Риск для здоровья от употребления деминерализованной воды. Вода деминерализованная
Деминерализованная вода: состав, получение
Вода деминерализованная (лат. Aqua demineralisata) – это питьевая вода, освобожденная от нежелательных катионов и анионов с помощью ионного обмена и метода разделения сквозь мембрану. Процесс обессоливания с помощью ионного обмена называется деминерализации, или обессоливания. В его основу положено использование ионитов - сетчатых полимеров разной степени сшивания, гелевой или микропористой структуры, ковалентно связанных с ионогенных группами. Диссоциация этих групп в воде или растворах образует ионную пару - фиксированный на полимере ион и подвижной противоион, который обменивается на ионы одноименного заряда (катионы или анионы) из раствора.
Деминерализованная вода: состав
Слабо-, средне- и сильнокислые катиониты содержат группы -СООН-РО (ОН) 2 и -SO2OH соответственно на сетчатых полимерах, напр. На основе сополимеров стирола с дивинилбензола и продукта конденсации фенолсульфокислоты с формальдегидом. Чаще всего в фармацевтической промышленности используют сильнокислые сульфокатиониты КУ-1, КУ-2 и пористый КУ-23. Катиониты с подвижным атомом водорода в Н-форме обменивают все катионы, которые есть в воде, по схеме:
- 2 [K] SO2OH + CaСl2 =
- ([K] -SO2-O) 2 - Ca + 2HCl,
- 2 [K] H + Na2SO4 = 2 [K] Na + h3SO,
- где [K] - полимерный каркас катионита.
Аниониты - сетчатые полимеры, способные к обмену анионов в растворах. Слабоосновные аниониты содержат первичные, вторичные и третичные аминогруппы. Полимерами для анионитов служат хлорметильовани полистирола и продукты конденсации полиетиленполиамидив и эпихлоргидрида. В фармацевтической промышленности используют слабоосновные марки еде-10П и более широко - сильноосновные аниониты АВ-171 и АВ-17, которые обменивают на анионы, свои подвижные гидроксильные группы (ОН-форма), содержащиеся в воде по схеме:
- 2 [A] OH + h3SO4 = [А] 2-SO4 + 2h3O,
- [A] OH + HCl = [A] Cl + h3O,
- где [A] - полимерный каркас анионита
Процесс обессоливания питьевой воды с помощью ионного обмена может осуществляться в одну или несколько стадий с использованием ионообменных установок.
Получение деминерализованной воды
Воду деминерализованную можно получить методами обратного осмоса, ультрафильтрации, диализа, электродиализа и выпаривания сквозь мембрану путем распределения через мембрану.
Обратный осмос (гиперфильтрация) осуществляется путем перехода воды из раствора через полупроницаемую мембрану под действием внешнего давления. Избыточное давление солевого раствора намного выше осмотическое. Движущей силой обратного осмоса разница давления с разных сторон мембраны. Для фильтрации используют два типа мембран: пористые с размером пор 10-4-10-3мкм (1-10) и непористые диффузные. Последние образуют водородные связи с молекулами воды, которые под действием избыточного давления разрываются, и молекулы воды диффундируют в обратном направлении мембраны. Соли и все другие химические соединения, кроме газов, не проникают сквозь такую мембрану.
Ультрафильтрация - процесс мембранного разделения растворов высокомолекулярных соединений под действием разности рабочего и атмосферного давлений. Электродиализ базируется на направленном движении ионов в сочетании с селективным действием мембран под воздействием постоянного тока. С этой целью используют как катионитные, так и анионитных марки мембран. При испарении через мембрану растворитель проходит сквозь мембрану (из целлофана, полиэтилена или ацетата целлюлозы) и в виде пара удаляется с ее поверхности в потоке инертного газа или под вакуумом.
Деминерализованную и дистиллированную воду используют для мытья стеклокабеля, ампул, вспомогательных материалов и для получения воды очищенной и воды для инъекций.
Литература о воде деминерализованной
- Промышленная технология лекарств / В.И. Чуешов, Н.Е. Чернов, Л. Н. Хохлова и др. - Х., 1999. - Т. 2.
Полезно знать
vetconsultplus.ru
Получение деминерализованной воды
Для получения чистой деминерализованной воды применяют так называемые ионитовые фильтры (рис. 16). Действие их основано на способности некоторых веществ избирательно связывать катионы или анионы солей. Водопроводную воду вначале пропускают через катионит, связывающий только катионы. В результате получается вода, имеющая кислую реакцию. Затем эту воду пропускают через анионит, связывающий только анионы. Вода, пропущенная через оба ионита, называется деминерализованной (т. е. не содержит минеральных солей).
Рис 15. Колба для хранения дистиллированной воды с защитой от поглощения углерода.
По качеству деминерализованная вода не уступает дистиллированной и часто соответствует бидистилляту
Иониты постепенно насыщаются и перестают действовать, однако их легко регенерировать, после чего они могут быть использованы вновь. Практически регенерацию можно проводить много раз и одним и тем же ионитом очистить большое количество воды. Ионитовые установки широко применяют не только для очистки и деминерализации воды в промышленности, но и в аналитических лабораториях вместо приборов для дистилляции воды.
Рис. 16. Лабораторная установка для получения деминерализованной воды.
Рис. 17. Схема лабораторной установки для получения деминерализованной воды:1 — пробка; 2 — стеклянная вата; 3 — катионит; 4 — трехходовой край; 5 —пробка; 6-анионит; 7 —сливная труба.
Для получения деминерализованной воды можно смонтировать установку, которая позволит получать по 20—25 л/ч воды. Установка (рис. 17) состоит из двух трубок (колонок) высотой по 70 см и диаметром около 5 см. Колонки могут быть стеклянными, кварцевыми, а еще лучше — из прозрачных пластиков, например из плексигласа. В колонки помещают по 550 г ионообменных смол: в одну помещают катионит (в Н+-форме),а в другую—анионит (в OrT-форме). В пробирке / колонки с катионитом 3 имеется отводная трубка, которую резиновой трубкой соединяют с водопроводным краном.
Воду, прошедшую через катионит, направляют во вторую колонку с анионитом. Скорость протекания воды через обе колонки должна быть не больше 450 см3/мин. В первых порциях воды, пропущенной через катионит, необходимо установить кислотность. Пробу воды отбирают через трехходовой кран 4, соединяющий колонки. Предварительное установление кислотности воды необходимо для последующего контроля качества деминерализованной воды.
Поскольку иониты постепенно насыщаются, нужно контролировать работу установки. После того как через нее пропустят около 100 л воды или она проработает непрерывно в течение 3,5 ч, следует взять пробу воды, прошедшей через колонку с катионитом..Затем 25 см3 этой воды титруют 0,1 н. раствором NaOH по метиловому оранжевому. Если кислотность воды резко уменьшилась по сравнению с результатом первой пробы, пропускание воды следует прекратить и провести регенерацию ионитов. Для -рееенерации катионита его высыпают из колонки в большую банку, заливают 5%-ным раствором HCl и оставляют в этом растворена ночь. После этого кислоту сличают и катионит промывают дистиллированной или деминерализованной водой до тех пор, пока проба на Сl- ионы в промывных водах не станет отрицательной. Пробу делают так: на часовое стекло помещают 2—3 капли промывной воды и добавляют к ней каплю 0,01 н. раствора AgN03. При отрицательной реакции муть не образуется.
. Промытый катионит снова вводят в колонку. Анионит для регенерации высыпают в большую банку, заливают 2%-ным (0,5 н.) раствором NaOH и оставляют на ночь. Щелочь затем сливают, а анионит тщательно отмывают дистиллированной или деминерализованной водой до нейтральной реакции промывных вод при испытании фенолфталеином. . ' '
В лаборатории полезно иметь две такие установки: одна находится в работе, а другая — резервная. Пока регенерируют одну установку, другая — в работе.
Из ионообменных смол *, изготовляемых в СССР, в качестве катионитов можно использовать иониты марок КУ-2, СБС, СБСР, МСФ или СДВ-3.
Для получения особо чистой воды, по качеству превосходящей бидистиллят, рекомендуется применять иониты КУ-2 и ЭДЭ-10П**. Вначале иониты с зернением около 0,5 мм переводят соответственно в H- и ОН-формы путем обработки КУ-2 1%-ным раствором соляной кислоты, а ЭДЭ—10П 3%-ным раствором едкого натра, пот еле чего хорошо промывают. Затем их смешивают в объемном соотношении КУ-2: ЭДЭ-10П = 1,25: 1 и смесь помещают в колонку из плексигласа диаметром около 50 мм и высотой 60—70 см.
Дно и верхняя пробка колонки должны быть также из плексигласа, водоподводящая и сточная трубки — из полиэтилена или же из алюминия.
Для получения особо чистой воды применяют обычную дистиллированную воду, которую пропускают через колонку со смесью ионитов. Один килограмм такой смеси может очистить до 1000 л дистиллированной воды. Очищенная вода должна иметь удельное сопротивление 1,5—2,4*10-7 1/(ом*см). Эту смесь ионитов не рекомендуется применять для деминерализации водопроводной воды, так как иониты при этом быстро насыщаются. Когда удельное сопротивление очищенной воды начнет уменьшаться, очистку воды прекращают, а иониты регенерируют. Для этого смесь ионитов высыпают из колонки на лист фильтровальной бумаги, разравнивают, закрывают другим листом такой же бумаги оставляют сохнуть. Или же иониты из колонки пересыпают в фарфоровую воронку Бюхнера и отсасывают на ней до получения воздушно-сухой массы.
Воздушно-сухую массу помещают в делительную воронку соответствующей емкости так, чтобы смесь ионитов занимала около 'Д. После этого в делительную воронку добавляют 3%-ный раствор NaOH, заполняя воронку приблизительно на 3Д, и быстро перемешивают. При этом происходит мгновенное разделение ионитов. Нижний слой, содержащий катионит КУ-2, спускают через кран делительной воронки в сосуд с водой и многократно промывают с применением декантации до тех пор, пока проба промывной воды не даст нейтральную реакцию при добавлении I—2 капель фенолфталеина.
Верхний слой, содержащий анионит ЭДЭ-10П, сливают через горло делительной воронки также в сосуд с водой. Иониты регенерируют, как описано выше, каждый ионит отдельно, и после этого снова применяют их для очистки воды.
Следует учитывать, что и при получении особо чистой воды и особенно при ее хранении нельзя применять стеклянную посуду или стеклянные приборы. Все должно быть или из пластиков, или из алюминия. Стеклянную посуду, если нет другой, внутри следует покрывать тонкой пленкой полиэтилена или плексигласа.
О дистиллированной воде надо помнить следующее:
1: Воду необходимо расходовать экономно.
2. Бутыль с дистиллированной водой всегда должна быть хорошо закрыта обработанной корковой или резиновой пробкой или тщательно вымытой притертой пробкой.
3. Всякую вновь полученную партию воды надо проверить на присутствие примесей.
4. Переливать дистиллированную воду можно только в хорошо вымытую посуду.
5. Длительное хранение дистиллированной воды не допускается.
К оглавлению
см. также
- Лабораторное оборудование
- О работах в лаборатории
- Реактивы и обращение с ними
- Лабораторный стол
- Деминерализованная и дистиллированная и вода
- Получение дистиллированной воды
- Получение деминерализованной воды
www.himikatus.ru
7. Вода деминерализованная
В последнее время уделяют внимание использованию воды деминерализованной вместо очищенной. Это связано с тем, что дистилляторы, особенно электрические, часто выходят из строя. Соли, содержащиеся в исходной воде, образуют накипь на стеклах испарителя, что ухудшает условия дистилляции и снижает качество воды.
Для обессоливания (деминерализации) воды применяют различные установки. Принцип их действия основан на том, что вода освобождается от солей при пропускании ее через ионообменные смолы – сетчатые полимеры гелевой или микропористой структуры, ковалентно связанные с ионогенными группами. Диссоциация этих групп в воде дает ионную пару:
-фиксированный на полимерном носителе ион;
-подвижный – противоион, который обменивается на ионы одноименного заряда.
Основной частью установок для деминерализации воды являются колонки, заполненные катионитами и анионитами.
Активность катионитов определяется наличием карбоксильной или сульфоновой группы, обладающей способностью обменивать ионы водорода на ионы щелочных и щелочноземельных металлов.
Аниониты – сетчатые полимеры, способные обменивать свои гидроксильные группы на анионы.
Установки имеют также емкости для растворов кислоты, щелочи и воды дистиллированной, необходимых для регенерации смол. Регенерация катионитов осуществляется хлороводородной или серной кислотой. Аниониты восстанавливаются раствором щелочи (2-5%).
Обычно ионообменная установка содержит 3-5 катионитных и анионитных колонок. Непрерывность работы обеспечивается тем, что одна часть колонок находится в работе, другая – на регенерации.
Водопроводная вода проходит через ионообменные колонки, затем подается на фильтр, задерживающий частицы разрушения ионообменных смол.
Для предупреждения микробной контаминации получаемая вода нагревается до 80-900С.
Деминерализатор целесообразно использовать в межбольничных, крупных больничных и других аптеках для подачи обессоленной воды в дистилляторы и в моечные комнаты для мытья посуды.
Производительность деминерализатора 200 л/час.
8. Обратный осмос
Обратный осмос (гиперфильтрация) – метод разделения растворов, заключается в том, что раствор под давлением 3-8 МПа подается на полупроницаемую мембрану, пропускающую растворитель и задерживающую полностью или частично молекулы или ионы растворенного вещества.
Этот метод впервые был предложен в 1953 году Ч.Е.Рейдом для обессоливания воды.
Движущей силой Р обратного осмоса является разность давлений: осмотического давления раствора (П) и давления солевого раствора над мембраной (Р).
Р=Р-П
Прямой осмос – односторонний самопроизвольный перенос растворителя через полупроницаемую мембрану (перегородку) с целью выравнивания концентрации веществ по обе ее стороны.
Обратный осмос – фильтрование водных систем (воды) из раствора через полупроницаемые мембраны с целью отделения растворенных солей, молекул органических веществ с размерами большими молекул воды, а также взвешенных примесей и коллоидных частиц.
Установки для обратного осмоса экономичны в эксплуатации, высокопроизводительны. Они надежно очищают воду от двух-, трех-, четырехвалентных неорганических веществ, органических веществ, коллоидов, частично от пирогенов. Отрицательным моментом является то, что мембраны довольно дорогостоящи.
Качество воды, получаемой методом ионного обмена и обратного осмоса, контролируется по величине электропроводности.
studfiles.net
Деминерализованная вода (Aqua demineralisata) - PharmSpravka
В последнее десятилетие значительно развилась техника деминерализации воды с помощью ионообменных смол (иониты). Ионообменные смолы делятся на две группы: 1) катиониты, представляющие собой смолы с кислой, карбоксильной или сульфоновой группой, обладающие способностью обменивать ионы водорода на ионы щелочных и щелочноземельных металлов; 2) аниониты - чаще всего продукты полимеризации аминов с формальдегидом, обменивающие свои гидроксильные группы на анионы.
Деминерализация воды проводится в специальных аппаратах-колонках, причем в принципе можно или пропускать воду вначале через колонку с катионитом, а затем с анионитом или в обратном порядке (так называемая конвенкционная система), или пропускать воду через одну колонку, содержащую одновременно и катионит, и анионит (смешанная колонка).
Приводим описание одной из отечественных промышленных обессоливающих установок производительностью 10 т/ч, работающей по схеме: механические фильтры - Н-катионирование - декарбонизация - ОН-анионирование (рис.79).
Вода из городского водопровода при помощи насосов / поступает в механический блок, состоящий из двух фильтров, загружаемых суль-фоуглем. Вода проходит фильтр сверху вниз и поступает на Н-катио-нирование 2. Эксплуатация механического фильтра предусматривает взрыхление (один раз в 3 дня), которое необходимо для предотвращения слеживания сульфоугля и вымывания грязи, образующейся за счет истирания сульфоугля. Взрыхление производят током воды снизу. Схемой предусмотрена также подача водопроводной воды на катиони-рование, минуя механические фильтры. Н-катионитовый блок состоит из трех фильтров и декарбонизатора 3, установленного после них. Ка-тионитовые фильтры загружаются смолой КУ-1, получаемой конденсацией фенолсульфокислоты и формальдегида, которая способна при определенных условиях поглощать из водных растворов различные катионы. Катионит КУ-1, как и остальные катиониты, характеризуется неодинаковой способностью к поглощению различных катионов.
Для большинства катионитов распределение активности поглощения различных катионов и соответствующая им емкость поглощения могут быть представлены следующим рядом:
Процесс катионного обмена протекает по схеме:
где К - органический анион катионита.
В дальнейшем в связи с различной способностью к обмену отдельных катионов ион натрия, обладающий наименьшей величиной подвижности, первым начнет вытесняться в фильтрат более подвижными катионами кальция и магния. Уменьшение в катионите количества водородных ионов, способных к обмену, повлечет за собой уменьшение кислотности на эквивалентную величину и увеличение в фильтрате ионов натрия.
Н-катионитовый фильтр представляет собой цилиндрический аппарат, снабженный верхним и нижним днищами, присоединенными к корпусу при помощи болтов. Поверхность фильтров гуммирована. На дно фильтра загружается кварцевый песок высотой слоя 300 мм, затем катионит высотой слоя 3 м. Наряду с кварцевым песком фильтру придаются верхние и нижние дренажные устройства, которые предотвращают вынос катионитовой смолы при эксплуатации фильтра.
Дренажные устройства состоят из гуммированных дисков, в которых на резьбе укреплены щелевые колпачки. Помимо сказанного, дренажные устройства предназначены для равномерного распределения по всей площади поперечного сечения фильтра проходящей через него воды как при катионировании, так и при взрыхлении и отмывке. Эксплуатация фильтра заключается в периодическом осуществлении четырех операций: 1) Н-катионирования; 2) взрыхления; 3) регенерации; 4) отмывки. Взрыхление катионита производят для устранения уплотнения, удаления грязи, нанесенной водой и раствором кислоты, и мелочи, образующейся за счет истирания катионита. Взрыхление производится исходной водой.
Регенерация Н-катионитовых фильтров производится 5% раствором хлористоводородной кислоты, приготовляемой в специальной емкости-
реакторе 10 с мешалкой 12. На приготовление раствора используется исходная вода; концентрированная хлористоводородная кислота подается из мерника 9, куда с помощью сжатого воздуха попадает из бака-хранилища 8. Приготовленный для регенерации раствор кислоты сохраняется в сборнике 11. Кислота после регенерации сбрасывается через слой мраморной крошки в канализацию.
После пропуска через фильтр необходимого количества кислоты сразу же производят отмывку фильтра исходной водой. Н-катиониро-ванная вода после разложения карбонатной жесткости содержит большое количество свободной углекислоты, которая удаляется в декарбо-низаторе 3 за счет десорбции, вследствие создания над поверхностью воды с помощью вентилятора 4 низкого парциального давления С02. Десорбция возрастает с увеличением температуры среды, так как при этом снижается растворимость газа в воде. Декарбонизованная вода собирается в баке 5, откуда насосом 6 подается в анионитовый блок
Анионитовые фильтры загружены смолой ЭДЭ-10п, полученной конденсацией полиэтиленполиамидов и эпихлоргидрина, способной поглощать при определенных условиях различные анионы из водных растворов. ЭДЭ-10п, как и остальные аниониты, характеризуется неодинаковой способностью к поглощению различных анионов. Аниониты делятся на две группы: слабоосновные и сильноосновные. Слабоосновные аниониты способны поглощать анионы сильных кислот (SO4-2 CI-, NO3-), а анионы слабых кислот (HCO3-, HSiO3- др.) не удерживают их. Сильноосновные аниониты извлекают из водных растворов анионы как сильных, так и слабых кислот. Процесс анионного обмена протекает по схеме:
где А - органический катион анионита.
Анионитовый блок состоит из трех фильтров диаметром 800 мм и высотой 3,5 м. Устроены анионитовые фильтры аналогично катионито-вым. Эксплуатация анионитового фильтра заключается в периодическом осуществлении тех же четырех операций: 1) анионирования; 2) взрыхления; 3) регенерации; 4) отмывки.
Взрыхление анионитовых фильтров производится декарбонизирован-ной водой 5. Регенерация ОН-анионитовых фильтров осуществляется 3-4% раствором щелочи. Для приготовления регенерационного раствора щелочи необходимое количество концентрированного раствора, получаемого из твердого NaOH на обессоленной воде в реакторе с мешалкой 13, подается через мерник 14 в баки 15, куда для разбавления подведена обессоленная вода. Регенерационный раствор из баков 15 подается затем сжатым воздухом на фильтр 16 и далее на ОН-аниони-товый фильтр. Отмывка предназначена для удаления из фильтра избытка регенерационного раствора и продуктов регенерации и проводится де-карбонизированной водой. Отмывочные воды сбрасываются. С помощью ионитов можно получать деминерализованную воду, по своим качествам соответствующую фармакопейным нормам. В ряде случаев полезно сочетать деминерализацию воды с ее дистилляцией (для инъекционных растворов).
27.06.2015
www.pharmspravka.ru
Вода деминерализованная - Справочник химика 21
Для разведения лакокрасочного материала до необходимой концетрации и промывки изделий до и после окрашивания необходима деминерализованная вода. При очистке воды от солей, т. е. при деминерализации, ее последовательно пропускают через катионовую и анионо-вую ионообменные колонки. В качестве катионообменной смолы обычно применяют сильнокислотный катион КУ-2-8, и в качестве анионообменной смолы — сильноосновный анионит АВ-17-2. По мере необходимости смолы регенерируют, т. е. восстанавливают их обменную способность. Смолу КУ-2-8 регенерируют 5 %-ным раствором соляной кислоты, а смолу АВ-17-2 обрабатывают 2 — 4 %-ным раствором щелочи с последующей промывкой проточной водой. Деминерализованная вода хранится в емкостях из нержавеющей стали. [c.180]
Вода, деминерализованная, а затем дистиллированная или вода эквивалентной чистоты, свободная от ртути. [c.270]
Все растворы в количественном анализе готовят на дистиллированной воде, которая почти не содержит растворенных веществ. Если в работе требуется особенная точность, то берут дважды перегнанную воду (бидистиллят). В последние годы вместо дистиллированной многие лаборатории стали применять воду, деминерализованную (обессоленную) при помощи ионитов. Для этого чаще всего используют синтетические [c.218]
В-МЛ-0143,черный ГОСТ 24595-81 Для окраски узлов и деталей автомобилей Окунание, облив, пневмораспыление 25..,30 Вода деминерализованная 180 30 мин [c.38]
Хлористый юдород (газ), т Вода деминерализованная, м Едкий натр (40%), кг Хлор, кг. .. [c.132]
После фосфатирования изделия поступают в зону промывки горячей водой (деминерализованной) с ванной 7, а затем в зону пассивирования с ванной 6. Каждая зона имеет трубы 12 с соплами-насадками или форсунка ш [c.103]
Вода деминерализованная, дистил- Стойки до 100 °С (абсорбируют очень лированная, деионизированная, мало воды) пар, конденсат Щелочные растворы [c.31]
Качество деминерализованной воды. Рабочий процесс деминерализации ВОДЫ начинается тогда, когда прибор, измеряющий электропроводность воды, показывает, что вытекающая промывная вода содержит малое количество электролитов. В табл. 8 показаны свойства некоторых вод, деминерализованных в промышленных масштабах [90]. Если в воде присутствуют растворимые органические вещества, то они, в основном, не задерживаются в установке и проходят в деминерализованную воду. Существенно, чтобы обмен всех [c.141]
Технико-экономический анализ, выполненный в 60-е годы, показал, что при обессоливании воды с солесодержанием ниже 1 г/л наименьшую себестоимость имеет вода, деминерализованная ионным обменом . Несмотря на серьезные колебания цен на топливо, электроэнергию и различные материалы, а также на значительное развитие всех методов по-прежнему обессоливание маломинерализованных вод целесообразно осуществлять ионным обменом. Однако при этом следует учитьшать имеющуюся тенденцию к использованию комбинированных схем с применением перед ионным обменом другого способа обессоливания воды. Представления же, по крайней мере, зарубежных исследователей о наиболее экономичных областях применения электродиализа, обратного осмоса и дистилляции за прошедшие годы претерпели существенное изменение. [c.186]
В-КФ-093, серь й, красно-коричневый, черный ОСТ 6-10-427-79 Для грунтования кузовов и кабин автомобилей. Для окраски узлоа и дета, - ей автомобилей Электроосаждение на аноде (анафорез) Вода деминерализованная 180 30 МИН [c.38]
Деминерализованная вода (Aqua demineralisata) получается путем обессоливания водопроводной воды с помощью специальных ионообменных смол. Деминерализованная вода может использоваться для мытья аптечной посуды и различных упаковок. (По Международной фармакопее, 2-е изд., 1969, с. 00, вода деминерализованная не должна использоваться для парентерального применения, но может применяться для приготовления всех жидких лекарственных форм, растворов, реактивов. В случае использования деминерализованной воды для приготовления глазных лекарств она должна быть простерилизована непосредственно перед приготовлением лекарства.) [c.155]
В процессе производства порошкового ПВС периодическим способом вода используется на охлаждение реакционных смесей и оборудования (оборотная, см. стр. 9), на промывку оборудования — омылителей, центрифуги и т. д. (деминерализованная, см. табл. 1.1, и речная фильтрованная) и для смыва полов. Если порошкообразный ПВС предназначен для переработки в поли-винилацетали, то его растворяют в воде до получения 8—10 %-ного раствора. При этом вода (деминерализованная) используется как составная часть продукта. Нормы расхода воды и количества сточных вод приведены в табл. 1.2. [c.47]
В-КФ-093 ОСТ 6-10-427—79 (бывшая ФЛ-093) серый, красно-коричне- вый черный Пассивирую- шая Для грунтования кузовов и кабин автомобилей Для окрашивания узлов и деталей автомобилей Электроосаждение на аноде (анафорез) Вода деминерализованная 180°С, 30 мин [c.257]
chem21.info
Риск для здоровья от употребления деминерализованной воды
Сведения о воздействии деминерализованной воды на состояние организма основаны на экспериментальных данных и наблюдениях. Эксперименты проводились на лабораторных животных и людях-добровольцах, наблюдения — за большими группами людей, потребляющих деминерализованную воду, а также отдельными людьми, заказывающими воду, обработанную методом обратного осмоса и детьми, для которых детское питание было приготовлено на дистиллированной воде. Поскольку информация, полученная за период проведения этих исследований, ограничена, мы также должны учитывать результаты эпидемиологических исследований, где сравнивался эффект воздействия слабоминерализованной (более мягкой) и сильноминерализованной воды на здоровье. Деминерализованная вода, которая не была впоследствии обогащена минеральными веществами — крайний случай. Она содержит растворенные вещества, такие как кальций и магний, вносящие основной вклад в жесткость, в очень малых количествах.
Возможные последствия потребления воды, бедной минеральными веществами, делятся на следующие категории:
- воздействие на слизистую оболочку кишечника, метаболизм и гомеостаз минеральных веществ, и другие функции организма;
- малое поступление/отсутствие поступления кальция и магния;
- малое поступление других макро- и микроэлементов;
- потери кальция, магния и других макроэлементов в процессе приготовления пищи;
- возможный рост поступления в организм токсичных металлов.
Воздействие на слизистую оболочку кишечника, метаболизм и гомеостаз минеральных веществ, и другие функции организма
Дистиллированная и слабоминерализованная вода (общая минерализация
Виллиамс (4) показал в своем отчете, что дистиллированная вода может вызвать патологические изменения эпителиальных клеток в кишечнике крыс, возможно из-за осмотического шока. Тем не менее, Шуман (5), позднее проводивший 14-дневный опыт с крысами, не получил таких результатов. Гистологические исследования не выявили никаких признаков эрозии, язвы или воспаления пищевода, желудка и тонкой кишки. Наблюдались изменения в секреторной функции животных (повышенная секреция и кислотность желудочного сока) и изменения мышечного тонуса желудка; эти данные приведены в докладе ВОЗ (3), но имеющиеся данные не позволяют однозначно доказать прямое негативное влияние воды с малой минерализацией на слизистую оболочку желудочно-кишечного тракта.
На сегодняшний день доказано, что потребление воды, бедной минеральными веществами, оказывает негативное влияние на механизмы гомеостаза, обмен минеральных веществ и воды в организме: усиливается выделение жидкости (диурез). Это связано с вымыванием внутри- и внеклеточных ионов из биологических жидкостей, их отрицательным балансом. Кроме того, изменяется общее содержание воды в организме и функциональная активность некоторых гормонов, тесно связанных с регуляцией водного обмена. Эксперименты на животных (в основном, крысы), длившиеся около года, помогли установить, что употребление дистиллированной воды, или воды с общей минерализацией до 75 мг/л приводит:
- увеличению потребления воды, диуреза, объема внеклеточной жидкости, концентрации натрия и хлорид-иона в сыворотке и их повышенного выделения из организма; приводя в итоге к общему отрицательному балансу,
- уменьшается число красных кровяных телец, гематокритный индекс;
- группа ученых под руководством Рахманина, изучая возможное мутагенное и гонадотоксическое действие дистиллированной воды, выяснила, что таким действием дистиллированная вода не обладает.
Однако было отмечено снижение синтеза гормонов трийодтиранина и альдостерона, повышенная секреция кортизола, морфологические изменения в почках, включая выраженную атрофию клубочков и разбухание слоя клеток, выстилающих сосуды изнутри, препятствующее току крови. Недостаточное окостенение скелета было обнаружено у зародышей крыс, родители которых употребляли дистиллированную воду (1-годичный эксперимент). Очевидно, что недостаток минеральных веществ не восполнялся в организме крыс даже за счет питания, когда животные получали свой стандартный рацион с необходимой энергетической ценностью, питательными веществами и солевым составом.
Результаты эксперимента, проведенного учеными ВОЗ на людях-добровольцах, показали сходную картину (3), что позволило обрисовать основной механизм воздействия воды с минерализацией до 100 мг/л на обмен воды и минеральных веществ:
1) повышенные диурез (на 20 % по сравнению с нормой), уровень жидкости в организме, концентрация натрия в сыворотке; 2) пониженная концентрация калия в сыворотке; 3) повышенное выведение ионов натрия, калия, хлоридов, кальция и магния из организма.
Предположительно, вода с низкой минерализацией воздействует на осмотические рецепторы ЖКТ, вызывая усиленное выделение ионов натрия в кишечник и незначительное снижение осмотического давления в системе воротной вены с последующим активным выделением ионов натрия в кровь в качестве ответной реакции. Такие осмотические изменения в плазме крови приводят к перераспределению жидкости в организме. Увеличивается общий объем внеклеточной жидкости, происходит перемещение воды из эритроцитов и тканевой жидкости в плазму, а также распределение ее между внутриклеточной и тканевой жидкостями. Вследствие изменения объема плазмы в кровяном русле активируются рецепторы, чувствительные к объему и давлению. Они препятствуют выделению альдостерона и, как следствие, усиливается выделение натрия. Реакция рецепторов объема в сосудах может привести к снижению выделения антидиуретического гормона и повышенному диурезу. Немецкое Общество Питания пришло к подобным выводам и рекомендовало воздержаться от употребления дистиллированной воды (7). Сообщение было опубликовано в ответе немецкому изданию «Шокирующая Правда о Воде» (8), авторы которого рекомендовали употреблять дистиллированную воду вместо обычной питьевой воды. Общество в своем докладе (7) поясняет, что жидкости человеческого организма всегда содержат электролиты (калий и натрий), концентрация которых находится под контролем самого организма. Всасывание воды эпителием кишечника происходит при участии ионов натрия. Если человек выпивает дистиллированную воду, кишечник вынужден «добавлять» ионы натрия к этой воде, извлекая их из организма. Жидкость никогда не выделяется из организма в виде чистой воды, параллельно человек теряет и электролиты, вот почему необходимо пополнять их запас из пищи и воды.
Неправильное распределение жидкости в организме может повлиять даже на функции жизненно важных органов. Первые сигналы – утомляемость, слабость и головная боль; более серьезные – мышечные судороги и нарушение сердечного ритма.
Дополнительные сведения были собраны при проведении экспериментов с животными, клинических наблюдениях в некоторых странах. У животных, которых поили водой, обогащенной цинком и магнием, наблюдалась гораздо более высокая концентрация этих элементов в сыворотке крови, чем у тех, которые питались обогащенными кормами и пили слабоминерализованную воду. Интересен тот факт, что при обогащении в корма было добавлено существенно больше цинка и магния, чем в воду. Основываясь на результатах экспериментов и клинических наблюдениях пациентов с дефицитом минеральных веществ, больных, получавших внутривенное питание на дистиллированной воде, Роббинс и Слай (9) предположили, что потребление слабоминерализованной воды, было причиной усиленного вывода минералов из организма.
Постоянное употребление слабоминерализованной воды может вызвать описанные выше изменения, однако симптомы могут не проявляться, а могут проявиться и через много лет. Однако, серьезные повреждения, например, т.н. водная интоксикация или бред, могут быть следствием интенсивной физической работы и употребления некоторого количества дистиллированной воды (10). Так называемая водная интоксикация (гипонатриемический шок) может возникнуть не только как следствие потребления дистиллированной воды, но и питьевой воды вообще. Риск такой «интоксикации» возрастает с уменьшением минерализации воды. Серьезные проблемы со здоровьем возникали у альпинистов, употреблявших пищу, приготовленную на талом льду. Такая вода не содержит анионов и катионов, необходимых человеку. У детей, которые употребляют напитки, приготовленные на дистиллированной или слабоминерализованной воде, возникали такие заболевания, как отек мозга, конвульсии и ацидоз (11).
Малое поступление/отсутствие поступления кальция и магния
Кальций и магний очень важны для человека. Кальций – важная составляющая костей и зубов. Он является регулятором нервно-мышечной возбудимости, участвует в работе проводящей системы сердца, сокращении сердца и мышц, передаче информации внутри клетки. Кальций – элемент, ответственный за свертываемость крови. Магний является кофактором и активатором более чем 300 ферментативных реакций, включая гликолиз, синтез АТФ, транспорт минералов, таких как натрий, калий и кальций через мембраны, синтез белков и нуклеиновых кислот, нервно-мышечная возбудимость и мышечные сокращения.
Если оценить процентный вклад питьевой воды в общее потребление кальция и магния, станет понятно, что вода не является основным их источником. Тем не менее, значение этого источника минералов трудно переоценить. Даже в развитых странах продукты питания не могут компенсировать дефицит кальция и, особенно, магния, если питьевая вода бедна этими элементами.
Эпидемиологические исследования, проводившиеся в разных странах в течение последних 50 лет, показали, что существует связь между возросшим количеством сердечно-сосудистых заболеваний с последующим летальным исходом и потреблением мягкой воды. При сравнении мягкой воды с жесткой и богатой магнием, закономерность прослеживается очень четко. Обзор исследований сопровождается недавно опубликованными статьями (12-15), итоги подведены в других главах этой монографии (Кальдерон и Краун, Монарка). Последние исследования показали, что потребление мягкой воды, например, бедной кальцием, может привести к повышенному риску переломов у детей (16), нейродегенеративным изменениям (17), преждевременным родам и сниженному весу новорожденных детей (18) и некоторым видам рака (19,20). Кроме возрастания риска внезапной смертности (21-23), с употреблением воды, бедной магнием, связаны случаи нарушения работы сердечной мышцы (24), поздний токсикоз беременных (т.н. преэклампсия) (25), и некоторые виды рака (26-29).
Специфические сведения об изменениях в метаболизме кальция у людей, вынужденных употреблять обессоленную воду (к примеру, дистиллированную, профильтрованную через известняк) с низким содержанием кальция и минерализацией, были получены в советском городе Шевченко (3, 30, 31). У местного населения наблюдались пониженные активность щелочной фосфатазы и концентрации кальция и фосфора в плазме и выраженная декальцификация костной ткани. Ярче всего изменения были выражены у женщин (особенно беременных) и зависели от длительности проживания в городе Шевченко. Важность достаточного содержания кальция в воде установлена в вышеописанном эксперименте с крысами, получавшими полноценное питание, насыщенное питательными веществами и солями и обессоленную воду, искусственно обогащенную минеральными веществами (400 мг/л) и кальцием (5 мг/л, 25 мг/л, 50 мг/л)
(3, 32). У животных, которые пили воду, содержавшую 5 мг/л кальция, было отмечено снижение функций щитовидной железы и ряда других функций организма по сравнению с животными, которым доза кальция была удвоена.
Иногда последствия недостаточного поступления в организм некоторых веществ видны лишь спустя долгие годы, но сердечно-сосудистая система, испытывающая нехватку кальция и магния, реагирует гораздо быстрее. Несколько месяцев употребления воды, бедной кальцием и/или магнием – достаточный срок (33). Показательный пример – население Чехии и Словакии в 2000-2002 годы, когда в системе централизованного водоснабжения стали использовать метод обратного осмоса.
В течение нескольких недель или месяцев было отмечено много претензий, связанных с острой нехваткой магния (и возможно кальция) (34).
Жалобы населения касались сердечно-сосудистых заболеваний, усталости, слабости, мышечных судорог и фактически совпадали с симптомами, перечисленными в сообщении Немецкого Общества Питания (7).
Малое поступление других макро- и микроэлементов
Несмотря на то, что питьевая вода, за редким исключением, не является значительным источником важных элементов, вклад ее по некоторым причинам очень важен. Современные технологии приготовления продуктов питания не позволяют большинству людей получать достаточное количество минералов и микроэлементов. В случае острого дефицита какого-либо элемента, даже относительно малое количество его в воде может сыграть значительную защитную роль. Вещества в воде растворены и находятся в виде ионов, что позволяет им значительно легче адсорбироваться в организме человека, чем из продуктов питания, где они связаны в различные соединения.
Опыты на животных также показали важность присутствия в воде микроколичеств некоторых веществ. Например, Кондратюк (35) в отчете показал, что разница в получении микроэлементов приводила к шестикратному различию их концентраций в мышечной ткани животных. Эксперимент проводился в течение 6 месяцев; крысы были поделены на 4 группы и употребляли разную воду: а) водопроводная; б) слабоминерализованная; в) слабоминерализованная, обогащенная йодом, кобальтом, медью, марганцем, молибденом, цинком и фтором в обычных концентрациях; г) слабоминерализованная, обогащенная теми же элементами, но в 10-кратно больших количествах. Кроме того, было обнаружено, что необогащенная деминерализованная вода отрицательно влияет на процессы кроветворения. У животных, получавших необогащенную микроэлементами воду со слабой минерализацией, число красных кровяных клеток было на 19 % ниже, чем у особей, получавших обычную водопроводную воду. Разница в содержании гемоглобина была еще больше при сравнении с животными, получавшими обогащенную воду.
Последние исследования экологической ситуации в России показали, что население, потребляющее воду с малым содержанием минеральных веществ подвержено риску многих заболеваний. Это гипертензия (высокое артериальное давление) и изменения в коронарных сосудах, язва желудка и двенадцатиперстной кишки, хронический гастрит, зоб, осложнения у беременных, новорожденных и грудных детей, такие как желтуха, анемия, переломы и проблемы роста (36). Тем не менее, не до конца ясно, связаны ли все эти заболевания именно с нехваткой кальция, магния и других важных элементов или с иными факторами.
Лютай (37) провел многочисленные исследования в Усть-Илимской регионе России.
Объектом исследований стали 7658 взрослых людей, 562 ребенка и 1582 беременных женщин и их новорожденных детей; изучались заболеваемость и физическое развитие. Все эти люди делятся на 2 группы: они проживают в 2-х районах, где вода имеет разную минерализацию. В первом из выбранных районов вода характеризуется более низкой минерализацией 134 мг/л, содержание кальция и магния – 18,7 и 4,9 соответственно, гидрокарбонат иона – 86,4 мг/л. Во втором районе – более высокоминерализованная вода 385 мг/л, содержание кальция и магния – 29,5 и 8,3 соответственно, гидрокарбонат иона – 243,7 мг/л. В образцах воды из двух районов было также определено содержание сульфатов, хлоридов, натрия, калия, меди, цинка, марганца и молибдена. Культура питания, качество воздуха, социальные условия и время проживания в данном регионе у жителей двух районов были одинаковыми. Жители района с более низкой минерализацией воды чаще страдали от зоба, гипертензии, ишемической болезни сердца, язвы желудка и двенадцатиперстной кишки, хронического гастрита, холецистита и нефрита. Дети медленнее развивались и страдали некоторыми отклонениями в росте, беременные женщины – отеками и анемией, новорожденные чаще болели.
Более низкий уровень заболеваемости был отмечен там, где содержание кальция в воде составляло 30-90 мг/л, магния – 17-35 мг/л, а общая минерализация – около 400 мг/л (для воды содержащей гидрокарбонаты). Автор пришел к выводу, что такая вода близка к физиологической норме для человека.
Потери кальция, магния и других макроэлементов в процессе приготовления пищи
Стало известно, что в процессе приготовления пищи на мягкой воде из продуктов (овощи, мясо, злаки) теряются важные элементы. Потери кальция и магния могут достигать 60 %, других микроэлементов – даже больше (медь-66 %, марганец-70 %, кобальт-86 %). Напротив, во время приготовления пищи на жесткой воде, потери минералов заметно ниже, а содержание кальция в готовом блюде может даже повыситься (38-41).
Хотя большинство питательных веществ поступает с продуктами питания, приготовление пищи на слабоминерализованной воде может заметно снизить общее поступление некоторых элементов. Причем эта нехватка гораздо серьезнее, чем при использовании такой воды только в питьевых целях. Современная диета большинства людей не в состоянии удовлетворить потребностей организма во всех необходимых веществах и, следовательно, любой фактор, способствующий потере минеральных веществ в процессе кулинарной обработки, может сыграть негативную роль.
Возможный рост поступления в организм токсичных металлов
Возросший риск поступления токсичных металлов может быть следствием двух причин: 1) более интенсивное выделение металлов из материалов, контактирующих с водой, приводящее к повышенной концентрации металлов в питьевой воде; 2) низкие защитные (антитоксические) свойства воды, бедной кальцием и магнием.
Вода с малой минерализацией нестабильна и как следствие проявляет высокую агрессивность по отношению к материалам, с которыми вступает в контакт. Эта вода легче растворяет металлы и некоторые органические компоненты труб, накопительных танков и емкостей, шлангов и фитингов, не будучи при этом способной образовывать комплексные соединения с токсичными металлами, снижая этим их негативное влияние.
В 1993-1994 гг. в США было зарегистрировано 8 вспышек химических отравлений питьевой водой, среди них – 3 случая отравления грудных детей свинцом. Анализ крови этих детей показал содержание свинца 15 мкг/100 мл, 37 мкг/100 мл и 42 мкг/100 мл при том, что 10 мкг/100 мл – уже небезопасный уровень. Во всех трех случаях свинец попал в воду из медных труб и спаянных свинцом швов накопительных танков. Во всех трех системах водоснабжения использовалась вода с малой минерализацией, что привело к более активному выделению токсичных материалов (42). Первые полученные пробы воды из водопроводных кранов показали содержание свинца 495 и 1050 мкг/л свинца; соответственно у детей, которые пили эту воду, в крови было обнаружено самое высокое содержание свинца. В семье ребенка, который получил меньшую дозу, концентрация свинца в водопроводной воде составляла 66 мкг/л (43).
Кальций и, в меньшей степени, магний в воде и продуктах питания являются защитными факторами, которые нивелируют воздействие токсичных элементов. Они могут предотвратить абсорбцию некоторых токсичных элементов (свинец, кадмий) из кишечника в кровь как путем прямой реакции связывания токсинов в нерастворимые комплексы, так и за счет конкуренции при всасывании. Невзирая на то, что этот эффект ограничен, его нужно всегда учитывать. Население, употребляющее воду, бедную минеральными веществами, всегда больше подвержено риску воздействия токсичных веществ, чем то, которое пьет воду средней жесткости и минерализации.
Возможное бактериальное загрязнение воды с малой минерализацией
В целом вода склонна к бактериальному загрязнению при отсутствии следовых количеств дезинфектанта как в самом источнике, так и вследствие повторного микробного роста в распределительной системе уже после обработки. Повторный рост может также начаться в деминерализованной воде.
Бактериальному росту в распределительной системе может способствовать изначально высокая температура воды, повышение температуры по причине жаркого климата, отсутствие дезинфектанта и, возможно, бóльшая доступность некоторых питательных веществ (агрессивная по своей природе вода легко разъедает материалы, из которых сделаны трубы).
Несмотря на то, что неповрежденная мембрана очистки воды должна в идеале удалять все бактерии, но она может и не быть абсолютно эффективной (из-за течей). Свидетельство – вспышка брюшного тифа в Саудовской Аравии в 1992 г. вызванная водой прошедшей обработку в системе обратного осмоса (51). В наше время фактически вся вода перед попаданием к потребителю проходит дезинфекцию. Повторный рост непатогенных микроорганизмов в воде обработанной с помощью различных домашних систем очистки описан в работах групп Гельдрейха (52), Пэймента (53, 54) и многих других. Чешский Национальный институт Общественного Здоровья в Праге (34) протестировал ряд изделий, предназначенных для контакта с питьевой водой и обнаружил, что емкости под давлением для обратного осмоса предрасположены к повторному росту бактерий: внутри танка находится резиновая груша, которая является благоприятной для бактерий средой.
www.live-wtr.ru
Деминерализация воды - важный этап подготовки воды для промышленных целей
Существует ошибочное мнение, что вода по своему составу является нейтральным жидким раствором. Но это не совсем так. В воде есть соли, присутствие которых в особых условиях делает воду электрически и химически активной. Это отрицательно сказывается на работе выпускаемых изделий и функциональности отдельных видов оборудования. Важным звеном в производственных технических процессах является особая стадия водоподготовки - деминерализация воды.
Процесс, при использовании которого из воды удаляются все минеральные вещества, называют процессом деминерализации воды. Существует четыре способа деминерализации воды: деионизация, обратный осмос, дистилляция и электродиализ.
Деионизация - это процесс, при проведении которого применяют метод ионного обмена. При проведении деионизации вода проходит обработку в двух слоях ионообменного материала. Это делается с той целью, чтобы удаление всех присутствующих в воде солей было наиболее эффективным. Одновременно или последовательно, при деионизации используются катиобменная смола и аниобменная смола. Все растворимые в воде соли состоят из катионов и анионов. Далее смесь двух указанных смол в деминерализируемой воде полностью заменяет их на ионы водорода Н+ и гидроксила ОН-. В результате проведения химической реакции, эти ионы объединяются и происходит создание молекулы воды. При таком процессе происходит фактически полное обессоливание воды. Очень широкое распространение деионизированная вода получила в промышленности, химической, фармацевтической отраслях, при промышленной обработке кожи. Ранее такая вода применялась при производстве электронно-лучевых телевизоров.
Электродиализ - метод, основанный на способности перемещения под действием электрического поля в воде ионов. Снижение концентрации солей происходит в ограниченном ионообменными мембранами объеме.
Метод дистилляции основывается на выпаривании с последующей концентрацией пара обрабатываемой воды. Данный способ деминерализации воды не получил широкого распространения, так как является слишком энергоемким, более того, в процессе дистилляции образуется накипь на стенках испарителя.
Наиболее распространенным способом деминерализации воды является обратный осмос. Этот способ деминерализации воды давно признан высокопрофессиональным. Изначально способ очистки воды методом обратного осмоса был предложен для опреснения морской воды. Однако в последующем выяснилось, что способ деминерализации воды методом обратного осмоса вместе с фильтрацией и ионным обменом способен значительно расширить возможности очистки воды.
Принцип деминерализации воды методом обратного осмоса заключается в том, что вода "проталкивается" через тонкопленочную полупроницаемую мембрану. Поры мембраны настолько малы, что пройти через них может только вода и низкомолекулярные газы, к числу которых относят кислород и углекислый газ. В результате такой обработки все примеси остаются на мембране и в дальнейшем сливаются в дренаж.
По эффективности очистки мембранные системы не имеют конкурентов. Они способны очистить воду на 97-99,99% по любому из видов загрязнений. В результате при применении метода обратного осмоса получается вода дистиллированная или сильно обессоленная. Метод водоподготовки в промышленности путем обратного осмоса имеет свои особенности. Одной из основных таких особенностей является то, что проводить глубокую очистку на мембране можно только той воды, которая прошла предварительную комплексную очистку от песка, ржавчины и прочих аналогичных водонерастворимых взвесей.
Особенно важно, чтобы подготавливаемая к деминерализации вода была очищена от хлора и хлорорганических соединений, способных разрушить материал мембраны.
Как понять, что вода абсолютно деминерализована? Параметры воды после деминерализации должны соответствовать следующим показателям: значение удельного электрического сопротивления должно находиться в пределах 3-18 МоМ*см при температуре водной среды в 20°С; уровень pH должен составлять 6,5-8; содержание кремниевой кислоты - менее 20 мкг/л; полная жесткость - менее 1 ммоль/л.
Смотрите также:
www.bwt.ru