Дейтерий, тяжёлая вода, эволюция и жизнь. Вода дейтерий
Живая и мертвая вода. Дейтерий как ингибитор процессов в организме человека
Нельзя сказать, что какая либо вода будет выводить радионуклиды из организма — правильнее будет, то, что переход на потребление воды с более низким содержанием тяжелых изотопов будет иметь оздоровительный эффект в разы снижающий уровень риска возникновения патологий связанных с употреблением так называемой «тяжелой воды».
«…Сегодня миф о живой и мертвой воде нашел своё научное подтверждение. По мнению ученых, живой водой считается пресная, щелочная структурированная талая вода с низким содержанием дейтерия (полное отражение байкальской воды). Вообще, вода в природе бывает двух видов: обычная, или протиевая и тяжелая или дейтериевая. Чем теплее климат, тем большую долю в составе воды занимает тяжелая вода, поскольку тяжелая вода испаряется медленнее легкой. Поэтому в талой воде, в которой сохранились очаги ледяных структур, концентрация дейтерия гораздо ниже нормы. Наличие дейтерия делает воду мертвой, наличие протия — живой. Байкальская вода, температура формирования и долгосрочного природного хранения которой 4°C (температура талой воды), из всех пресных водоемов мира имеет самый низкий показатель по содержанию дейтерия. Известно, что именно в районах с преобладанием в потреблении талой воды, как правило, живет наибольшее число долгожителей. Некоторые геронтологи выдвинули предположение, что одной из причин большого количества долгожителей в Якутии и на Кавказе является преимущественное потребление талой воды. Ведь ничего общего в этих отдаленных друг от друга районах нет, за исключением того, что люди там пьют воду, образовавшуюся в результате таяния снега или льда…»
На сегодняшний день очень много споров на данную тему. Много заказных статей и материалов.
Количество дейтерия и кислорода 18 в питьевой воде не регламентируется ВОЗ. С данным фактом связано, что нет единого мнения, как со стороны ученых, так и со стороны производителей и потребителей питьевой воды о пользе «лёгкой» питьевой воды.
Для примера:
SMOW — венский стандарт среднеокеанической воды: D/H = (155,76 ± 0,5) × 10 - 6 O18/O16 = (2005,2 ± 4,5) × 10 - 6
GISP — стандарт воды из гренландского льда: D/H = (124,6 ± 0,5) × 10 - 6
SLAP – стандарт воды из антарктического льда: D/H = (90,5 ± 1,0) × 10 - 6
Природные изотопные вариации представлены природные изотопные вариации водорода. Из представленных данных видно, что, по отношению к среднеокеанической воде, они достигают 40% для более «лёгких» веществ и воды, и 20% — для более «тяжёлых». Содержание дейтерия в различных природных водах изменяется от 90 ppm (вода из Антарктического льда — самая легкая природная вода) до 180 ppm — вод в газовых пластах и закрытых водоемах Сахары. Ppm — единица измерения «лёгкости» воды — количество частиц дейтерия на 1 миллион частиц водорода.
Внутренние воды пустыни Сахара — самые тяжелые — 180 ppm.
Мировой океан — 155,76 ppm (V-SMOW — Венский стандарт океанской воды).
Среднеевропейская вода — 149…150 ppm.
Вода в Москве — 142 ppm.
Озеро Байкал — 137 ppm.
Талая вода и снег высокогорных ледников — 128…132 ppm.
Лед Гренландии — 125 ppm.
Льды Антарктиды — самая лёгкая вода на Земле — 90 ppm.
Как видно, байкальская вода очень близка по содержанию D20 к талой воде. Разница даже в 2…5 ppm, уже имеет терапевтический эффект.
Жиры, из которых образованы липиды клеточных мембран, обеднены дейтерием (131 ppm), по сравнению с той водой (142…150 ppm и выше), которую мы потребляем из окружающей среды и которая заполняет межклеточное пространство нашего организма.
В экстремальных условиях сильного стресса и неблагоприятных внешних воздействий для мобилизации жизненных сил организм первым делом освобождается от тяжелых изотопов, в том числе от дейтерия и тяжелого кислорода.
Лёгкая вода с пониженным содержанием дейтерия — мощнейший биостимулятор, повышающий функциональные возможности организма на клеточном уровне и обладающий мощными лечебными свойствами.
К сожалению, мы не можем наносить на этикетку информацию о пользе нашей воды в данном плане, так как, нет единых утверждённых мнений, а также узаконенных нормативов.
В дальнейшем можно будет провести клинические испытания нашей воды на базе серьёзных клиник Москвы (в основном онкология). И в случае положительного заключения уже можно будет отображать эти данные на этикетке и соответственно по-другому позиционировать продукцию (т.е. как более «лёгкую воду» по сравнению с питьевой водой из артезианских и других источников).
baikalaqua.com
Вода, глубоко обеднённая дейтерием
Вода, глубоко обеднённая дейтериемЗагадки возникновения воды на планетах солнечной системы, в том числе и на Земле, скрываются в тайнах возникновения нашей Галактики, нашей солнечной системы, ее планет, в том числе и Земли. Вода на Земле - свободная и связанная с минералами, возникла в недрах протовещества, из которого образовалась наша планета. Ювенильная вода (вода на ранних этапах образования Земли была чистой, имела такую же формулу Н2О, что и современная вода. Атом водорода также имел три изотопа: Н (протий) - легкий, состоящий из протона и электрона, Д (дейтерий), в два раза тяжелее протия (два протона и один электрон), Т (трития), тяжелого водорода, в ядре которого имеется нейтрон, за счет чего он становится радиоактивным изотопом водорода с периодом полураспада девять лет. Атом кислорода в воде имеет шесть изотопов: 014, 015, 016, 017, 018, 019, из них 014, 015 и 019 - радиоактивны.
Учитывая свободное комбинирование изотопов водорода и кислорода, выделяют 36 изотопных разновидностей природной воды, 27 разновидностей радиоактивны и лишь 9 стабильны. Тяжелые и радиоактивные изотопы водорода и кислорода вредны для нормального функционирования растений, животных, в том числе и человека. Они сами по себе вызывают мутации клеток и организмов, являясь основной причиной эволюции клеток и организма, их болезней, старения и смерти.
В тонне речной воды содержится 150 г вредной для обмена веществ тяжелой воды.
Трития на Земле очень мало. Всего его на планете в настоящее время около 25-30 кг и содержится он в основном в водах мирового океана (около 20 кг). Раньше его было меньше. Его количество в водах Земли,, так же как количество дейтерия, непрерывно возрастает, так как они образуются при бомбардировке ядер азота и кислорода атмосферы космическими лучами. В результате этого содержание трития и дейтерия в первоначальных (ювенильных) водах непрерывно увеличивается. Я подсчитал: за 70 лет потребления 3 л питьевой воды в день через организм человека пройдет около 80 тонн воды, содержащей 12 кг дейтерия и значительное количество коррелирующих с ним радиоактивных изотопов водорода и кислорода. Такое значительное количество тяжелых и радиоактивных изотопов водорода и кислорода воды, являющейся матрицей жизни, уже к наступления половой зрелости человека повреждает его гены, вызывает различные болезни, рак, инициирует старение организма. Массовое повреждение генофонда радиоактивными и тяжелыми изотопами водорода и кислорода воды обуславливает вымирание видов растений, животных и человека. По подсчетам доцента Томского медицинского института В.И.Стреляева, виду Homo sapiens также грозит вымирание, если он не перейдет на употребление воды, обедненной радиоактивными и тяжелыми изотопами О2 и Н.
Вода с пониженным, по сравнению с материковыми водами, содержанием дейтерия рассматривается в настоящее время как стимулятор жизни. Дейтерий тормозит, а протий способствует обмену веществ в биологических объектах. Удаление дейтерия из воды активизирует ее и активизирует биологические процессы.
Дейтерий неблагоприятно действует на все живое. Тяжёлая вода ингибирует жизненно-важные функции роста и развития многих микроорганизмов. Некоторые бактерии выносят 70%-ную и выше концентрацию тяжёлой воды в среде, в то время как растительные клетки могут нормально развиваться при концентрациях тяжёлой воды не более 50-75%, а клетки животных не более 35% тяжёлой воды. Однако, впоследствии было показано, что несмотря на биостатический эффект тяжёлой воды на клетку, многие клетки бактерий, растений и животных могут быть адаптированы к тяжёлой воде.
Сейчас работы по улучшению качества воды ведутся во всех странах мира. Однако существующие очистительные сооружения и технологии водоподготовки не справляются со своими задачами. Поэтому и возникли различные способы и устройства для доочистки питьевой воды. В общих чертах все эти устройства, какой бы совершенной ни была очистка, ничего не могут поделать с генетической памятью воды, проявляющемся в способности воды сохранять след действия на ее молекулярную структуру всех примесных соединений.
Вода загрязнена многими примесями земного, космического и биоэнергоинформационного происхождения.
К земным загрязнениям воды следует отнести многочисленные вредные и ядовитые органические и неорганические примеси, прежде всего техногенного происхождения, а также микроорганизмы.
Космические загрязнения - это главным образом тяжелые и радиоактивные изотопы водорода (дейтерий и тритий) и кислорода - 18О , 19Ои др.
Под биоэнергоинформационными (БЭИ) загрязнениями учёные подразумевают прежде всего то энергополевое и информационное наполнение воздушного пространства, воды и земли, которое негативно влияет на все живое.
Существуют природные и техногенные БЭИ загрязнения. Первые возникают вследствие солнечной активности, магнитных бурь, землетрясений, электромагнитных аномалий и т. п.; вторые - результат технического прогресса человечества. К ним следует отнести не только отравление воды, земли и воздуха промстоками и выхлопными газами, повышенную радиацию, но и т. н. электромагнитный смог - колоссальное увеличение плотности электромагнитных излучений различных частот и интенсивностей, в том числе и глобальную компьютеризацию.
Сочетание природных и техногенных БЭИ загрязнений негативно воздействует на структуру воды, вследствие чего она приобретает мутагенные и канцерогенные свойства. Существующие ныне технологии получения питьевой воды (как у нас, так и за рубежом) осуществляют очистку воды только от земного типа загрязнений, не изменяя при этом ее изотопный состав и структурную память. Такая вода практически полностью сохраняет свою негативную структуру, и по этой причине не может быть полезной для здоровья, роста и развития живых организмов.
Для оздоровления воды, придания ей целебных биологических свойств прежде всего необходимо избавить ее от всех загрязнений - земных, космических и биоэнергоинформационных.
Классической водой следует считать протиевую воду 1h316O в чистом виде, то есть без малейших примесей остальных 134 изотопных разновидностей. И хотя содержание протиевой воды в природе значительно превосходит содержание всех остальных вместе взятых видов, чистой 1h316O в естественных условиях не существует. Во всем мире такую воду можно отыскать лишь в немногих специальных лабораториях. Ее получают очень сложным путем и хранят с величайшими предосторожностями. Для получения чистой 1h316O ведут очень тонкую, многостадийную очистку природных вод или синтезируют воду из исходных элементов 1h3 и 16O, которые предварительно тщательно очищают от изотопных примесей. Такую воду применяют в экспериментах и процессах, требующих исключительной чистоты химических реактивов.
Но самый большой эффект наблюдается для пары протий/дейтерий. Этим двукратным увеличением массы дейтерона относительно протона и обуславливаются так называемые изотопные эффекты тяжёлой воды - энергия связи, константа диссоциации, подвижность, длина связи и т.д.
С первых экспериментов американца Креспи и Даболла в 1940-х годах прошлого века, вплоть до конца 90-х годов установилось устойчивое представление, что тяжёлая вода несовместима с жизнью и что высокие концентрации тяжёлой воды могут приводить к ингибированию многих жизненно-важных мутаций, включая блокировку митоза в стадии профазы, и даже в некоторых случаях вызывать спонтанные мутации.
Клетки животных способны выдерживать до 25-30% тяжёлой воды в среде, растений (50%), а клетки простейших микроорганизмов способны жить на 80% тяжелой воде. Однако, потом было доказано, что многие организмы могут быть адаптированы к росту на тяжёлой воде.
Тяжёлая вода высокой концентрации токсична для организма; химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных.
Тем не менее тяжелая вода играет значительную роль в различных биологических процессах. Систематическое изучение ее воздействия на животных и растения начато сравнительно недавно. Различные исследователи независимо друг от друга установили, что тяжелая вода действует отрицательно на жизненные функции организмов; это происходит даже при использовании обычной природной воды с повышенным содержанием тяжелой воды. Влияние концентрации дейтерия на рост высших растений
Выживаемость различных организмов в воде с различными концентрациями дейтерия. Подопытных животных поили водой, 1/3 часть которой была заменена водой состава HDO. Через недолгое время начиналось расстройство обмена веществ животных, разрушались почки. При увеличении доли тяжелой воды животные погибали. На развитие высших растений тяжелая вода также действует угнетающе; если их поливать водой, на половину состоящей из тяжелой воды, рост прекращается.
Поливка помидорной рассады 30, 50 и 60%-ной тяжёлой водой ингибирует рост растения (по данным Креспи и Катца, 1972).
Пониженное содержание дейтерия в воде стимулирует жизненные процессы. Такие данные получили Бердышев Г.Д., Варнавский И.Н. Они долгое время наблюдали за растениями и животными, потреблявшими воду, в которой содержалось дейтерия на 25% ниже нормы. Оказалось, что, потребляя такую воду, свиньи, крысы и мыши дали потомство, гораздо многочисленнее и крупнее обычного, яйценоскость кур поднялась вдвое, пшеница созрела раньше и дала более высокий урожай.
Первые результаты изучения тяжелой воды показывают, сколько необычных свойств таит такое обыкновенное вещество, как вода.
Российские исследователи давно обнаружили, что тяжелая вода тормозит рост бактерий, водорослей, грибов, высших растений и культуры тканей животных. А вот вода со сниженной до 30% концентрацией дейтерия (так называемая "бездейтериевая" вода) способствует увеличению биомассы и количества семян, ускоряет развитие половых органов и стимулирует сперматогенез у птиц.
За рубежом пробовали поить тяжелой водой мышей со злокачественными опухолями. Но та вода оказалась по настоящему мертвой: и опухоли губила, и мышей. Различные исследователи установили, что тяжелая вода действует отрицательно на растительные и живые организмы. Подопытных собак, крыс и мышей поили водой, треть которой была заменена тяжелой водой. Через некоторое время начиналось расстройство обмена веществ животных, разрушались почки. При увеличении доли тяжелой воды животные погибали. И наоборот, снижение содержания дейтерия на 25% ниже нормы в воде, которую давали животным, благотворно сказалось на их развитии: свиньи, крысы и мыши дали потомство, во много раз многочисленнее и крупнее обычного, а яйценосность кур поднялась вдвое.
Тогда учёные во главе с профессором Г.Д. Бердышевым взялись за "облегченную" воду. Эксперименты проводили на 3 моделях перевиваемых опухолей: карцинома легких Льюис, быстро растущая саркома матки и рак шейки матки, который развивается медленно. "Бездейтериевую" воду исследователи получали по специальной технологии электролизом дистиллированной воды. В опытных группах животные с перевитыми опухолями получали воду с пониженным содержанием дейтерия, в контрольных группах - обычную. Животные начали пить "облегченную" и контрольную воду в день перевивки опухоли и получали ее до последнего дня жизни.
Вода с пониженным содержанием дейтерия задерживала появление первых узелков на месте перевивки рака шейки матки. Однако, на время возникновения узелков других типов опухоли облегченная вода не действовала. Но во всех опытных группах с тяжёлой водой, начиная с первого дня измерений и практически до завершения эксперимента, объем опухолей был меньше, чем в контрольной группе. К сожалению, хотя тяжёлая вода и тормозит развитие всех исследованных опухолей, жизнь экспериментальным мышам она не продлевает.
Как это всё происходит на уровне метаболизма? При попадании клеток в дейтерированную тяжёловодородную среду из них не только исчезает протонированная вода за счет реакции обмена Н2О-D2О, но и происходит быстрый H±D обмен в гидроксильных, сульфгидрильных и аминогруппах всех органических соединений, включая белки, нуклеиновые кислоты, липиды, сахара. Только С-Н-связь не подвергается обмену и соединения типа С-D синтезируются "de поvo".
Интересно, что после обмена H±D ферменты не прекращают своей функции (Themson et al., 1966; Денько, 1974), но изменения в результате изотопного замещения за счет первичного и вторичного изотопных эффектов (Thomson, 1963; Halevy, 1963), а также действие тяжёлой воды как растворителя (большая структурированность и вязкость по сравнению с обычной водой) приводят к изменению скоростей (замедлению) и специфичности ферментативных реакций в тяжёлой воде.
Присутствие дейтерия в биологических системах приводит к изменениям структуры и свойствам жизненно-важных макромолекул таких как дезоксирибонуклеиновые кислоты (ДНК) и белки. При этом различают первичные и вторичные изотопные эффекты дейтерия в зависимости от того, какое положение занимает атом дейтерия в молекуле. Наиболее важными для структуры макромолекулы связи являются динамические короткоживущие водородные (дейтериевые) связи. Они формируются между соседними атомами дейтерия (водорода) и гетероатомами кислорода, углерода, азота, серы и т.д. и играют главную роль в поддержании пространственной структуры макромолекулярных цепей и как эти структуры взаимодействуют с другими соседними макромолекулярными структурами, а также с тяжелой водной окружающей среды.
Структурно-динамические свойства клеточной мембраны, которые в большинстве зависят от качественного и количественного состава липидов, также могут изменяться в присутствии тяжёлой воды. Полученный результат объясняется тем, что клеточная мембрана является одной из первых органелл клетки, которая испытывает воздействие тяжёлой воды, и тем самым компенсирует реалогические параметры мембраны (вязкость, текучесть, структурированность) изменением количественного и качественного состава липидов.
Возможно эффекты, наблюдаемые при адаптации к тяжёлой воде связаны с образованием в тяжёлой воде конформаций молекул с иными структурно-динамическими свойствами, чем конформаций, образованных с участием водорода, и поэтому имеющих другую активность и биологические свойства. Так, по теории абсолютных скоростей разрыв СH-связей может происходить быстрее, чем СD-связей, подвижность иона D+ меньше, чем подвижность Н+, константа ионизации тяжёлой воды меньше константы ионизации обычной воды. Всё это отражается на кинетике химической связи и скорости хим. реакций в тяжёлой воде.
Связи, образованные атомами углерода с дейтерием немного прочнее, чем СН-связи из-за того, что частота колебания дейтерона, имеющего большую массу (в два раза большую, чем протон) и размер меньше частоты колебания протона и тем самым, это стабилизирует связь.
Другое важное свойство определяется самой пространственной структурой тяжёлой воды, которая имеет тенденцию сближать гидрофобные группы макромолекулы, чтобы минимизировать их эффект на водородную (дейтериевую) связь в присутствии молекул тяжёлой воды. Так что структура спирали, каковой является ДНК в присутствии тяжёлой воды стабилизируется. Кроме этого, отмечены радиопротекторные свойства тяжёлой воды на клетки печени обезьяны, в которой экспонировались эти клетки. Также было показано, что жизненный цикл плоских червей, выращенных на тяжёлой воде увеличивается в 1.5 раза по-сравнению с червями, выращенными на обычной воде (М.Шепенинов, 2006).
Вероятно, клетка реализует лабильные адаптивные механизмы, которые способствуют функциональной реорганизации работы жизненно-важных систем в тяжёлой воде. Так, например, нормальному биосинтезу и функционированию в тяжёлой воде таких биологически активных соединений, как нуклеиновые кислоты и белки способствует поддержание их структуры посредством формирования водородных (дейтериевых) связей в молекулах.
Связи, сформированные атомами дейтерия различаются по прочности и энергии от аналогичных водородных связей. Различия в нуклеарной массе атома водорода и дейтерия косвенно могут служить причиной различий в синтезах нуклеиновых кислот, которые могут приводить в свою очередь к структурным различиям и, следовательно, к функциональным изменениям в клетке.
Ферментативные функции и структура синтезируемых белков также изменяются при росте клеток на тяжёлой воде, что может отразиться на процессах метаболизма и деления клетки.
Изменения соотношения основных метаболитов в процессе адаптации к тяжеловодородной среде также может являться причинами гибели клеток. Клетки высших организмов погибают при содержании тяжёлой воды в составе тела свыше 30%, но микроорганизмы, легко приспосабливающиеся к резким изменениям среды обитания, способны жить и размножаться даже в 98%-ной тяжёлой воды (Мосин О.В, 1996).
Давно замечено, что адаптация к тяжёлой воде проходит легче при постепенном увеличении содержания дейтерия в среде (Денько Е.И, 1970), так как чувствительность к тяжёлой воде разных ключевых систем различна. Практически даже высокодейтерированные среды содержат протоны от 0,2-10%. Возможно, что остаточные протоны в момент адаптации к тяжёлой воде облегчают перестройку к изменившимся условиям, встраиваясь именно в те участки, которые наиболее чувствительны к замене. Если это так, то встраивание протонов должно приводить к накоплению легкого изотопа в органическом материале клеток и соответственно к обогащению тяжелым изотопом среды культивирования.
Способность к адаптации в высоких концентрациях тяжёлой воды связана с эволюционным уровнем организации, т. е. чем ниже уровень развития живого, тем выше способность к адаптации (О.В. Мосин, Д.А. Складнев, В.И. Швец, 1996).
Дейтерированные клетки адаптированных к максимальной концентрации тяжёлой воды в среде микроорганизмов - весьма удобные объекты для исследования. В процессе роста клеток на тяжёлой воде в них синтезируются макромолекулы, в которых атомы водорода в углеродном скелете почти полностью замещены на дейтерий. Такие дейтерированные макромолекулы претерпевают структурно-адаптационные модификации, необходимые для нормального функционирования клетки в тяжёлой воде.
Эти факты позволяют видеть некоторую аналогию между адаптацией к тяжёлой воде и адаптации к низким температурам. Ещё Юнг (Jung, 1967) на клетках Escherichia coli, помещенных в 98,6%-ную тяжёлую воду, показал, что эффект торможения роста тяжелой воды может быть компенсирован повышением температуры роста. Аналогия с охлаждением позволяет рассматривать адаптацию к тяжёлой воде, как адаптацию к неспецифическому фактору, действующему одновременно на функциональное состояние большого числа систем: превращение энергии, биосинтетические процессы, транспорт веществ, структуру и функции макромолекул. Возможно, что наиболее чувствительными к замене Н+ на D+ оказываются именно те системы, которые используют высокую подвижность протонов и высокую скорость разрыва протонных связей. Такими системами в клетке могут быть дыхательная цепь и аппарат биосинтеза макромолекул, которые располагаются в цитоплазматической мембране или находятся под ее контролем.
Аналогия между адаптацией к тяжёлой воде и температурной адаптацией очень важна для конструирования дейтерированных ферментов, которые смогут функционировать в условиях высоких температур. Такие стабильные дейтерированные ферменты необходимы в биотехнологии, медицине и сельском хозяйстве.
Это привело бы к ускорению обменных процессов в организме человека, а, следовательно, к увеличению его физической и интеллектуальной активности. Но вскоре возникли опасения, что полное изъятие из воды дейтерия приведет к сокращению общей длительности человеческой жизни. Ведь известно, что наш организм почти на 70% состоит из воды. И в этой воде 0,015% дейтерия. По количественному содержанию (в атомных процентах) он занимает 12-е место среди химических элементов, из которых состоит организм человека. В этом отношении его следует отнести к разряду микроэлементов. Содержание таких микроэлементов как медь, железо, цинк, молибден, марганец в нашем теле в десятки и сотни раз меньше, чем дейтерия. Что же случится, если удалить весь дейтерий? На этот вопрос науке еще предстоит ответить. Пока же несомненным является тот факт, что, меняя количественное содержание дейтерия в растительном или животном организме, мы можем ускорять или замедлять ход жизненных процессов.
www.bronnikov.kiev.ua
Дейтерий, тяжёлая вода, эволюция и жизнь | Блоги
Дейтерий сформировался в последующие мгновения эволюции Вселенной в результате столкновения свободного нейтрона и протона при температурах миллион градусов Цельсия. А ещё позже два атома дейтерия сформировали дейтерон и вошли в состав в ядро гелия, который состоит из двух протонов и двух нейтронов.
Таким образом, дейтерий может служить своеобразным индикатором эволюции Вселенной, поскольку количество дейтерия в мире постоянно. Вплоть до настоящего времени считалось, что в процессе формирования гелия израсходовались почти все дейтероны, и лишь 10 тысяч дейтеронов остались неизрасходованными. Исходя из этого количества дейтерия в мире, природная распространённость дейтерия составляла по расчётам не более 0.015% (от общего числа всех атомов водорода).
Совсем недавно проводя наблюдения Млечного Пути, американские учёные обнаружили что дейтерия — тяжёлого водорода — содержится в нём значительно больше, чем об этом говорили данные предыдущих исследований. По мнению астронома Джеффри Лински (Jeffrey L. Linsky) из университета Колорадо (University of Colorado), руководившего исследованием, эта новая информация может радикальным образом изменить теоретические положения о формировании звёзд и галактик.
Тяжёлый водород «прятался» от телескопов за скоплениями межзвёздной пыли и часто был недоступен для наблюдений в силу своей непрозрачности. Астрономы использовали данные ультрафиолетового телескопа FUSE (Far Ultraviolet Spectroscopic Explorer). Дейтерий создаёт характерное свечение в ультрафиолетовом диапазоне, благодаря которому разглядеть тяжёлый водород удалось именно с помощью FUSE.
До настоящего времени считалось, что природная распространённость дейтерия составляет не более 0.015% (от общего числа всех атомов водорода).
Это количество зависит как от природы вещества, так и от общего количества материи, сформированной в ходе эволюции Вселенной. Теперь очевидно, что дейтерия в природе намного больше, чем предполагалось раннее.
Но с чем это может быть связано? Источником дейтерия во Вселенной являются вспышки сверхновых и термоядерные процессы, идущие внутри звёзд. Возможно этим объясняется тот факт, что мировое количество дейтерия повышается в период глобальных потеплений и изменений климата. Однако дейтерий довольно быстро разрушается в этих звёздах.
Дело в том, что наряду с водородом в первые мгновения после Большого взрыва образовалось и огромное количество его изотопа дейтерия. Исходя из предыдущих наблюдений, учёные постановили, что больше трети первоначально образованного дейтерия потратилось на создание звёзд. Однако, оказывается, что дейтерия в Млечном Пути намного больше, чем предполагали ранее. В частности, на звездообразование потрачена не треть, а всего 15% изотопа и он распределён неравномерно.
В частности, эти данные могут говорить о том, что для формирования звёзд требовалось значительно меньше водорода, превратившегося затем в гелий. Так же это может оказаться существенным основанием для пересмотра теории эволюции галактик и звёзд.
Если это так, то необходимо также пересмотреть теорию молекулярной эволюции и эволюции жизни на нашей планете, поскольку жизнь напрямую связана с водой и зарождалась в ней. Но была ли это обычная вода? Ещё 10 лет тому назад автор этой статьи, будучи аспирантом Московской государственной академии тонкой химической технологии им. М. В. Ломоносова в группе академика РАМН В. И. Швеца выдвинул предположение, что первичный «первобытный бульон», в котором зарождалась жизнь в виде первых коорцерватов, был насыщен тяжёлой водой вследствии того, что в атмосфере Земли не было защитного озонового слоя и вулканические геотермальные и электрические процессы в горячей атмосфере, насыщенной водой могли привести к обогащению гидросферы тяжёлой водой. Но тогда мало кто из учёных увлёкся этой идеей, хоть и напрямую никто не отвёрг её. И только сейчас стало очевидным, что учёные пренебрегали дейтерием в своих расчётах.
Если это так, то необходимо заново пересмотреть эволюцию всего живого на нашей планете, чтобы смоделировать и предсказать дейтерированные формы жизни. Тем более, что их можно легко создать в современных условиях — макромолекулы ДНК, белков, липидов и сахаров — вот те главные компоненты для конструирования дейтерированных мембран и изучения гидрофобных взаимодействий между дейтерированными молекулами.
Отдельный вопрос — генетика дейтерированных клеток и изучение распределения наследственного аппарата, а также физиология, цитология и морфология клетки при росте на тяжёлой воде.
Модели дейтерированных систем довольно легко прогнозировать и конструировать в лабораторных условиях. Нами были получены адаптированные к тяжёлой воде штаммы бактерий, относящиеся к различным таксономическим группам. арактерной особенностью объектов являлось то, что весь биологический материал клетки вместо природного водорода содержал дейтерий.
Дейтерированные клетки адаптированных к максимальной концентрации тяжёлой воды в среде — весьма удобные объекты для исследования. В процессе роста клеток на тяжёлой воде в них синтезируются макромолекулы, в которых атомы водорода в углеродном скелете полностью замещены на дейтерий. Такие дейтерированные макромолекулы претерпевают структурно-адаптационные модификации, необходимые для нормального функционирования клетки в тяжёлой воде. Но эти изменения не единственны; физиология, морфология, цитология клетки, а также генетический аппарат клетки также подвергается воздействию и модификации в тяжёлой воде.
Одним из интереснейших биологических феноменов является способность некоторых микроорганизмов расти в искусственных условиях на средах, в которых все атомы протия заменены на дейтерий (О.В. Мосин, Д. А. Складнев, В. И. Швец, 1996), хотя в природе этот изотоп составляет лишь 0,015%.
Тяжёлая вода (оксид дейтерия) — имеет ту же химическую формулу, что и обычная вода, но вместо атомов водорода содержит два тяжёлых изотопа водорода — атомы дейтерия. Формула тяжёловодородной воды обычно записывается как: D2O или 2h3O. Внешне тяжёлая вода выглядит как обычная — бесцветная жидкость без вкуса и запаха.
По своим свойствам тяжелая вода заметно отличается от обычной воды. Реакции с тяжелой водой протекают медленнее, чем с обычной, константы диссоциации молекулы тяжёлой воды меньше таковых для обычной воды.
Молекулы тяжёловодородной воды были впервые обнаружены в природной воде Гарольдом Юри в 1932 году году. А уже в 1933 году Гильберт Льюис получил чистую тяжёловодородную воду путём электролиза обычной воды.
В природных водах соотношение между тяжёлой и обычной водой составляет 1:5500 (в предположении, что весь дейтерий находится в виде тяжёлой воды D2O, хотя на самом деле он частично находится в составе полутяжёлой воды HDO).
Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими показали, что замещение 25% водорода в тканях дейтерием приводит к стерильности, более высокие концентрации приводят к быстрой гибели животного. Однако некоторые микроорганизмы способны жить в 70%-ной тяжёлой воде) (простейшие) и даже в чистой тяжёлой воде (бактерии). Человек может без видимого вреда для здоровья выпить стакан тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней. В этом отношении тяжёлая вода менее токсична, чем, например, поваренная соль.
Тяжёлая вода накапливается в остатке электролита при многократном электролизе воды. На открытом воздухе тяжёлая вода быстро поглощает пары обычной воды, поэтому можно сказать, что она гигроскопична. Производство тяжёлой воды очень энергоёмко, поэтому её стоимость довольно высока (ориентировочно 200−250 долларов за кг).
Важнейшим свойством тяжёлой воды является то, что она практически не поглощает нейтроны, поэтому используется в ядерных реакторах для торможения нейтронов и в качестве теплоносителя. Она используется также в качестве изотопного индикатора в химии и биологии. В физике элементарных частиц тяжёлая вода используется для детектирования нейтрино; так, крупнейший детектор солнечных нейтрино в Канаде содержит 1 килотонну тяжёлой воды.
Российскими учёными из ПИЯВ разработаны на опытных установках оригинальные технологии получения и очистки тяжелой воды. В 1995 была введена в эксплуатацию первая в России и одна из первых в мире опытно-промышленная установка на основе метода изотопного обмена в системе вода-водород и электролиза воды (ЭВИО).
Высокая эффективность установки ЭВИО дает возможность получать тяжелую воду с содержанием дейтерия > 99,995% ат. Отработанная технология обеспечивает высокое качество тяжелой воды, включая глубокую очистку тяжелой воды от трития до остаточной активности, позволяющей без ограничений использовать тяжелую воду в медицинских и научных целях.
Возможности установки позволяют полностью обеспечить потребности российских предприятий и организаций в тяжелой воде и дейтерии, а также экспортировать часть продукции. За время работы для нужд Росатома и других предприятий России были произведены более 20 тонн тяжёлой воды и десятки килограммов газообразного дейтерия.
Существует также и полутяжёлая (или дейтериевая) вода, у которой только один атом водорода замещен дейтерием. Формулу такой воды записывают так: DHO.
Термин тяжёлая вода применяют также по отношению к воде, у которой любой из атомов заменен тяжёлым изотопом:
к тяжёлокислородной воде (в ней лёгкий изотоп кислорода 16O замещен тяжёлыми изотопами 17O или 18O),
к тритиевой и сверхтяжёлой воде (содержащей вместо атомов 1H его радиоактивный изотоп тритий 3H).
Открытие тяжелой воды послужило толчком к выяснению фракционного состава воды. Вскоре была обнаружена сверхтяжелая вода Т20. В ее составе место водорода занимает его природный изотоп, еще более тяжелый, чем дейтерий. Это тритий (Т), он радиоактивен, атомная масса его равна 3. Тритий зарождается в высоких слоях атмосферы, где идут природные ядерные реакции. Он является одним из продуктов бомбардировки атомов азота нейтронами космического излучения. Ежеминутно на каждый квадратный сантиметр земной поверхности падают 8…9 атомов трития.
В небольших количествах сверхтяжелая (тритиевая) вода попадает на Землю в составе осадков. Во всей гидросфере одновременно насчитывается лишь около 20 кг Т20. Тритиевая вода распределена неравномерно: в материковых водоемах ее больше, чем в океанах; в полярных океанских водах ее больше, чем в экваториальных. По своим свойствам сверхтяжелая вода еще заметнее отличается от обычной: кипит при 104 °C, замерзает при 4…9°С, имеет плотность 1,33 г/см3.
Сверхтяжелую воду применяют в термоядерных реакциях. Она удобнее дейтериевой, так как чувствительнее в определении.
Перечень изотопов водорода не кончается тритием. Искусственно получены и более тяжелые изотопы4Hи5H, тожерадиоактивные.
Если подсчитать все возможные различные соединения с общей формулой Н2О, то общее количество возможных «тяжёлых вод» достигнет 48. Из них 39 вариантов — радиоактивные, а стабильных вариантов всего девять:
Н2 6O, Н217O, Н218O, HD16O, HD17O, HD18O, D216O, D217O, D218O.
Таким образом, возможно существование молекул воды, в которых содержатся любые из пяти водородных изотопов в любом сочетании.Этим не исчерпывается сложность изотопного состава воды. Существуют также изотопы кислорода. В периодической системе химических элементов Д. И. Менделеева значится всем известный кислород 16O. Существуют еще два природных изотопа кислорода — 17O и 18O. В природных водах в среднем на каждые 10 тысяч атомов изотопа 16O приходится 4 атома изотопа 17O и 20 атомов изотопа 18O.
По физическим свойствам тяжелокислородная вода меньше отличается от обычной, чем тяжеловодородная. Получают ее в основном перегонкой природной воды и используют как источник препаратов с меченым кислородом.
Помимо природных, существуют и шесть искусственно созданных изотопов кислорода. Как и искусственные изотопы водорода, они недолговечны и радиоактивны. Из них: 13O, 14O и 15O — легкие, 19O и 20O — тяжелые, а сверхтяжелый изотоп — 24O получен в 1970 году.
Существование пяти водородных и девяти кислородных изотопов говорит о том, что изотопных разновидностей воды может быть 135.
Наиболее распространены в природе 9 устойчивых разновидностей воды.
Основную массу природной воды — свыше 99% - составляет протиевая вода — 1h316O. Тяжелокислородных вод намного меньше: 1h318O — десятые доли процента.
1h317O — сотые доли от общего количества природных вод. Только миллионные доли процента составляет тяжелая вода D2O, зато в форме 1HDO тяжелой воды в природных водах содержится уже заметное количество.
Еще реже, чем D2O, встречаются и девять радиоактивных естественных видов воды, содержащих тритий:
Классической водой следует считать протиевую воду 1h316O в чистом виде, то есть без малейших примесей остальных 134 изотопных разновидностей. И хотя содержание протиевой воды в природе значительно превосходит содержание всех остальных вместе взятых видов, чистой 1h316O в естественных условиях не существует. Во всем мире такую воду можно отыскать лишь в немногих специальных лабораториях. Ее получают очень сложным путем и хранят с величайшими предосторожностями. Для получения чистой 1h316O ведут очень тонкую, многостадийную очистку природных вод или синтезируют воду из исходных элементов 1h3 и 16O, которые предварительно тщательно очищают от изотопных примесей. Такую воду применяют в экспериментах и процессах, требующих исключительной чистоты химических реактивов.
Но самый большой эффект наблюдается для пары протий/дейтерий. Этим двукратным увеличением массы дейтерона относительно протона и обуславливаются так называемые изотопные эффекты тяжёлой воды — энергия связи, константа диссоциации, подвижность, длина связи и т. д.
С первых экспериментов американца Креспи и Даболла в 1940-х годах прошлого века, вплоть до конца 90-х годов установилось устойчивое представление, что тяжёлая вода несовместима с жизнью и что высокие концентрации тяжёлой воды могут приводить к ингибированию многих жизненно-важных мутаций, включая блокировку митоза в стадии профазы, и даже в некоторых случаях вызывать спонтанные мутации.
Клетки животных способны выдерживать до 25−30% тяжёлой воды в среде, растений (50%), а клетки простейших микроорганизмов способны жить на 80% тяжелой воде.
Однако, потом было доказано, что многие организмы могут быть адаптированы к росту на тяжёлой воде.
Тяжёлая вода высокой концентрации токсична для организма; химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных.
Тем не менее тяжелая вода играет значительную роль в различных биологических процессах. Систематическое изучение ее воздействия на животных и растения начато сравнительно недавно. Различные исследователи независимо друг от друга установили, что тяжелая вода действует отрицательно на жизненные функции организмов; это происходит даже при использовании обычной природной воды с повышенным содержанием тяжелой воды (рис. 1.3).
Подопытных животных поили водой, 1/3 часть которой была заменена водой состава HDO. Через недолгое время начиналось расстройство обмена веществ животных, разрушались почки. При увеличении доли тяжелой воды животные погибали.
На развитие высших растений тяжелая вода также действует угнетающе; если их поливать водой, на половину состоящей из тяжелой воды, рост прекращается.
Пониженное содержание дейтерия в воде стимулирует жизненные процессы. Такие данные получили Б. И. Родимов и И. П. Торопов. Они долгое время наблюдали за растениями и животными, потреблявшими воду, в которой содержалось дейтерия на 25% ниже нормы. Оказалось, что, потребляя такую воду, свиньи, крысы и мыши дали потомство, гораздо многочисленнее и крупнее обычного, яйценоскость кур поднялась вдвое, пшеница созрела раньше и дала более высокий урожай.
Первые результаты изучения тяжелой воды показывают, сколько необычных свойств таит такое обыкновенное вещество, как вода.
Влияние концентрации дейтерия на рост высших растений
Российские исследователи давно обнаружили, что тяжелая вода тормозит рост бактерий, водорослей, грибов, высших растений и культуры тканей животных. А вот вода со сниженной до 30% концентрацией дейтерия (так называемая «бездейтериевая» вода) способствует увеличению биомассы и количества семян, ускоряет развитие половых органов и стимулирует сперматогенез у птиц.
За рубежом пробовали поить тяжелой водой мышей со злокачественными опухолями. Та вода оказалась по настоящему мертвой: и опухоли губила, и мышей. Различные исследователи установили, что тяжелая вода действует отрицательно на растительные и живые организмы. Подопытных собак, крыс и мышей поили водой, треть которой была заменена тяжелой водой. Через некоторое время начиналось расстройство обмена веществ животных, разрушались почки. При увеличении доли тяжелой воды животные погибали. И наоборот, снижение содержания дейтерия на 25% ниже нормы в воде, которую давали животным, благотворно сказалось на их развитии: свиньи, крысы и мыши дали потомство, во много раз многочисленнее и крупнее обычного, а яйценосность кур поднялась вдвое.
Тогда учёные взялись за «облегченную» воду. Эксперименты проводили на 3 моделях перевиваемых опухолей: карцинома легких Льюис, быстро растущая саркома матки и рак шейки матки, который развивается медленно. «Бездейтериевую» воду исследователи получали по специальной технологии электролизом дистиллированной воды. В опытных группах животные с перевитыми опухолями получали воду с пониженным содержанием дейтерия, в контрольных группах — обычную. Животные начали пить «облегченную» и контрольную воду в день перевивки опухоли и получали ее до последнего дня жизни.
Вода с пониженным содержанием дейтерия задерживала появление первых узелков на месте перевивки рака шейки матки. Однако, на время возникновения узелков других типов опухоли облегченная вода не действовала. Но во всех опытных группах с тяжёлой водой, начиная с первого дня измерений и практически до завершения эксперимента, объем опухолей был меньше, чем в контрольной группе. К сожалению, хотя тяжёлая вода и тормозит развитие всех исследованных опухолей, жизнь экспериментальным мышам она не продлевает.
Как это всё происходит на уровне метаболизма? При попадании клеток в дейтерированную тяжёловодородную среду из них не только исчезает протонированная вода за счет реакции обмена Н2О-D2О, но и происходит быстрый H±D обмен в гидроксильных, сульфгидрильных и аминогруппах всех органических соединений, включая белки, нуклеиновые кислоты, липиды, сахара. Только С—Н-связь не подвергается обмену и соединения типа С—D синтезируются «de поvo».
Интересно, что после обмена H±D ферменты не прекращают своей функции (Themson et al., 1966; Денько, 1974), но изменения в результате изотопного замещения за счет первичного и вторичного изотопных эффектов (Thomson, 1963; Halevy, 1963), а также действие тяжёлой воды как растворителя (большая структурированность и вязкость по сравнению с обычной водой) приводят к изменению скоростей (замедлению) и специфичности ферментативных реакций в тяжёлой воде.
Присутствие дейтерия в биологических системах приводит к изменениям структуры и свойствам жизненно-важных макромолекул таких как дезоксирибонуклеиновые кислоты (ДНК) и белки. При этом различают первичные и вторичные изотопные эффекты дейтерия в зависимости от того, какое положение занимает атом дейтерия в молекуле. Наиболее важными для структуры макромолекулы связи являются динамические короткоживущие водородные (дейтериевые) связи. Они формируются между соседними атомами дейтерия (водорода) и гетероатомами кислорода, углерода, азота, серы и т. д. и играют главную роль в поддержании пространственной структуры макромолекулярных цепей и как эти структуры взаимодействуют с другими соседними макромолекулярными структурами, а также с тяжелой водной окружающей среды.
Структурно-динамические свойства клеточной мембраны, которые в большинстве зависят от качественного и количественного состава липидов, также могут изменяться в присутствии тяжёлой воды. Полученный результат объясняется тем, что клеточная мембрана является одной из первых органелл клетки, которая испытывает воздействие тяжёлой воды, и тем самым компенсирует реалогические параметры мембраны (вязкость, текучесть, структурированность) изменением количественного и качественного состава липидов.
Возможно эффекты, наблюдаемые при адаптации к тяжёлой воде связаны с образованием в тяжёлой воде конформаций молекул с иными структурно-динамическими свойствами, чем конформаций, образованных с участием водорода, и поэтому имеющих другую активность и биологические свойства. Так, по теории абсолютных скоростей разрыв СH-связей может происходить быстрее, чем СD-связей, подвижность иона D+ меньше, чем подвижность Н+, константа ионизации тяжёлой воды меньше константы ионизации обычной воды. Всё это отражается на кинетике химической связи и скорости хим. реакций в тяжёлой воде.
Связи, образованные атомами углерода с дейтерием немного прочнее, чем СН-связи из-за того, что частота колебания дейтерона, имеющего большую массу (в два раза большую, чем протон) и размер меньше частоты колебания протона и тем самым, это стабилизирует связь.
Другое важное свойство определяется самой пространственной структурой тяжёлой воды, которая имеет тенденцию сближать гидрофобные группы макромолекулы, чтобы минимизировать их эффект на водородную (дейтериевую) связь в присутствии молекул тяжёлой воды. Так что структура спирали, каковой является ДНК в присутствии тяжёлой воды стабилизируется. Кроме этого, отмечены радиопротекторные свойства тяжёлой воды на клетки печени обезьяны, в которой экспонировались эти клетки. Также было показано, что жизненный цикл плоских червей, выращенных на тяжёлой воде увеличивается в 1.5 раза по-сравнению с червями, выращенными на обычной воде (М.Шепенинов, 2006).
Вероятно, клетка реализует лабильные адаптивные механизмы, которые способствуют функциональной реорганизации работы жизненно-важных систем в тяжёлой воде. Так, например, нормальному биосинтезу и функционированию в тяжёлой воде таких биологически активных соединений, как нуклеиновые кислоты и белки способствует поддержание их структуры посредством формирования водородных (дейтериевых) связей в молекулах.
Связи, сформированные атомами дейтерия различаются по прочности и энергии от аналогичных водородных связей. Различия в нуклеарной массе атома водорода и дейтерия косвенно могут служить причиной различий в синтезах нуклеиновых кислот, которые могут приводить в свою очередь к структурным различиям и, следовательно, к функциональным изменениям в клетке.
Ферментативные функции и структура синтезируемых белков также изменяются при росте клеток на тяжёлой воде, что может отразиться на процессах метаболизма и деления клетки.
Изменения соотношения основных метаболитов в процессе адаптации к тяжеловодородной среде также может являться причинами гибели клеток. Клетки высших организмов погибают при содержании тяжёлой воды в составе тела свыше 30%, но микроорганизмы, легко приспосабливающиеся к резким изменениям среды обитания, способны жить и размножаться даже в 98%-ной тяжёлой воды (Мосин О. В, 1996).
Давно замечено, что адаптация к тяжёлой воде проходит легче при постепенном увеличении содержания дейтерия в среде (Pratt a. Curry, 1938), так как чувствительность к тяжёлой воде разных ключевых систем различна. Практически даже высокодейтерированные среды содержат протоны от 0,2—10%. Возможно, что остаточные протоны в момент адаптации к тяжёлой воде облегчают перестройку к изменившимся условиям, встраиваясь именно в те участки, которые наиболее чувствительны к замене. Если это так, то встраивание протонов должно приводить к накоплению легкого изотопа в органическом материале клеток и соответственно к обогащению тяжелым изотопом среды культивирования.
Способность к адаптации в высоких концентрациях тяжёлой воды связана с эволюционным уровнем организации, т. е. чем ниже уровень развития живого, тем выше способность к адаптации.
Дейтерированные клетки адаптированных к максимальной концентрации тяжёлой воды в среде микроорганизмов — весьма удобные объекты для исследования. В процессе роста клеток на тяжёлой воде в них синтезируются макромолекулы, в которых атомы водорода в углеродном скелете почти полностью замещены на дейтерий. Такие дейтерированные макромолекулы претерпевают структурно-адаптационные модификации, необходимые для нормального функционирования клетки в тяжёлой воде.
Эти факты позволяют видеть некоторую аналогию между адаптацией к тяжёлой воде и адаптации к низким температурам. Ещё Юнг (Jung, 1967) на клетках Escherichia coli, помещенных в 98,6%-ную тяжёлую воду, показал, что эффект торможения роста тяжелой воды может быть компенсирован повышением температуры роста. Аналогия с охлаждением позволяет рассматривать адаптацию к тяжёлой воде, как адаптацию к неспецифическому фактору, действующему одновременно на функциональное состояние большого числа систем: превращение энергии, биосинтетические процессы, транспорт веществ, структуру и функции макромолекул. Возможно, что наиболее чувствительными к замене Н+ на D+ оказываются именно те системы, которые используют высокую подвижность протонов и высокую скорость разрыва протонных связей. Такими системами в клетке могут быть дыхательная цепь и аппарат биосинтеза макромолекул, которые располагаются в цитоплазматической мембране или находятся под ее контролем.
Аналогия между адаптацией к тяжёлой воде и температурной адаптацией очень важна для конструирования дейтерированных ферментов, которые смогут функционировать в условиях высоких температур. Такие стабильные дейтерированные ферменты необходимы в биотехнологии, медицине и сельском хозяйстве.
Это привело бы к ускорению обменных процессов в организме человека, а, следовательно, к увеличению его физической и интеллектуальной активности. Но вскоре возникли опасения, что полное изъятие из воды дейтерия приведет к сокращению общей длительности человеческой жизни. Ведь известно, что наш организм почти на 70% состоит из воды. И в этой воде 0,015% дейтерия. По количественному содержанию (в атомных процентах) он занимает 12-е место среди химических элементов, из которых состоит организм человека. В этом отношении его следует отнести к разряду микроэлементов. Содержание таких микроэлементов как медь, железо, цинк, молибден, марганец в нашем теле в десятки и сотни раз меньше, чем дейтерия. Что же случится, если удалить весь дейтерий? На этот вопрос науке еще предстоит ответить. Пока же несомненным является тот факт, что, меняя количественное содержание дейтерия в растительном или животном организме, мы можем ускорять или замедлять ход жизненных процессов.
к.х.н. О. В. Мосин
shkolazhizni.ru
Дейтерий вода тяжелая - Справочник химика 21
Тяжёлая вода. Тяжёлой водой называется вода, в состав молекулы которой в.ходят один или два атома тяжёлого изотопа водорода (дейтерия) с атомным весом 2, обозначаемого О или Н . Таким образом, состав тяжёлой воды выражается формулами НПО или ОгО (другие обозначения Н Н О и соответственно Н О). По своим физико-химическим свойствам тяжёлая вода заметно отличается от обычной воды (см. ниже). [c.185]
ТЯЖЁЛАЯ ВОДА — вода, в к-рой водород замещен его тяжелым изотопом — дейтерием (ВаО). Выделена из природной воды Г. Льюисом, Р, Макдональдом (США, 1933) и А. И. Бродским (СССР, 1934). В природной воде, состоящей в осн. из легкой НгО, Т. в. почти полностью содержится в виде молекул ПВО, и ее изотопные разнов1вдности находятся в равновесии НзО ОаО 2НВ0 (соотношение О Н близко к 1 6800), Свойства Т. в. заметно отличаются от св-в легкой воды т-ра замерзания 3,82° С т-ра кипения 101,42 С плотность (т-ра 20° С) 1,1059 г/см т-ра максимальной плотности 11,6° С. Скорости испарения тяжелой и легкой воды относятся, как 0,6 1 растворимость солей в тяжелой воде меньше, чем в легкой реакции в тяжелой воде протекают [c.600]
Плотности тяжёлой и природной (содержащей 0,0147 ат.% дейтерия) воды составляют при 25 °С 1,10446 и 0,997074 г/мл соответственно, а разность их плотностей — примерно 0,107 г/мл. Лучшие существующие денсиметрические методы анализа позволяют измерять концентрацию дейтерия с абсолютной погрешностью 0,00002 ат.%. Это означает, что для обеспечения такой точности необходимо измерять плотность пробы с точностью до 10 г/мл, для чего были разработаны соответствующие аппаратура и методики, в част- [c.123]
Детектор SNO (см. рис. 10.3.6) расположен в шахте на глубине 2092 м. Он использует 1000 тонн тяжёлой воды D2O, в молекуле которой вместо обычного водорода присутствует дейтерий D — тяжёлый изотоп водорода (D = [c.19]
Действующих поверхностей, закон 2/688, 689 Дейтерий 2/23 атомное ядро, см. Дейтрон(ы) оксид, см. Тяжёлая вода определение 5/335, 336 получение 2/25, 392 5/33 применение 2/25, 26 4/785 5/802 свойства 1/403, 775 2/24, 25, 190, [c.588]
Область применения изотопов водорода, производимых электролизным методом. Тяжёлая вода представляет, как уже говорилось выше, огромный интерес для ряда областей физической химии, физики и техники. Кроме ядерной энергетики дейтерий используется для производства термоядерного оружия (в водородной бомбе основным компонентом является дейтерид лития — ЫО). В наши дни, несмотря на частичное разоружение, проблемы получения дешёвого дейтерия и эффективного концентрирования изотопов не теряют своей остроты, поскольку в перспективе основным источником энергии будут управляемые термоядерные реакции. [c.288]
На этом принципе и построены ядерные реакторы, в которых уран определённым образом размещается в замедляющей среде. Наилучшим замедлителем нейтронов мог бы служить водород. Поскольку массы протонов и нейтронов почти одинаковы, нейтрон может потерять при столкновении с протоном практически всю свою кинетическую энергию, передав её протону. Однако протоны довольно эффективно захватывают медленные нейтроны с образованием ядер дейтерия (Н1- -/г1-)- (-1-Н ). Поэтому в качестве замедлителей в реакторе обычно используются углерод (графит) или дейтерий (в виде тяжёлой воды В.зО). [c.61]
Современное состояние проблемы применения электролиза для производства тяжёлой воды и изотопов водорода. Впервые промышленное производство тяжёлой воды по электролизному методу было организовано в Рьюкане (Норвегия). Первоначальная установка состояла из девяти последовательно соединённых ступеней электролитического концентрирования, получаемый продукт содержал 15 ат.% дейтерия, относительный отбор на ступенях составлял 0,27 обогащённый водород не сжигали и не возвращали в цикл. Для увеличения объёма производства впоследствии была использована рекуперация газов, затем её заменили процессом изотопного обмена между парами воды и водородом. До 1943 г. установка в Рьюкане была крупнейшим производителем тяжёлой воды в мире. Окончательное концентрирование примерно от 15 до 99% ат. О проводилось по 9-ступенчатой электролитической схеме с рекуперацией газов. [c.287]
После облучения происходит отбор обогащённых дейтерием (или тритием) продуктов фотодиссоциации, а обеднённый дейтерием (или тритием) исходный газ-носитель поступает в специальный обменник, содержащий исходное сырьё, например воду (или тяжёлую воду), где происходит реакция изотопного обмена. В результате изотопного обмена относительная концентрация дей- [c.371]
Н). Изотопное обогащение по дейтерию равно 99,92% ). Благодаря применению тяжёлой воды детектор SNO может регистрировать не только события рассеяния нейтрино на электронах, но и две реакции взаимодействия нейтрино с ядром дейтерия [c.19]
Изотоп водорода (дейтерий). Дейтерий в реакторостроении используется, в основном, в виде тяжёлой воды ОгО. Его концентрация в природной изотопной смеси водорода составляет 0,015%. К началу 90-х годов общемировое производство тяжёлой воды достигло уровня 5000 т/год. Основной объём его сконцентрирован в Канаде, где выпускается 4000 т/год ВгО на блоках единичной мощности от 400 до 800 т ВгО/год. Основным методом производства ВгО является самый прогрессивный ныне, низкий по себестоимости продукта, процесс двухтемпературного изотопного обмена а системе сероводород-вода [29]. Значительные объёмы тяжёлой воды производятся в Индии ( 300 т ОгО/год) и США ( 200 т ОгО/год). В СССР значительные объёмы дейтерия производились методом криогенной ректификации водорода [88]. [c.210]
В качестве замедлителя можно применять также бериллий, дейтерий (в виде тяжёлой воды) и др. [c.317]
При электролизе воды водород и кислород практически всегда получаются влажными. Концентрация дейтерия во влажных газах, отводимых от электролизёра, всегда выше, чем в сухих, так как концентрация тяжёлого изотопа водорода в парах воды, насыщающих газы, близка к концентрации дейтерия в электролите. В зависимости от содержания паров воды в газах, отходящих из электролизёра, величина эффективного коэффициента разделения изотопов водорода аэф снижается по сравнению с его величиной, получаемой из выражения (6.10.13). [c.282]
Реакция (6.7.2) в настоящее время используется на стадии конечного концентрирования при получении высококондиционной тяжёлой воды (содержание дейтерия более 99,95%). Эта реакция также весьма эффективна при очистке оборотных вод заводов по переработке топливных элементов атомных электростанций. Зависимость ант от температуры для этой реакции [c.252]
Процесс электролиза также применялся Манхэттенским инженерным округом в Моргантауне (Западная Виржиния) и в Трейле (Британская Колумбия) [6], но только с целью конечного концентрирования тяжёлой воды из обогащённой воды, поступавшей из первоначальной установки, в которой применялся другой процесс. В Моргантауне производилось в месяц 1,2 т 020 с концентрацией 99,7% из продукта установки для дистилляции воды, содержащей 87-91 % дейтерия. [c.287]
Тяжёлая вода, характеризуясь высокой теплоёмкостью, являясь апро-тонным растворителем, обладает также низким сечением захвата тепловых нейтронов дейтерием а = 0,0015 барн), которое в 200 раз меньше, чем для лёгкого изотопа водорода — протия а = 0,3 барн). Тяжёлая вода по замедляющей способности в отношении нейтронов в 3-4 раза эффективнее графита. Отмеченные обстоятельства обеспечивают использование тяжёлой воды в качестве теплоносителя и замедлителя нейтронов в энергетических и исследовательских ядерных реакторах, в ЯМР-спектроскопии, в фундаментальных научных исследованиях, связанных с изучением структуры атомного ядра. Тяжёлая вода, так же как и входящий в её состав дейтерий, широко используется при производстве большой гаммы дейтерий содержащих меченых химических соединений, широко применяющихся в медицине, биологии, в различных отраслях химии, в ядерной физике, в ЯМР и других видах спектроскопии. В виде дейтерида лития дейтерий входит в состав термоядерного оружия. По общему убеждению специалистов, в будущем дейтерий наряду с тритием станет компонентом топлива энергетических термоядерных реакторов, в первом поколении которых будет осуществлена реакция синтеза Т (В, п) Не + 17,6 МэВ. Эта реакция в сравнении с другими реакциями синтеза, предполагающими участие изотопов водорода, характеризуется наибольшим энерговыделением и, как следствие, наименьшим расходом дейтерия (100 кг/год на 1 ГВт электрической мощности). [c.210]
Отметим, что объём используемой для единовременной загрузки этих реакторов тяжёлой воды достаточно велик. Например, в эксплуатируемом во Франции (Институт им. М. Лауэ — П. Ланжевена в Гренобле) исследовательском ядерном реакторе, где тяжёлая вода служит теплоносителем и отражателем нейтронов, её загрузка в контуре составляет 40 тонн, а в баке-отражателе — 15 тонн. Кроме единовременной загрузки, эксплуатация исследовательских реакторов, так же как и энергетических, предполагает периодическую их подпитку тяжёлой водой. Такая подпитка связана с испарением и утечкой воды из контура, с её разбавлением протиевой водой, а также с накоплением в тяжёлой воде контура трития. В оборонных целях дейтерий используется в составе дейтерида лития при производстве термоядерного оружия. В последние годы потребность в тяжёлой воде и дейтерии возросла в связи с интенсификацией исследовательских работ по управляемому термоядерному синтезу. [c.212]
chem21.info
Очистка воды от дейтерия в виде тяжелой воды
Читал о способах очистки тяжелой воды. В основном рекомендуется удалять первый образовавщийся лед. Но в то же время как я понял, этот метод лишь незначительно убирает тяжелую воду, он только позволяет снизить её содержание в талой воде. Может правильнее использовать морозильную камеру с возможностью поддержания постоянной температуры. К примеру выставить 2 градуса цельсия и поставить воду. И по прошествии достаточного периода времени в емкости замерзнет только тяжелая вода(ведь она при 3,8 0С замерзает).
На самом деле очистка воды от дейтерия в виде тяжелой воды – непростая задача. Тяжёлая вода замерзает при 3,820С, имеет плотность при 200С 1,10539 г/см3, причём максимум плотности приходится не на 40С, как у обычной воды, а на 11,20С (1,10602 г/см3) (Таблица). Кристаллы D2O имеют такую же структуру, как и обычный лёд; различие в размерах элементарной ячейки очень мало (0,1%). Но они более тяжёлые (0,982 г/см3 при 00С по сравнению с 0,917 г/см3 для обычного льда).
Таблица. Физические свойства обычной и тяжёлой воды
Физические свойства | D2O | h3O |
Молекулярная масса (г/моль) | 20,0276 | 18,0153 |
Плотность при 20 0C (г/см3) | 1,1050 | 0,9982 |
Температура максимальной плотности, °C | 11,24 | 3,98 |
Температура замерзания при 1 атм, °C | 3,82 | 0 |
Температура кипения при 1 атм, °C | 101,44 | 100 |
Давление пара при 100 °C, мм. рт. ст. | 721,60 | 760,00 |
Вязкость при 20 °C, сантипуаз | 1,247 | 1,002 |
Кристаллы льда, образованного из тяжелой воды вследствии своей более высокой плотности не плавают на поверхности, как это имеет место в случае с первой образующийся на поверхности воды корочки льда, а опускаются вниз на дно сосуда с охлаждаемой водой вместе с другими тяжелыми примесями. Поэтому, логичнее удалять не только первую образующуюся на поверхности корочку льда, но также и те кристаллы, образующиеся на дне сосуда. Главная проблема в том, что тяжелая вода, будучи равномерно расторена в воде, замерзает во всем объеме охлаждаемой воды, а не на поверхности. При этом образуются микрокристаллы, которые сложно увидеть невооруженным глазом. Напрашивается вывод фильтровать эти микрокристаллы при 3.820С через микрофильтр, но это сложная задача. Осуществить очистку воды от тяжелой воды в домашних условиях практически неосуществимо. Эта задача достигается сложными физико-химическими методами – изотопным обменом в присутствии палладия или платины, многоступенчатым электролизов воды в сочетании с каталитическим изотопным обменом между водой и водородом; низкотемпературной ректификации жидкого водорода с последующим сжиганием Н2 с кислородом; вакуумной заморозкой воды с последующим оттаиванием, вакуумной ректификацией и др. Для получения особо чистой h316O проводят очень тонкую, многостадийную очистку природной воды совокупностью вышеуказанных методов, или синтезируют воду из исходных газообразных элементов 1h3 и 16O, которые предварительно очищают от изотопных примесей. Такую воду применяют в экспериментах и процессах, требующих исключительной чистоты химических реактивов.
С уважением,
К.х.н. О.В. Мосин
www.o8ode.ru