Свободная и связанная вода в коллоидах. Вода связанная и свободная функции
Влага вода свободная и связанная
Исследования состояния влаги в пористых телах давно уже привели к выводу об особом характере ее свойств вблизи поверхности частиц и о существовании так называемой связанной воды в дисперсных системах [1]. Отличия связанной воды от свободной объясняются перестройкой сетки межмолекулярных водородных связей в ее структуре под влиянием поля поверхностных сил. Моделирование структуры воды численными методами Монте-Карло и молекулярной динамики позволило получить некоторые количественные характеристики структурных изменений вблизи твердых поверхностей различной природы. При этом межмолекулярная водородная связь описывается различными потенциалами, правильность выбора которых проверяется путем сравнения рассчитанных и экспериментальных физических констант объемной воды. Поскольку численным методам посвящен ряд специальных статей этой монографии, остановимся только на основных результатах, важных для дальнейшего обсуждения. [c.7]
По классификации П.А.Ребиндера, основанной на анализе форм и энергии связи влаги с материалом, суспензионный ПВХ после выделения его из суспензии в осадок содержит свободную (несвязанную) влагу, находящуюся в макрокапиллярах и макропорах с г> 10-" м. В принципе эта влага может быть удалена механическим способом, однако применяемое для разделения суспензий ПВХ высокопроизводительное оборудование, в частности осадительные центрифуги со шнековой выгрузкой осадка, не обеспечивает полного удаления свободной влаги. Например, после осадительных центрифуг в ПВХ остается 10 - 15% этого вида влаги из 25 - 30% общего количества воды в осадке. По данным Б.С.Сажина [120] содержание влаги в пористом ПВХ в макрокапиллярах при стыковом состоянии достигает 21 -26%. Большая часть остальной влаги является капиллярно связанной (радиус капилляров гтеплоте фазового превращения энергия, обусловленная снижением давления пара над вогнутой поверхностью менисков воды. Дополнительную энергию можно рассчитать как работу отрыва одного моля при изотермическом обратимом процессе [82] [c.87]
В осадках содержится свободная и связанная вода. Свободная вода (60-65%) сравнительно легко может быть удалена из осадка, связанная вода (30-35%), коллоидно-связанная вода (30-35%) - коллоидно-связанная и гигроскопическая- гораздо труднее. Коллоидно-связанная влага обволакивает твердые частицы гидратной оболочкой и препятствует их соединению в крупные агрегаты. Некоторое количество этой влаги удаляется из осадка после коагуляции в процессе фильтрования. [c.123]
Материал может высыхать, т. е. десорбировать влагу, только если давление водяного пара в нем больше давления пара в среде в противном случае он будет увлажняться — адсорбировать влагу. На рис. 17.1 показаны типичная изотерма адсорбции (десорбции) — кривая равновесной влажности — и области разных состояний влажного материала. Часть кривой при малых значениях относительной влажности ф газа, обращенная выпуклостью к оси влагосодержания материала, характерна для области мономолекулярного слоя влаги, появление которого при адсорбции сопровождается большим выделением теплоты, а удаление требует весьма значительной затраты энергии. На участке изотермы, обращенном выпуклостью к оси ф, процессы идут с меньшим изменением энергии. Точка пересечения изотермы с координатой ф = 100% — гигроскопическая точка Г, соответствующая максимальному гигроскопическому влаго-содержанию называемому также критическим влагосодержанием № р. Если Ж давление пара в материале меньше давления пара над свободной водой и зависит не только от температуры, но и от Ж. Это состояние материала называют гигроскопическим состоянием. Если же > Жг, то давление пара в материале равно давлению пара над свободной жидкостью и, следовательно, не зависит от содержания в нем влаги. Это состояние называют влажным состоянием. При высушивании удаляется вся физико-механически связанная влага и часть гигроскопической, до достижения равновесного влагосодержания [c.358]
Химически связанная вода обладает наибольшей энергией связи с материалом и при сушке гте удаляется. К физико-химически связанной влаге относят адсорбционно связанную и осмотически связанную воду. Адсорбционно связанная вода удерживается па внешней и внутренней поверхности коллоидных частиц (мицелл) адсорбционными (молекулярными) силами. Адсорбция воды мицеллами тела сопровождается выделением тепла и контракцией (сжатием) системы. Адсорбционно связанная вода по своим свойствам (плотность, теплоемкость и др.) отличается от свободной воды. Максимальное количество тепла выделяется при образовании первого слоя сорбированной влаги — мономолекулярного слоя, при образовании последующих полимолекулярных слоев прочность связей и выделение тепла уменьшаются. [c.32]
При контакте с водой древесины, насыщенной гигроскопической влагой, происходит дополнительное поглощение воды. Эта избыточная вода наполняет капилляры первого порядка и рассматривается как свободная. Способность древесины из-за пористой структуры впитывать воду в жидком состоянии называют водопоглощением. Древесину, содержащую кроме связанной воды свободную воду, называют сырой древесиной. [c.261]
Как известно, при сушке активных углей мы сталкиваемся с двумя состояниями воды — свободной капельно-сконденсированной влагой и адсорбционно-связанной. [c.189]
На рис. 6 приведены кривые интенсивности сушки активного ила Тушинской станции аэрации, исходного и скоагулированного хлорным железом. Из рис. 6 видно, что коагуляция приводит к изменению форм связи влаги, увеличению свободно удаляемой и уменьшению связанной воды, т. е. к улучшению водоотдачи ила. [c.21]
Во влажной древесине, как в любом капиллярно-пористом материале, различает две формы воды - связанную и свободную. Высокая гидрофильность углеводной части древесины обусловливает гигроскопичность древесины (влагопоглощение) - способность поглощать пары воды из воздуха. При этом вода заполняет капилляры второго порядка в клеточной стенке и адсорбируется поверхностями капилляров первого порядка она называется гигроскопической влагой. Эта влага является связанной. При относительной влажности воздуха 100% клеточные стенки полностью насыщаются водой и достигают предела гигроскопичности. В этом влажностном состоянии в древесине содержится только связанная вода, и равновесная абсолютная влажность в среднем составляет в зависимости от породы 25...30%. Экспериментально предел гигроскопичности определяют при относительной влажности воздуха несколько меньше 100% (гигроскопическую влагу, называют влажной древесиной. [c.261]
Рассмотрев состояние воды в крупных дефектах неметаллических материалов, можно заключить, что капиллярная влага также является связанной с материалом. Только в крупных порах существует еще и свободная вода, которая переносится за счет вязкого течения. [c.27]
Адсорбенты способны поглощать влагу из воздуха. Кроме того, вода входит в состав молекулы алюмосиликатов. Таким образом, вода в адсорбенте может быть свободной (конституционной) и связанной (кристаллизационной). Свободная, поглощенная адсорбентом влага легко удаляется из него нагревом до температуры около 200—225°, в то время как связанную воду можно удалить [c.245]
Адсорбционная влага, т. е. связанная в гидратных оболочках, характеризуется средней интенсивностью связи. Наиболее прочно связан с частицами вещества мономолекулярный слой воды, который находится под большим давлением и имеет плотность больше единицы,. Адсорбционно связанная вода ведет себя подобно упругому телу, тонкие пленки ее (около 0,1 мк) обладают расклинивающим действием [1]. Последующие слои менее прочно связаны с телом и постепенно приобретают свойства свободной воды. При поглощении адсорбционно связанной влаги сухим телом происходит выделение тепла, что позволяет определять количество адсорбционно связанной воды различными веществами. [c.6]
В более общем случае следует ввести коэффициент, учитывающий свойства подложки, и множитель, учитывающий изменение е" (h) и е" (г) с температурой. Известно, что в диапазоне СВЧ фактор потерь связанной влаги с ростом температуры увеличивается, в то время как тот же параметр свободной воды с увеличением температуры падает. [c.169]
Интенсивность высушивания кристаллогидратов тем больше, чем выше равновесное давление водяного пара над ними, т. е. чем выше температура и больше число молекул кристаллизационной воды, связанных с молекулой безводного вещества (см. разд. 5.4.6). Однако для получения сухого кристаллогидрата, не содержащего свободной влаги, температура сушки не должна превышать температуры его плавления, т. е. точки превращения его в безводное вещество или кристаллогидрат с меньшим содержанием связанной воды. Обычно вещества, содержащие много кристаллизационной воды, плавятся при невысоких температурах, что предопределяет возможность их сушки без плавления лишь экстенсивным способом. [c.361]
Свободного водорода на Земле почти нет, в атмосфере его содержание не превышает 5-10 %. Практически весь водород находится в связанном состоянии в составе многих минералов, углей, нефти, живых и растительных организмов, но самым распространенным его соединением является вода. Основная масса воды содержится в океанах и морях (1,42-10 т), много воды находится в виде льда (3,5-10 т), масса подземных вод оценивается в -8- Ю " т, а масса пресной воды озер и рек составляет 5- 10 " т, на долю атмосферной влаги приходится 1,4-10 т. [c.211]
Физико-химически связанная вода — это вода, адсорбированная внешней и внутренней (капиллярной) поверхностью тела и удерживаемая молекулярными силами. Особенно прочно связан тончайший мономолекулярный слой воды, прилегающий к поверхности. Он находится под большим давлением, возникающим благодаря молекулярному силовому полю, что значительно изменяет свойства воды. По мере увеличения расстояния от поверхности связь с ней молекул воды ослабевает, и свойства связанной воды приближаются к свойствам свободной воды. Количество адсорбированной влаги не зависит от стехиометрических соотношений и может быть различным. [c.357]
Изучение различных физических свойств биомассы клеток (парциальное давление паров воды, теплота испарения, диэлектрические постоянные и др.) показало, что при влажности биомассы свыше 20% вода полностью заполняет объем клетки и функционирует как непрерывная среда. При этих условиях в клетке могут свободно протекать все ферментативные процессы. Если биомасса содержит 10—20% влаги, то это в основном связанная вода. Клеточные коллоиды в данном случае переходят в гели и протекание всех ферментативных процессов затруднено. Если влажность биомассы еще ниже — 5—10%, ее физические свойства резко изменяются, но и при этих условиях, можно полагать, еще возможен обмен между молекулами воды и некоторыми веществами на близлежащих участках. Если влажность биомассы менее 5%, вода в клетке локализуется в пределах определенных структурных элементов. При таком обезвоживании биомассы микробной культуры часть клеток повреждается и инактивируется. Инактивация клеток имеет место и при хранении сухих микробных препаратов. В то же время в сухом виде жизнеспособность клеток сохраняется гораздо дольше —до нескольких лет, так как из-за низкого содержания воды все реак- [c.24]
Применение коагулянтов позволяет очищать сточные воды от коллоидных и высокомолекулярных вредных прим,есей. Однако при этом образуется хлопьевидный осадок, компонентами которого являются продукты гидролиза химических реагентов в сочетании с загрязняющими примесями. Это осадок содержит значительное количество влаги, находящейся как в различных связанных формах с компонентами осадка, так и в свободном состоянии. Захоронение этого объемистого обводненного шлама оказывается все более сложным, так как потребление коагулянтов для очистки промышленных сточных вод быстро возрастает и условия аккумуляции шламов противоречат требованиям охраны окружающей среды. Поэтому в технологии водоочистки все более актуальной становится задача регенерации и утилизации осадка. [c.28]
Наименьшей энергией связи обладает влага на поверхности материала и внутри его крупных пор, наибольшей — внутри микрокапилляров. Заметим, однако, что реальные материалы, подвергаемые сушке, имеют, как правило, неоднородную пористую структуру, поэтому они редко укладываются в строгую классификацию по форме связи влаги. В связи с этим применительно к сушке различают две формы влаги свободную и связанную. Свободной называется влага, испаряюш,аяся с поверхности влажного материала с той же скоростью, что и с поверхности воды. Влага, испаряюш,аяся из материала с меньшей скоростью, чем с поверхности воды, называется связанной. Влагосодержание материала на границе этих двух форм называется критическим. [c.665]
Замораживание и оттаивание сточных вод не находит щирокого применения. Сущность метода заключается в том, что при замораживании часть связанной влаги переходит в свободную, происходит коагуляция твердых частиц осадка и снижается его удельное сопротивление. При оттаивании осадки образуют зернистую структуру, их влагоотдача повышается. Замораживание производится при температуре от —5 до [c.264]
Четких границ между зонами нет. Образование полимолекулярного слоя воды может начаться до окончания формирования монослоя, а капиллярная конденсация уже начинается при меньшей (ниже 90%) относительной влажности воздуха. При приближении относительной влажности воздуха к 100% древесина достигает предела гигроскопичности (абсолютная влажность 25...30%). При сорбции паров воды целлюлозой, вьщеленной из древесины, границы между зонами изотермы сорбции будут зависеть от предыстории образца, его надмолекулярной структуры. В соответствии с различием механизмов поглощения древесиной паров воды из воздуха всю гигроскопическую влагу подразделяют на два вида сорбционную воду, связанную водородными связями, и капиллярно-конденсированную. Свободная вода поглощается за счет капиллярных сил (поверхностного натяжения). [c.267]
Известно, что вода может находиться в химической, физико-химической и физико-механической связи с твердыми частицами, а также существовать в форме свободной воды. Химически связанная вода входит в состав вещества и не выделяется даже при термической сушке осадков. Физико-химической связью удерживается адсорбционная и осмотическая вода, а физико-механичтекой — капиллярная вода, вода смачивания и структурная влага, [c.279]
Участок ЛВ—потери адсорбированной свободной влаги С — начало потери связанной (конституционной) воды и азота В — начало потери углерода Е — конец удаления органических компонентов EF — зола, остающаяся стабильной при 820 °С. [c.157]
Наряду с наиболее прочно связанной водой в торфе, как отмечалось выше, существует и ряд других категорий влаги, находящейся в более подвижном состоянии. Прежде всего, это вода полимолекулярной сорбции, которая по теплоте испарения мало отличается от свободной. Заполнение полимолекулярных слоев происходит после завершения формирования мономолекулярно-го слоя воды в результате последующей сорбции молекул воды на вторичных центрах [219] с формированием двух- и трехмерных пленок на поверхности структурных единиц материала. В торфе кроме физико-химически связанной влаги (воды моно-и полисорбции) различают также энтропийно связанную воду (осмотическую), воду механического удерживания и химически связанную [220]. [c.68]
Изложенные закономерности подтверждаются энергетикой поведения воды на границе раздела фаз. Система неравновесна. Методом ЯМР установлено, что химическая связь осуществляется в монослое, поскольку принятая концентрация ПАВ (0,1, 0,01, 0,0012) не влияет на величину Тх (Гг = 3,8 с). Величина адсорбции Сп из водной среды равна 25,5 Дж/моль. Толщина слоя, определяющего поверхностное натяжение в системе жидкость — жидкость, составляет 12- 10 м. При значениях Р/Р 0,4 наблюдается образование моно-, а затем полимолекулярного слоя воды с ее дальнейшей конденсацией до Р/Р = 0,6, постепенно переходящей в состояние рыхлосвязанной (обычной) воды. Это хорошо согласуется с данными по тепловым эффектам смачивания. Образованный вокруг частичек жесткоориентированный слой ПАВ препятствует переходу воды в связанную. В глинистых капиллярах гидрофобный слой ПАВ способствует образованию менисков обратной кривизны, которые препятствуют перемещению капиллярной и гравитационной влаги возникает противокапиллярное давление, уменьшающее передвижение рыхлосвязанной и фильтрацию свободной воды. [c.234]
Свободная вода (Дсаов) испаряется в первую очередь и затраты теплоты на этот процесс определяются теплотой парообразования воды как самостоятельной жидкой фазы. Адсорбционная же влага (асвяз) испаряется в последнюю очередь и затраты теплоты при этом превышают затраты теплоты на удаление последних порций воды, непосредственно связанной с поверхностью твердого тела. Эти затраты равны теплоте смачивания. [c.260]
К производственным сточным водам относят воды, образовавшиеся при проведении различных технологических процессов, добыче полезных ископаемых,"а также вода, прошедшая через загрязненную территорию промышленных предприятий и не пригодная для вторичного использования. Вода, используемая в технологических процессах, загрязняется в результате протекания различных химических реакций, при промывке сырья, продуктов и оборудования, а также при охлаждении последнего (охлаждающая вода). Кроме того, источниками сточных вод являются маточные водные растворы, водные экстракты, реэкстакты и адсорбенты, вьщеляющиеся из сырья при проведении технологических процессов, свободная и связанная влага, вода, загрязненная в процессе эксплуатации различного оборудования (вакуум-насосов, систем гидрозолоудаления, конденсаторов смешения и др.). [c.49]
Применительно к процессу сушки влагу разделяют на свободную (легкоудаляемую при сушке) и связанную (адсорбционную, осмотическую, влагу из микропор). Сеобо(Зная влага характерна тем, что она легко отходит от высушиваемого материала при температуре 100°С (если влага — вода) с той же скоростью, с какой влага испаряется с поверхности жидкости. Связанная влага испаряется из материала с меньшей скоростью, чем с поверхности воды. Влагосодержание материала на границе свободной и связанной форм называется критическим вла госодержанием. [c.404]
При глубокой сушке материалов расчет сушильного аппарата необходимо вести с учетом энергии связи влаги с материалом, так как при удалении адсорбционно связанной влаги дополнительный расход тепла может составить до 40% расхода тепла на испарение свободной воды. Для некоторых материалов, в частности 1 0НгИ, на разрушение связи адсорбционной влаги расходуется дополнительно до 60% от тепла, затрачиваемого на испарение. Такпм образом, пРи расчете процесса сушки материалов, у которых молекулы воды [c.406]
Дилатометрический метод, основанный на различной температуре замерзания связанной и свободной воды. Зная общее количество влаги в пробе, а также коэффициент расширения воды при ее замерзании и определив увеличение объема от замерзания воды, можно легко рассчитать количество связанной воды. Для этой цели предложены специальные приборы — дилатометры Буйюкоса, Покровского, Андрианова, а также дилатографы. Последние при помощи фотограмм показывают изменение температуры и объема пробы при ее замерзании и от-таивании. [c.104]
Автор пропускал через карбид кальция влажный воздух при температуре 100° С, поглощая в дальнейшем С2Н2, в одним случаях — аммиачным раствором азотнокислого серебра, в других — аммиачным раствором полу-хлористой меди. Влажная среда создавалась при помощи термостата с помещенными внутри противнями с водой. Оказалось, что водяные пары лишь частично реагировали с карбидом со временем на стенках выходного конца и-образной трубки, содержавшей карбид, т. е. за поглощающим сосудом, возникала конденсация водяных паров, отлагалась роса. На другое утро приходилось неоднократно констатировать факт разрушения изолированных от окружающей среды U-образных трубок с карбидом, через которые накануне пропускался влажный воздух. Очевидно, оставшаяся ранее не поглощенной свободная и связанная в Са(ОН)г влага за ночь абсорбировалась карбидом. Происходящее при этом увеличение объема твердого остатка и было причиной разлома трубок. Попутно пробовали охлаждать нижнюю часть U-образных трубок (ванночка с водой), разогревавшихся во время пропуска влажной смеси, однако положительного эффекта получено не было. [c.84]
Применительно к С. влагу классифицируют в более широком смысле на свободную (легко удаляемую) и связанную (адсорбционную, осмотич., микрокапилляров). Скорость испарения свободной влаги из материала равна скорости испарения воды со своб. пов-сти жидкости. Связанная влага испаряется из материала с меньщет скоростью, чем с пов-сти воды. Расчет сушилок необходимо проводить с учетом энергии связи влаги с материалом. Суммарный расход теплоты на С. [c.481]
Кинетика и механизмы адсорбции чаще всего изучаются путем анализа изотерм адсорбции. Именно таким способом, а также посредством определения точки замерзания [123] определяется связанная (монослойная) и несвязанная (мультислойная, поли молекулярная) вода. (Точка замерзания связанной воды существенно ниже О °С.) На изотермах адсорбции воды шерстью можно различить три участка, соответствующих трем стадиям этого процесса а)связывание воды полярными группами боковых цепей, преимущественно —Nh4+ и —СОО б) связывание воды пептидными группами и в) адсорбция полимолекулярной, или несвязанной, воды при относительной влажности выше 80% [57]. Изотермы адсорбции находят также широкое применение для оценки времени хранения высушенных пищевых концентратов. Оптимальная влажность сильно различается для разных продуктов например, для картофельных кубиков она составляет 6%, для сухого цельного молока — 2,25%, для порошка какао — 3% [57]. При более высоком содержании влаги концентраты быстро темнеют кроме того, в результате гидролиза образуются свободные жирные кислоты. Хранение в условиях ниже оптимальной влажности может приводить к прогорканию продукта. [c.21]
Для повышения скорости диффузии десорбируемой воды желательно увеличивать поверхность анализируемой пробы за счет уменьшения объема частиц. Однако в процессе измельчения могут измениться механические и термические свойства воды. Например, при измельчении каменного угля [189, 25] и других природных продуктов происходит заметное уменьшение содержания исходной влаги. Даже в ядрах земляного ореха истинное содержание воды может быть определено за приемлемое время только с помощью двухступенчатого высушивания [180] (см. разд. 3.1.3.1, табл. 3-8). Например, в подвергнутых лиофильной сушке гидрозолях, коллоидах и гидрогелях в основном содержится свободная и связанная вода, причем полностью воду можно удалить только при высушивании гидрозолей в термостате в течение нескольких часов при ПО—150°С [157]. Силикагель, например, прогретый в вакуууме в течение нескольких часов при 300 °С, еще содержит не менее 4,8% воды [263] это остаточное количество воды удаляется при температуре выше критической температуры воды, причем не происходит заметного разрушения структуры силикагеля и изменения его адсорбционных свойств. В белках остается 2—7% воды даже носле высушивания в обычном термостате до постоянной массы [298]. В белке эдестине, содержащем 12,3% воды, после [c.76]
Содержание свободной влаги в красителях, например в берлинской лазури или в Милори синем, можно определить по потере массы после высушивания в эксикаторе над Р2О5 при 1 атм [355]. По-видимому, за это же время в вакууме или в воздушном сушильном шкафу при 100 °С теряется заметное количество связанной воды. Для предварительного удаления влаги из мозговой ткани образцы массой около 0,5 г погружают в ацетон и высушивают 15—20 мин при 35—40 °С в токе сухого азота или СОа. Завершают высушивание в вакуум-эксикаторе над драйеритом или хлоридом кальция [330]. При использовании такого метода определения результаты анализа параллельных проб, содержащих [c.153]
Высушивание в эксикаторе при комнатной температуре использовали для определения свободной влаги в смешанных удобрениях. Обычно для достижения постоянной массы требуется несколько дней. Следовательно, при использовании этого метода может быть потеряно значительное количество различных относительно высококипящих веществ. Кроме того, некоторые гидраты (например, гексагидрат магний-аммонийфосфата [366] могут терять значительную долю связанной воды. Уиттакер [366] рекомендует пользоваться для выполнения серийных анализов сушильным аппаратом Абергальдена. Леруа и де Мейер [227 ] промывали ацетоном пробы дикальцийфосфата, помещенные в тигли с пористой пластинкой, высушивали 30 мин в вакуум-эксикаторе и определяли потерю массы. [c.155]
Обзор, посвященный применению методов ТГА и ИК-спектро-метрии для раздельного определения свободной и связанной влаги, сделан Дювалем [126 ] описано поведение ряда соединений, содержащих гидратную воду, в том числе гидроксидов и сульфатов металлов, додекагидрата хлорида магния, гидратов смешанных сульфатов кашия-никеля и калия-хрома. Дюваль утверждает, что при тщательном проведении термогравиметрических измерений можно различить следующие типы связанной воды а) конституционная вода б) кристаллизационная вода в) вода набухания, или цеолитная вода г) глубоко адсорбированная вода д) физиологически связанная вода. [c.157]
Содержание поверхностной влаги в горных породах и минералах можно определить с помощью высушивания в сушильном шкафу при 105—110 °С [213]. Однако ири анализе горных пород наибольший интерес представляет общее содержание воды, т. е. свободная и связанная воды, а также окклюдированная вода, выделяющаяся при 700 °С или даже при более высокой температуре. При столь высоких температурах многие минералы теряют также значительное количество Oj. Поэтому общую потерю массы нельзя принять за меру содержания влаги в анализируемом материале. Обычно в таких случаях применяют различные модификации методов Браша [86] и Пенфилда [275, 276]. Подлежащий анализу образец нагревают в стеклянной трубке или пробирке определенной формы. Выделившаяся вода конденсируется в охлаждаемой части сосуда. В конце нагревания трубку, содержащую воду, отсоединяют и взвешивают. После этого удаляют воду и взвешивают сухую трубку. По разности масс рассчитывают процентное содержание воды в исходном образце. [c.181]
chem21.info
Физическая и термодинамическая характеристика воды, связанной биомакромолекулами.
Вода является необходимым условием жизни и входит в состав всех пищевых продуктов и материалов.
Содержание влаги может привести к быстрой порче продуктов и поэтому продукты, предназначенные для длительного хранения, подвергаются сушке.
Вода представляет собой прозрачную бесцветную жидкость, обладающую целым рядом аномальных физических свойств. Например, вода имеет аномально высокие температуры замерзания и кипения, а так же поверхностное натяжение. Её удельные энтальпии испарения (в расчёте на 1 грамм) выше чем почти у всех остальных веществ. Редкой особенностью воды является то, что её плотность в жидком состоянии при 4С больше плотности льда, поэтому лёд плавает на поверхности воды. Эти аномальные свойства воды объясняются существованием водородных связей, которые связывают между собой молекулы как в жидком, так и твёрдом состоянии. Вода плохо проводит электрический ток, но становится хорошим проводником, если в ней растворены даже небольшие количества ионных веществ.
Вода является универсальным растворителем, необходимым для протекания биохимических реакций. Способность воды хорошо растворять многие вещества обусловлена полярностью её молекул. Молекулы воды обладают сравнительно большим дипольным моментом, поэтому при растворении в ней ионных веществ молекулы воды ориентируются вокруг ионов, то есть сольватируют их. Водные растворы ионных веществ являются электролитами. Исследованию свойств и структуры воды посвящено большое количество исследований. Но до настоящего времени не существует единого мнения о структурной и модели воды, не объяснены закономерности её взаимодействия с другими веществами. Это взаимодействие может быть исследовано при сочетании двух методов: термодинамического объясняющего «конечные» свойства воды и молекулярнокинетического, вскрывающего механизм внутренних взаимодействий в самой молекуле воды и внешних взаимодействий с другими веществами, в частности с адсорбентами.
Большой заслугой в развитии проблемы взаимодействия воды явилась классификация форм и видов связи влаги в материалах, предложенная академиком Ребиндером. В основу этой классификации положена энергия связи, то есть термодинамический принцип, поэтому она носит универсальный характер, имеет большое практическое и научное значение анализа изотерм сорбций для расчёта затраты энергии и обосновывает оптимальные режимы технологических процессов. Различают следующие формы и виды связи влаги с материалом: связанная влага, свободная влага, равновесная влага, гигроскопическая влага, критическая влага.
Связанная влага - это ассоциированная вода, прочно связанная с различными компонентами- белками, липидами и углеводами за счёт химических и физических связей.
Свободная влага - это влага, не связанная полимером и доступная для протекания биохимических, химических и микробиологических реакций.
Равновесная влага - это влага, содержащаяся в материале в таком количестве, которое соответствует данному сочетанию относительной влажности и температуры. Например, если зерно поместить в замкнутое пространство, в котором создана определённая относительная влажность воздуха, то сухое зерно будет поглощать водяные пары и увлажняться. В конце концов, наступит состояние, когда зерно перестанет сорбировать влагу и его влажность будет равновесна влажности окружающего воздуха.
Гигроскопическая влага - это влага, поглощенная зерном из воздуха.
Критическая влага - это состояние материи, при котором появляется свободная вода, обеспечивающая интенсификацию ферментативных процессов.
Критическая влажность - это такая влажность, ниже которой биохимические процессы в материале резко ослабляются, а выше которой начинают бурно нарастать.
Для характеристики свойств воды в продуктах и материалах широко используется понятие «активность воды». Под активностью воды апонимают отношение парциального давления водяного пара на поверхности продуктаР к парциальному давлению насыщенного пара свободной воды в окружающей среде Р, зависящему от температуры; это отношение называется по существу относительной влажностью пограничного слоя :
а = а==
Существует формула, характеризующая химический потенциал воды:
=+RT ℓna
где -стандартное значение химического потенциала воды;
- химический потенциал воды;
R - газовая постоянная;
T - абсолютная температура К;
A - термодинамическая активность воды;
Эта формула характеризует термодинамическое состояние воды. В гигроскопической области уменьшение свободной энергии связи равно химическому потенциалу и описывается уравнением Ребиндера:
-F ==RT ℓn=-RT ℓn
где F – уменьшение свободной энергии (при постоянной температуре).
studfiles.net
Свободная и связанная вода в коллоидах.
Молекулы воды сами по себе электронейтральны. Однако стоит только поместить их во внешнее электрическое поле, как тотчас начнет проявляться дипольный характер этих молекул. Во внешнем электрическом поле диполи воды ориентируются определенным образом в направлении электрических силовых линий.
Аналогично этому гидратация гидрофильных коллоидов обусловливается электростатическими силами, т. е. за счет электрических зарядов, возникающих вследствие ионизации. На поверхности коллоидных частиц высокомолекулярных веществ образуются оболочки, состоящие из диполей воды, ориентированных в зависимости от знака заряда ВМС своим положительным или отрицательным концом.
Те слои диполей воды, которые расположены в непосредственной близости к поверхности коллоидной частицы (макромолекуле), наиболее прочно с ней связаны и наиболее упорядоченно ориентированы.
Таким образом, в гидрофильных коллоидах, т. е. в растворах высокомолекулярных соединений, какая-то часть воды оказывается прочно связанной с коллоидными частицами и вместе с ними участвует в броуновском движении, другая же часть играет роль среды, в которой находятся коллоидные мицеллы.
В набухших полимерах (студнях) различают два вида воды: связанную (или гидратационную) и свободную (или капиллярную). Количество связанной воды в полимере зависит от его гидрофильности. Опыт показывает, что чем выше гидрофильные свойства полимера, тем больше содержит он связанной воды. Например, содержание связанной воды в желатине вдвое превышает массу сухого вещества.
Исследования многих ученых показали, что свойства связанной воды довольно резко отличаются от свойств свободной воды. Используя свойства связанной воды, Гортнер и Ньютон разработали криоскопический способ определения связанной воды. Чрезвычайно простой и остроумный метод определения ее был предложен в свое время А. В. Думанским, который для этой цели использовал методы рефрактометрии и поляриметрии.
Упорядоченность молекул воды в гидратных оболочках, ее уплотненность обусловливают еще одно замечательное свойство связанной воды: при охлаждении растворов ВМС она не замерзает, тогда как свободная вода замерзает. Протоплазма животных и растительных организмов представляет собой сложнейшую систему, состоящую из высокомолекулярных соединений, поэтому вполне понятно то огромное значение, которое играет свободная и связанная вода в живой клетке.
Морозостойкость сельскохозяйственных культур обусловлена свойствами связанной воды. Ранее полагали, что растения погибают от пониженных температур в результате механических повреждений протоплазмы кристаллами образующегося льда. Однако исследования показали, что механизм действия низких температур на растение гораздо сложнее: низкие температуры губительны для растений не сами по себе, а в результате их обезвоживающего действия при вымораживании воды. Микроскопические исследования показали, что на первой стадии замораживания кристаллы льда образуются не внутри клеток, а в межклеточных пространствах. Разрастающиеся кристаллы льда интенсивно оттягивают воду из клеток, что в конечном итоге приводит к обезвоживанию протоплазмы и резкому увеличению концентрации клеточного сока. Однако даже в полностью убитых морозом растениях клеточные стенки остаются практически неповрежденными.
Обезвоживание и действие повышенной концентрации электролитов клеточного сока вызывает необратимую коагуляцию протоплазмы.
Многочисленные исследования показали, что переохлаждение, при котором не образуются кристаллы льда, довольно легко переносится растениями, причем растения выдерживают такие низкие температуры, которые их неизбежно погубили бы, если бы началось образование кристаллов льда. Однако ряд факторов способствует тому, что некоторые культурные растения сравнительно легко перезимовывают, вынося зачастую очень низкие температуры. Одним из этих факторов является, как уже отмечалось, понижение точки замерзания тканевых и клеточных соков благодаря тому, что в них растворены различные электролиты и неэлектролиты. В растениях под влиянием низких температур увеличивается содержание глюкозы за счет процессов гидролитического распада крахмала. Кроме того, глюкоза оказывает определенное защитное действие на клеточные белки, предохраняя их от преждевременной коагуляции.
Но самым важным фактором, защищающим культурные растения от вымораживания, является наличие в клетках связанной воды. Она прочно удерживается высокомолекулярными соединениями, в первую очередь белками. Морозоустойчивость того или иного культурного растения находится в прямой зависимости от соотношения свободной и связанной воды в нем.
Морозоустойчивость культурных растений не следует рассматривать как постоянное, раз навсегда данное свойство. Исследования показали, что агроном в известных пределах может сознательно регулировать морозостойкость растений путем соответствующей их закалки.
Озимые злаки, выросшие в тепле, замерзают быстрее, чем выросшие на холоде. При постоянном и постепенном снижении температуры растения все больше закаляются, приобретают высокую морозостойкость. Вот почему неожиданные ранние морозы причиняют большие повреждения озимым культурам.
Связанная вода в значительной мере лишена той подвижности, которая свойственна обычной воде. Многие белковые студни при содержании ничтожно малого количества сухого вещества имеют полутвердый характер и обладают способностью сохранять свою форму. Так, медузы, тело которых содержит всего лишь 1% сухого вещества и около 99°/о воды, тем не менее сохраняют и форму и достаточную жизненную стойкость.
Считается установленным, что одна из причин старения организма заключается в потере способности его тканей удерживать связанную воду на нормальном уровне. Как правило, молодые организмы содержат значительно больше связанной воды, чем старые.
Особый вид старения, например, наблюдается в процессе черствения хлеба. В свежей пшеничной муке связанной воды содержится примерно 44% от общего ее содержания, в тесте количество ее достигает уже 53%, в свежеиспеченном хлебе— 83%. Однако уже через пять суток в хлебе остается 67% связанной воды. Таким образом, процесс черствения хлеба обусловлен потерей воды и является, по существу, необратимым процессом старения. Вот почему попытка сохранить хлеб свежим путем хранения его в герметической упаковке, например в целлофановых пакетах, не дает положительных результатов. Хлеб при этом быстро «запотевает», покрывается плесенью и все равно черствеет. Опыт показывает, что наиболее приемлемый метод сохранения хлеба свежим — хранение его при повышенной температуре (около 333 К). При этом белки значительно дольше сохраняют в себе связанную воду и хлеб остается свежим в течение шести-семи дней. На этом принципе основан старинный русский способ освежения черствого хлеба путем смачивания и последующего выдерживания в подовой печи.
pdnr.ru
Свободная и связанная вода
Связанная вода:
1 прочносвязанная (гигроскопическая) вода;
2 рыхлосвязанная вода.
Вода в глинистых грунтах в значительной степени предопределяет свойства грунта, которые зависят в первую очередь от ее относительного содержания. Это объясняется взаимодействием молекул воды вследствие наличия электромолекулярных сил с поверхностями коллоидных и глинистых частиц грунта. Твердые частицы грунта, состоящие из тех или иных обычно кристаллических минералов, имеют на поверхности заряд статического электричества, чаще всего отрицательный. Молекулы же воды, являясь диполями, и ионы различных веществ противоположного заряда, растворенных в грунтовой воде, попадая в поле заряда частицы грунта, ориентируются определенным образом и притягиваются к поверхности этой частицы. В результате поверхность твердой частицы покрывается монослоем молекул воды.
Вода, адсорбированная на поверхности твердых частиц, называется связанной (она связана с твердыми частицами). Эта вода создает гидратные пленки вокруг твердых частиц и ее часто называют пленочной. Поскольку в пределах слоя адсорбированной воды удельные силы взаимодействия изменяются от очень больших величин до нуля, такой слой принято условно делить на слои прочносвязанной и рыхлосвязанной воды.
Прочносвязанная вода, слой которой состоит из одного или нескольких слоев молекул, обладает свойствами, существенно отличающимися от свойств свободной воды. По свойствам прочносвязанная вода скорее соответствует твердому, а не жидкому телу. Она не отделяется от твердых частиц при воздействии сил, в тысячи раз превышающих силы земного притяжения, замерзает при температуре значительно ниже 0°С, имеет большую, чем свободная вода, плотность, обладает ползучестью; такую воду можно отделять от твердых частиц лишь выпариванием при температуре выше 100 °С.
Рыхлосвязанная вода представляет собой диффузный переходный слой от прочносвязанной воды к свободной. Она обладает свойствами прочносвязанной воды, однако они выражены слабее. Это обусловлено резким уменьшением в слое рыхлосвязанной воды удельных сил взаимодействия между поверхностью твердой частицы и молекулами воды.
Так как в пределах слоя связанной воды удельные силы взаимодействия резко меняются, свойства пылевато-глинистых грунтов в значительной степени будут зависеть от толщины пленок рыхлосвязанной воды. При этом чем больше дисперсность грунта, тем в большей степени будет проявляться эта зависимость, поскольку при большей дисперсности грунта, содержащего глинистые и особенно коллоидные частицы, удельная площадь их поверхности, т. е. суммарная площадь поверхности частиц глин и суглинков, больше, чем у песков, в тысячи раз. Кроме того, она зависит от минералогического состава глинистых частиц. Таким образом, минеральный состав и удельная площадь поверхности частиц пылевато-глинистых грунтов обусловливают их специфические свойства.
Наличие между частицами пылевато-глинистого грунта связанной (пленочной) воды определяет его пластичность. При этом чем толще пленки воды, тем меньше прочность грунта, и наоборот. Изменение толщины пленок воды, окружающих частицы пылевато-глинистого грунта, приводит к изменению его состояния от почти жидкого до твердого. При малой толщине пленок воды пылевато-глинистые грунты обладают сцеплением. Поскольку сцепление в значительной степени обусловлено наличием связанной воды, такие грунты обладают присущей этой воде ползучестью.
Увлажнение пылевато-глинистого грунта приводит к увеличению толщины пленок воды между частицами и сопровождается увеличением объема грунта, т. е. грунт набухает. Наоборот, при высыхании пылевато-глинистые грунты уменьшаются в объеме вследствие утончения пленок воды (грунт получает усадку). Когда связность грунта обусловлена наличием пленочной воды или растворимых солей, увлажнение грунта может приводить к полному его размоканию.
Если пылевато-глинистый грунт содержит небольшое количество рыхлосвязанной воды и при этом все его поры заполнены водой, фильтрация ее практически невозможна. В связи с этим строители используют перемятую глину в качестве гидроизоляционного материала.
Связность (прочность) грунта, зависящая от толщины слоя рыхлосвязанной воды, может резко снижаться при нарушении определенного расположения молекул воды и частиц (например, при динамических воздействиях или перемятии).
Свободная вода:
капиллярная вода;
гравитационная вода.
Капиллярная вода передвигается в тонких порах почвы. Это движение происходит в силу поверхностного натяжения и смачивания. Вода по капиллярам поднимается тем выше, чем меньше диаметр капилляра, тем тяжелее механический состав почвы и грунта.
Собственно капиллярная вода поднимается кверху от уровня грунтовых вод. При уменьшении количества капиллярной воды в связи с высыханием грунта наблюдается восстановление ее благодаря подъему по капиллярным порам новой части грунтовой воды, подобно тому, как это происходит в капиллярной трубке, опущенной одним концом в воду.
Подвешенная вода чаще всего встречается в песках. Она возникает как в однородной, так и в слоистых толщах при промачивании их сверху. В однородной толще образование подвешенной влаги зависит от гранулометрического состава песка и его исходной влажности. В грубозернистых песках подвешенная вода не образуется.
Подвешенная вода отличается от капиллярной тем, что она не имеет непосредственной связи с уровнем грунтовых вод, вследствие чего не может питаться ими. В таком состоянии воду в грунте можно сравнить с водой в капилляре, нижний конец которого не опущен в воду.
В сухих песках подвешенная вода образуется в верхних горизонтах; мощность ее измеряется сантиметрами, реже дециметрами. В слоистых толщах подвешенная вода образуется на границе двух слоев, различных по гранулометрическому составу.
Гравитационная вода подразделяется на просачивающуюся воду и воду грунтового потока. Просачивающаяся вода находится преимущественно в зоне аэрации и передвигается под влиянием силы тяжести сверху вниз. Это движение продолжается до тех пор, пока она не встретит на своем пути слой грунта, обладающий малой водопроницаемостью — фактически водонепроницаемый, водоупорный горизонт. После этого дальнейшее движение воды происходит под влиянием напора в виде грунтового потока. Слой грунта, в котором движется вода грунтового потока, называется водоносным горизонтом.
Просачивающаяся вода оказывает локальное воздействие на толщу пород. В частности, глинистые, лёссовые и другие связные грунты теряют прочность лишь на пути ее движения. В других точках пласта прочность породы сохраняется. Вода грунтового потока оказывает воздействие на весь пласт, по которому она движется.
Содержание гравитационной воды в грунте зависит от характера его пористости. В глинистых грунтах, где количество макропор незначительно, гравитационная вода находится в небольшом количестве и при большом уплотнении грунта может совсем отсутствовать. В крупнообломочных грунтах (гравий, галечник) и в крупнозернистых песках гравитационная вода может преобладать над другими видами воды.
Гравитационная вода обладает всеми свойствами обычной воды. По своему химическому составу она может быть различна, так как содержит в себе растворенные соли и газы, а также вещества в коллоидальном состоянии. Количество веществ, содержащихся в грунтовой воде, называется общей минерализацией воды и может колебаться в широких пределах: от нескольких сот миллиграммов до нескольких сот граммов на литр, в то время как соленость морской воды составляет примерно 35 г/л. Минерализация подземных вод, как правило, увеличивается с глубиной. Наибольшее количество растворимых солей находится в водах, циркулирующих в районах соляных месторождений и в пустынных и полупустынных областях в условиях засушливого климата.
Растворенные в воде соли находятся в подвижном равновесии с твердой составляющей грунтов и взаимодействуют с ней. В коллоидальном состоянии находятся кремнекислота и полуторные окислы. Среднее значение рН для грунтовых вод колеблется около 7. С повышением общей минерализации значение рН увеличивается. В районах развития известняков, солонцеватых глин и солонцовых почв величина рН природной воды может достигать 9—10.
studopedya.ru