздух идет разряд позволяет производить глубокую очистку воды с минимальными энергетическими затратами даже при наличии высокостойких микроорганизмов и химических реагентов, дезактивация которых другими методами сложна и весьма дорогая.

Обработке высокой температурой, излучением, акустикой, ударными волнами, озоном (в случае барботирования воды воздухом), хлором (для соленой воды), электрическим током подвергается одновременно довольно большой объем биологически или химически загрязненной жидкости. Этим объясняется довольно высокий, по сравнению с другими методами бактерицидный эффект. Отметим неоспоримое преимущество данного метода и устройств, состоящая в том что вся энергия закачанная в разряд идет на уничтожение микрофлоры и разрушение химических загрязнений органического и неорганического характера.

Бактерицидный эффект установки обеспечивается посредством комплекса биофизических процессов, инициируемых при плазменном разряде в жидкой культуре микроорганизмов. Плазменный разряд характеризуется следующими дезинфицирующими компонентами:

  1. Термическая компонента (температура плазмы до 5000 градусов (узкая зона раздела газ - жидкость), температура обработанной жидкости с культурой микроорганизмов до 44ºС).
  2. Ударная волна, акустическая компонента.
  3. Электромагнитная компонента.
  4. Ультрафиолетовое излучение.
  5. Озонирование, хлорирование.

Технология плазменной очистки сточных вод и доочистки/подготовки питьевой воды дают возможность обрабатывать стоки с различной степенью загрязнения до уровня требований, позволяющих возвращать воду и в природную среду, и в городские водопроводы. Она становится полностью пригодной для питья.

Другой важной проблемой, примыкающей к задачам водоподготовки, является защита от биоповреждений и биокоррозии различных промышленных материалов, оборудования, электронных приборов и т.д., поскольку известно, что скорости коррозии металлов увеличиваются в сотни раз под воздействием биоплёнок микроорганизмов. В то же время микроорганизмы в составе биоплёнок чрезвычайно устойчивы к традиционным методам стерилизации, что обуславливает необходимость разработки новых и более эффективных способов стерилизации различных поверхностей, подверженных биодеградации и биокоррозии.

В предлагаемой технологии применяется метод дезинфекции микропористых жидкостей объёмно-диффузионным плазменным разрядом на поверхности фазового раздела газ-жидкость (поверхность пузырьков). В микропористой среде эта поверхность довольно развита. Поэтому обработке высокой температурой, излучением, акустикой, ударными волнами, озоном (в случае барботирования воды воздухом), хлором (для соленой воды), электрическим током подвергается одновременно довольно большой объем биологически или химически загрязненной жидкости. Этим объясняется довольно высокий, по сравнению с другими методами, бактерицидный эффект.

Разработаны методики приготовления микропористой жидкости заданных параметров (пористость жидкости достигает 95÷98%) методом взрывного кипения.

Это перспективное направление в области интенсификации массообменных процессов, и результаты работ могут быть использованы в нефтехимической, химической промышленности, энергетике, транспорте, авиационной и пищевой промышленности, быту, водоподготовке, очистке промышленных и сточных вод и.т.д. Технологические стадии при получении "активированного пористого топлива"

  1. Предварительное барботирование газами под давлением исходного топлива (например, авиационного керосина и др. жидкостей) с использованием диспергатора;
  2. Последующее пропускание его через кавитатор, в котором происходит дальнейшее дробление пузырьков;
  3. Ударно-волновая обработка газодисперсной смеси;
  4. Распыл этой смеси в поток воздуха

В настоящее время разработаны следующие технологии деструкции химзагрязненных вод:

  • Глубокая очистка сточных вод коксохимического производства;
  • Разложение ароматических соединений, находящихся в водном растворе;
  • Окисление фенола частицами ОН, Н, О и О3, образующимися в реакторе;
  • Разложение дихлорэтана и хлорбензола, растворенных в воде;
  • Разложение муравьиной кислоты в различных окислительных процессах.
  • Разложение высококонцентрированного водного раствора натриевой соли этилендиаминтетрауксусной кислоты под действием электрического разряда.
  • Плазмохимические реакции удаляют неорганические и органические примеси различного происхождения и концентрации (от миллиграммов до граммов на литр). Плазма газового разряда выжигает цианиды, поверхностно-активные вещества (которых так много в моющих средствах), нефтепродукты, отходы жизнедеятельности людей и животных, токсины.
  • Технологии плазменной очистки позволяют избавиться от тяжелых металлов - меди, цинка, железа, ртути, молибдена, алюминия, кобальта, хрома, - а также от радионуклидов.
  • Высокую эффективность достигнута как при очистке загрязненных вод от высокооктанового бензина с добавками метилтретбутилового эфира (MTBE), так и при очистке загрязненной нефтепродуктами морской воды.
  • Процесс полностью уничтожает болезнетворные бактерии и вирусы;

Если сравнивать такие системы с аппаратами, ныне используемыми на практике, становится ясно, что применять новые технологии значительно выгоднее. Они позволяют очищать воду от сложно удаляемых загрязнителей, одновременно обеспечивая обеззараживание без каких-либо химических реактивов.

Производительность плазменных установок может варьироваться от малой до средней (несколько сотен кубометров в час). Новые системы совместимы с уже находящимися в эксплуатации и без значительных затрат на любом этапе технологического процесса легко встраиваются в действующие комплексы водоочистки, повышая их эффективность. И, наконец, эти системы требуют сравнительно небольших капиталовложений при высокой конкурентоспособности по критерию "эффективность / стоимость".

Отличительные черты метода - высокая скорость и эффективность обработки воды. Эти обстоятельства наряду с нечувствительностью к оптическим свойствам жидкости позволяют с большой долей вероятности использовать данный метод также и в обработке сточных, речных, промывных и шахтных вод.

Рекомендуемые товары Рекомендуемые проекты

www.eemkzn.ru

Вездесущая плазма: четвертое состояние вещества

Что такое четвертое состояние вещества, чем оно отличается от трех других и как заставить его служить человеку.

Алексей Левин

22 марта 2010 20:21

Полтораста лет назад почти все химики и многие физики считали, что материя состоит лишь из атомов и молекул, которые объединяются в более-менее упорядоченные или же совсем неупорядоченные комбинации. Мало кто сомневался, что все или почти все вещества способны существовать в трех разных фазах — твердой, жидкой и газообразной, которые они принимают в зависимости от внешних условий. Но гипотезы о возможности других состояний вещества уже высказывались.

Эту универсальную модель подтверждали и научные наблюдения, и тысячелетия опыта обыденной жизни. В конце концов, каждый знает, что вода при охлаждении превращается в лед, а при нагревании закипает и испаряется. Свинец и железо тоже можно перевести и в жидкость, и в газ, их надо лишь нагреть посильнее. С конца XVIII века исследователи замораживали газы в жидкости, и выглядело вполне правдоподобным, что любой сжиженный газ в принципе можно заставить затвердеть. В общем, простая и понятная картина трех состояний вещества вроде бы не требовала ни поправок, ни дополнений.

Плазменная электростанция Плазменная электростанция В 70 км от Марселя, в Сен-Поль-ле-Дюранс, по соседству с французским исследовательским центром атомной энергии Кадараш, будет построен исследовательский термоядерный реактор ITER (от лат. iter — путь). Основная официальная задача этого реактора — «продемонстрировать научную и технологическую возможность получения энергии термоядерного синтеза для мирных целей». В долговременной перспективе (30−35 лет) на основе данных, полученных во время экспериментов на реакторе ITER, могут быть созданы прототипы безопасных, экологически чистых и экономически прибыльных электростанций.

Ученые того времени немало удивились бы, узнав, что твердое, жидкое и газообразное состояния атомно-молекулярного вещества сохраняются лишь при относительно низких температурах, не превышающих 10 000°, да и в этой зоне не исчерпывают всех возможных структур (пример — жидкие кристаллы). Нелегко было бы и поверить, что на их долю приходится не больше 0,01% от общей массы нынешней Вселенной. Сейчас-то мы знаем, что материя реализует себя во множестве экзотических форм. Некоторые из них (например, вырожденный электронный газ и нейтронное вещество) существуют лишь внутри сверхплотных космических тел (белых карликов и нейтронных звезд), а некоторые (такие как кварк-глюонная жидкость) родились и исчезли в краткий миг вскоре после Большого взрыва. Однако интересно, что предположение о существовании первого из состояний, выходящих за рамки классической триады, было высказано все в том же ХIХ столетии, причем в самом его начале. В предмет научного исследования оно превратилось много позже, в 1920-х. Тогда же и получило свое название — плазма.

От Фарадея до Ленгмюра

Во второй половине 70-х годов XIX века член Лондонского королевского общества Уильям Крукс, весьма успешный метеоролог и химик (он открыл таллий и чрезвычайно точно определил его атомный вес), заинтересовался газовыми разрядами в вакуумных трубках. К тому времени было известно, что отрицательный электрод испускает эманацию неизвестной природы, которую немецкий физик Ойген Голдштейн в 1876 году назвал катодными лучами. После множества опытов Крукс решил, что эти лучи есть не что иное, как частицы газа, которые после столкновения с катодом приобрели отрицательный заряд и стали двигаться в направлении анода. Эти заряженные частицы он назвал «лучистой материей», radiant matter.

Как устроен Токамак Как устроен Токамак Токамак — установка тороидальной формы для удержания плазмы с помощью магнитного поля. Плазма, разогретая до очень высоких температур, не касается стенок камеры, а удерживается магнитными полями — тороидальным, созданным катушками, и полоидальным, которое образуется при протекании тока в плазме. Сама плазма выполняет роль вторичной обмотки трансформатора (первичная — катушки для создания тороидального поля), что обеспечивает предварительный нагрев при протекании электрического тока.

Следует признать, что в таком объяснении природы катодных лучей Крукс не был оригинален. Еще в 1871 году сходную гипотезу высказал крупный британский инженер-электротехник Кромвелл Флитвуд Варли, один из руководителей работ по прокладке первого трансатлантического телеграфного кабеля. Однако результаты экспериментов с катодными лучами привели Крукса к очень глубокой мысли: среда, в которой они распространяются, — это уже не газ, а нечто совершенно иное. 22 августа 1879 года на сессии Британской ассоциации в поддержку науки Крукс заявил, что разряды в разреженных газах «так непохожи на все происходящее в воздухе или любом газе при обычном давлении, что в этом случае мы имеем дело с веществом в четвертом состоянии, которое по свойствам отличается от обычного газа в такой же степени, что и газ от жидкости».

Нередко пишут, что именно Крукс первым додумался до четвертого состояния вещества. В действительности эта мысль гораздо раньше осенила Майкла Фарадея. В 1819 году, за 60 лет до Крукса, Фарадей предположил, что вещество может пребывать в твердом, жидком, газообразном и лучистом состояниях, radiant state of matter. В своем докладе Крукс прямо сказал, что пользуется терминами, заимствованными у Фарадея, но потомки об этом почему-то забыли. Однако фарадеевская идея была все-таки умозрительной гипотезой, а Крукс обосновал ее экспериментальными данными.

Катодные лучи интенсивно изучали и после Крукса. В 1895 году эти эксперименты привели Вильяма Рёнтгена к открытию нового вида электромагнитного излучения, а в начале ХХ века обернулись изобретением первых радиоламп. Но круксовская гипотеза четвертого состояния вещества не вызвала интереса у физиков — скорее всего потому, что в 1897 году Джозеф Джон Томсон доказал, что катодные лучи представляют собой не заряженные атомы газа, а очень легкие частицы, которые он назвал электронами. Это открытие, казалось, сделало гипотезу Крукса ненужной.

Первая плазма Первая плазма Снимок испытательного запуска корейского токамака KSTAR (Korea Superconducting Tokamak Advanced Reactor) с получением «первой плазмы» 15 июля 2008 г. KSTAR, научно-исследовательский проект по изучению возможности термоядерного синтеза для получения энергии, использует 30 сверхпроводящих магнитов, охлаждаемых жидким гелием.

Однако она возродилась, как феникс из пепла. Во второй половине 1920-х будущий нобелевский лауреат по химии Ирвинг Ленгмюр, работавший в лаборатории корпорации General Electric, вплотную занялся исследованием газовых разрядов. Тогда уже знали, что в пространстве между анодом и катодом атомы газа теряют электроны и превращаются в положительно заряженные ионы. Осознав, что подобный газ имеет множество особых свойств, Ленгмюр решил наделить его собственным именем. По какой-то странной ассоциации он выбрал слово «плазма», которое до этого использовали лишь в минералогии (это еще одно название зеленого халцедона) и в биологии (жидкая основа крови, а также молочная сыворотка). В своем новом качестве термин «плазма» впервые появился в статье Ленгмюра «Колебания в ионизованных газах», опубликованной в 1928 году. Лет тридцать этим термином мало кто пользовался, но потом он прочно вошел в научный обиход.

Физика плазмы

Классическая плазма — это ионно-электронный газ, возможно, разбавленный нейтральными частицами (строго говоря, там всегда присутствуют фотоны, но при умеренных температурах их можно не учитывать). Если степень ионизации не слишком мала (как правило, вполне достаточно одного процента), этот газ демонстрирует множество специфических качеств, которыми не обладают обычные газы. Впрочем, можно изготовить плазму, в которой свободных электронов не будет вовсе, а их обязанности возьмут на себя отрицательные ионы.

www.popmech.ru


Смотрите также