Физические свойства морской воды. Морская вода физические свойства


Вопрос 33 - Мировой океан. Физические свойства морской воды.

megapredmet.ru



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как определить диапазон голоса - ваш вокал

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший "Салат из свеклы с чесноком"

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Как слышать голос Бога

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Мирово́й океа́н — основная часть гидросферы, непрерывная, но не сплошная водная оболочка Земли, окружающая материки и острова, и отличающаяся общностью солевого состава. Мировой океан покрывает почти 70 % земной поверхности.

Общие физико-географические сведения[6]:

· Средняя температура: 5 °C;

· Среднее давление: 20 МПа;

· Средняя плотность: 1,024 г/см³;

· Средняя глубина: 3711 м[источник не указан 339 дней];

· Общая масса: 1,4·1021 кг;

· Общий объём: 1370 млн км³[7];

· pH: 8,1±0,2.

Глубочайшей точкой океана является Марианский жёлоб, находящийся в Тихом океане вблизи Северных Марианских островов. Его максимальная глубина — 11 022 м.

Физические свойства

Плотность морской воды колеблется в пределах от 1020 до 1030 кг/м³ и зависит от температуры и солености. При солености, превышающей 24‰, температура максимальной плотности становится ниже температуры замерзания[10] — при охлаждении морская вода всегда сжимается, и плотность её растет[11].

Скорость звука в морской воде — около 1500 м/с.

Свойства морской воды с солёностью 35 ‰:[1]
  Морская вода Чистая вода
Плотность при 25 °C, г/см3: 1,02412 0,9971
Вязкость при 25 °C, миллипуаз: 9,02 8.90
Давление пара при 20 °C, мм. рт. ст.: 17,35 17,54
Температура максимальной плотности, °C: -3,52 (переохлаждённая жидкость) +3,98[1]
Точка замерзания, °C: -1,91 0,00
Поверхностное натяжение при 25 °C, дин/см: 72,74 71,97
Скорость звука при 0 °C, м/с:
Удельная теплоёмкость при 7,5 °C, Дж/(г·°C): 3,898 4,182

Как известно, за международную единицу измерения массы принят килограмм. Платиновый килограммовый эталон хранится в Палате мер и весов в Париже, а очень точные дубликаты имеются в аналогичных учреждениях многих стран. Но почему именно килограмм (а не фунт, унция или золотник) принят теперь во всем мире за единицу измерения массы? Дело в том, что все другие единицы были произвольными, а килограмм имеет свой природный эквивалент: такова масса одного кубического дециметра воды при 4 градусах Цельсия.

Учитывать температуру совершенно необходимо, так как с ее изменением меняется и плотность воды. Всякая ли вода годится для установления эталона массы? В учебниках об этом обычно ничего не говорится, так как в данном случае под словом «вода» подразумевают вовсе не ту жидкость, которая течет из водопроводного крана, а химически чистое вещество: воду, подвергшуюся специальной обработке или же синтезированную из водорода и кислорода и не содержащую никаких примесей.

Морская вода, представляющая собой сложный раствор, таким требованиям совершенно не удовлетворяет: ее физические свойства, в том числе и плотность, значительно отличаются от свойств химически чистой воды. В среднем плотность морской воды равна 1,025 грамма на кубический сантиметр. Стало быть, ее литр на 25 граммов тяжелее пресной. Но плотность воды неодинакова по всему Мировому океану, она несколько меняется в зависимости от солености и температуры. Чем выше соленость, тем больше и плотность. Зависимость плотности от температуры обратная: чем вода теплее, тем плотность ее меньше. Так, наименьшая плотность морской воды — 1,022 грамма на кубический сантиметр — была отмечена в поверхностных слоях экваториальной зоны Тихого океана, а наибольшая—1,028 грамма на кубический сантиметр — вблизи океанского дна.

Даже незначительное изменение плотности морской воды влечет за собой весьма существенные последствия. Так, при охлаждении верхних слоев океана вода становится плотнее и опускается. Навстречу ей устремляются менее плотные глубинные воды. Возникают вертикальные токи. В сочетании с горизонтальными течениями они придают Мировому океану вид слоеного пирога, каждый слой которого характеризуется своими особыми показателями плотности, солености и температуры. Благодаря вертикальным токам вода в океане до известной степени перемешивается, в глубину проникают насыщенные кислородом поверхностные воды, из придонных слоев поднимаются богатые биогенными солями придонные массы воды.

Азбучная истина о том, что вода замерзает при О градусов, не распространяется на морскую воду. Из-за растворенных солей она остается жидкой и при отрицательной температуре. Только охлажденная ниже минус 1,9 градуса Цельсия, она начинает переходить в твердое состояние. Правда, это касается только воды с нормальной океанической соленостью. Если же в ней растворено не 35 граммов соли на килограмм, а меньше, то она станет замерзать при более высокой температуре. Так, Азовское море, соленость которого равна 12 промилле, замерзает при 0,6 градуса ниже нуля, а Белое море (соленость его 25 промилле) — при 1,4 градуса ниже нуля.

Когда изменяется агрегатное состояние пресной воды, ее состав не меняется. Совсем иначе обстоит дело с морской водой. Замерзание моря начинается с образования тонких, похожих на иглы ледяных кристалликов, совершенно лишенных соли. Если в этот момент марлевым сачком собрать такие иглы и растопить, то получится вполне чистая пресная вода. Естественно, что на первых порах образования льда соленость верхних слоев воды несколько повышается за счет поступления в эти слои тех порций соли, которые не вошли в кристаллические ледяные иглы. Только потом, когда начинается смерзание комков этих кристаллов, лед также становится соленым, но его соленость все же ниже солености окружающей морской воды. Во время таяния льда прилежащие слои воды несколько распресняются.

Распространение в морской воде световых и звуковых волн также имеет свои особенности. Еще 20— 25 лет назад большинство людей могло судить о том, как выглядит подводный мир, только Наблюдая его через поверхность воды. Но с тех пор, как подводные очки и маски повсюду вошли в моду, любой желающий может лично познакомиться с красотами царстве Нептуна. При этом стала очевидной одна весьма существенная деталь: в маске не очень хорошо виден подводный мир реки, в море же видимость превосходна. Удивительного в этом ничего нет: морская воде значительно прозрачнее воды большинства пресноводных водоемов.

Самая высокая прозрачность отмечена в центральной части Атлантического океана, где служащий эталоном белый металлический круг диаметром в 30 сантиметров — «диск Секки» — виден через поверхность воды на глубине более 65 метров. Прозрачность вод Тихого и Индийского океанов несколько меньше и равна соответственно 60 и 50 метрам. Чем ближе к берегу, тем больше в морской воде различных взвешенных частиц и мельчайших планктонных организмов, поэтому прозрачность там ниже, чем в открытом океане.

В Средиземном море «диск Секки» не виден уже на глубине 30 метров, в Черном море — на глубине 20 метров, а в Балтийском — даже на 13 метрах. В большинстве пресноводных водоемов прозрачность воды не превышает 10 метров, в реках она, как правило, значительно меньше, иногда лишь 0,5—1 метр. Только в Байкале, который славится чистотой своей воды, ее прозрачность равна 30—40 метрам.

По сравнению с атмосферой водная среда пропускает свет хуже, потому что сильнее поглощает его и рассеивает. Когда солнце находится в зените (это возможно только в тропиках), в воду проникает почти весь его световой поток; косые же лучи утреннего или полуденного времени в значительной степени отражаются водной гладью. Поэтому сумерки под водой наступают раньше, чем на суше; день там короче, а ночь длиннее.

Даже в прозрачной воде открытых частей океана яркость света убывает с глубиной примерно в десять раз на каждые 50 метров. Человек, совершающий глубоководное погружение, уже ниже 400 метров не различает за стеклом иллюминатора аппарата никаких следов дневного света. Правда, чувствительная фотографическая пластинка после часовой экспозиции на глубине 1000 метров при проявлении темнеет, но на глубине 1700 метров она вообще не засвечивается.

Прозрачность морской воды неодинакова для разных частей видимого спектра: более короткие световые волны (фиолетовая часть спектра) проникают через нее легче и дальше, чем длинные (красная часть спектра). Первыми в море поглощаются красные лучи, поэтому на глубине более метра красные предметы кажутся уже не такими яркими, как на воздухе. Синие и фиолетовые лучи проникают значительно дальше, они придают подводным пейзажам своеобразный цветовой колорит, за который освещаемая днем часть морского дна получила образное название «голубого континента».

На глубине цвет самых обыденных и хорошо известных предметов меняется до неузнаваемости. Жак Кусто рассказывает: «Мы брали с собой таблицы с ярко-красными, голубыми, желтыми, зелеными, пурпурными и оранжевыми квадратами, а также шкалу серых тонов от белого до черного и фотографировали на различной глубине вплоть до сумеречной зоны. На глубине пять метров красный цвет казался розовым, а на двенадцатом метре абсолютно черным. Одновременно исчезал и оранжевый цвет. На глубине 35 метров желтый цвет начал превращаться в зеленый, здесь царит уже почти полная монохроматия.

Как-то раз мы охотились в море под уединенными скалами Ла Кассадань. Нырнув на 35 метров, Дюма подстрелил гигантскую ставриду. Гарпун прошел сквозь тело позади головы, но не задел позвоночника. Загарпуненная рыба отчаянно сопротивлялась. Дюма стал подтягиваться все ближе и ближе к ставриде по тросу. Наконец он подобрался вплотную, схватил кинжал и вонзил его прямо в сердце рыбины. Кровь брызнула мощным фонтаном.

Но кровь была зеленая! Ошеломленный этим зрелищем, я подплыл и уставился на струю. Она была изумрудного цвета. Мы с Дюма переглянулись в недоумении. Мы не раз плавали среди гигантских ставрид, но никогда не подозревали, что у них зеленая кровь. Потрясая гарпуном со своим поразительным трофеем, Дюма направился к поверхности. На глубине пятнадцати метров кровь стала коричневой. Шесть метров — она уже розовая, а на поверхности она растеклась алым потоком».

Цвет моря зависит именно от того, что часть лучей поглощается морской водой. Чем вода чище и прозрачней, тем синее цвет. Впервые попав в открытый океан, трудно поверить, что вода в нем не подкрашена. Ближе к материкам цвет воды зеленеет от примеси взвешенных частиц, у самого берега он может быть желтоватым. Вообще говоря, чистая вода обладает крайне низкой по сравнению с другими жидкостями способ» полностью рассеивать свет. Это связано с тем, что рассеяние в любой чистой оптической среде происходит из-за неоднородности ее плотности. Вода же в отличи от многих других жидкостей очень малосжимаема, поэтому плотность ее почти однородна. По-видимому, наблюдающееся светорассеяние в чистой морской воде и в воде чистых горных озер связано с наличием в ней мельчайших пузырьков воздуха.

При отражении от морской поверхности спектральный состав света не меняется. А поскольку источником света обычно служит небосвод, то его цвет и придает окраску морской воде. Чем чище небо, чем меньше в нем облаков и аэрозолей (дымов и пыли), тем оно синее и тем синее должен быть дальний план морской поверхности, поскольку дальний план отражает значительно большую часть света, чем передний. Практически можно считать, что дальний план в этом смысле начинается, когда луч зрения составляет с морской поверхностью угол менее 10 градусов; для человека, стоящего на борту судна высотой около 4 метров, эта зона начинается приблизительно на расстоянии 20—30 метров.

Вода служит хорошим проводником для звука. До тех пор, пока человек не проник во владения Нептуна, они казались ему безмолвными. Поэт В. Жуковский так представлял себе тишину подводного мира: «Все спало для слуха в той бездне глухой». Но ведь ни он сам, ни Ф. Шиллер, балладу которого «Ныряльщик» под новым названием «Кубок» перевел В. Жуковский, никогда не были под водой. Они лишь выражали в поэтической форме господствовавшее тогда общее мнение о полной тишине, царящей в морских глубинах. Действительно, человеческое ухо, приспособленное к воздушной среде, не воспринимает звуки, исходящие из воды, но стоит применить простейшие слуховые аппараты, как подводный мир окажется наполненным самыми разнообразными звуками.

В годы первой мировой войны по всем морям и океанам безнаказанно разбойничали немецкие подводные лодки, обнаружить которые военные корабли союзников никак не могли. Но вот удалось изготовить и спустить в воду гидрофоны. На оборудованных ими военных судах — охотниках за субмаринами — натренированные операторы с наушниками — «слухачи» — стали среди тысяч звуков распознавать шумы винтов немецких подводных лодок. Поначалу, правда, не только проплывающий кит, но даже стая сельдей нередко служили поводом для боевой тревоги.

Подводный мир оказался вовсе не безмолвным. Большой знаток морских животных зоолог Н. Тарасова так описывает подводную симфонию вблизи Севастополя: «...Непрекращающееся щелканье бесчисленного множества рачков-альфеусов, в которое по временам врываются «стоны» горбылей или ритмичное урчание морских петухов, а то и лающий «скрежет зубовный» ставрид, наполняют воду разнообразными и громкими звуками».

Услышать голос морских обитателей теперь можно и у себя дома, поставив на проигрыватель пластинку с записями звуков, демонстрирующих «голосовые» возможности некоторых видов рыб и водных беспозвоночных животных.

Звук распространяется в воздухе с постоянной скоростью 340 метров в секунду. В воде он успевает за это же время пробежать расстояние в 4,5 раза больше. Но скорость эта непостоянна и зависит от температуры, солености и давления воды, то есть в конечном счете от ее плотности. В воде с нормальной океанической соленостью при нуле градусов вблизи поверхности скорость звука равна 1440 метрам в секунду. На глубине 10 километров при тех же прочих условиях его скорость возрастает до 1630 метров в секунду. В нагретых до 30 градусов поверхностных водах тропической зоны океана скорость звука повышается до 1543 метров в секунду.

Ультразвук, то есть акустические волны с частотой свыше 16 тысяч колебаний в секунду, уже не воспринимаемый человеческим ухом, поглощается водной средой гораздо сильнее, чем звуки низкой частоты, но зато его можно направлять в виде узкого пучка. Эта особенность ультразвуковых колебаний использована в эхолоте, с помощью которого точно и быстро измеряется глубина. От специального ультразвукового датчика, помещенного на судне, через небольшие промежутки времени вертикально вниз посылается ультразвуковой сигнал. Отразившись от дна, он возвращается обратно и улавливается чувствительной приемной аппаратурой.

Зная скорость прохождения ультразвука и определив время между посылкой и возвращением сигнала, можно легко вычислить расстояние от поверхности до дна. В современных приборах регистрация глубины производится автоматически, а самописец на бумажной ленте вычерчивает кривую, соответствующую профилю дна моря. Так как скорость ультразвука, как и слышимых звуков, зависит от солености, температуры и давления воды, в данные эхолота необходимо вносить поправки.

Моряки, пользующиеся эхолотом, давно заметили, что любые препятствия, находящиеся между поверхностью моря и его дном, также регистрируются на ленте прибора. Оказалось возможным, слегка видоизменив эхолот, использовать его для поисков скоплений промысловых рыб. Хорошо натренированный специалист по характеру кривой на ленте может не только определить местонахождение и размер стаи, но и сказать, к какому виду относятся составляющие ее рыбы.

Физические свойства морской воды

Количество просмотров публикации Физические свойства морской воды - 320

Химический состав морской воды.

План

Морской воды

Лекция № 2 Тема Химико - физические свойства

УДК: 656.62.052.4:551.5 (075) Кузнецов Ю.М. к.т.н., доцент,

кафедры ʼʼСудовождениеʼʼ

1. Химический состав морской воды

2. Физические свойства морской воды.

3. Цвет и прозрачность, свечение и цветение моря, морское обрастание.

Морская вода является очень разбавленным и почти полностью ионизированным раствором. В ней кроме твердых веществ , составляющих по весу не более 4 %, растворены газы: азот, кислород, углекислый газ и в некоторых случаях сероводород (Черное, Каспийское море).

Морская вода состоит из 96,5 % пресной воды и 3,5 % солей, растворенных газов и взвесей. Считается, что в морской воде в различной концентрации содержатся более 72 элементов таблицы Менделœеева.

Общее содержание растворенных минœеральных веществ в единице массы морской воды исходя из притока речных вод, выпадения атмосферных осадков, испарения и таяния льдов может изменяться в довольно широких пределах (от 2 до35 г/кг), но процентное содержание солевого состава воды остается постоянным (закон постоянства солевого состава морской воды).

По своему солевому составу морская вода резко отличается от речной (табл.1)

Таблица 1- Солевой состав воды

Вещества Морская, % Речная, %
Хлориды Сульфаты Карбонаты Соединœения азота͵ фосфора, кремния и органическое вещество 88.7 10,8 0,3 0,2 5,2 9,9 60,1 24,8    

Химический состав главнейших растворенных в морской воде ионов приведен в табл. 2.

Таблица 2 -Процентное содержание ионов в морской воде

Катионы Содержание, % Анионы   Содержание, %
Натрий 38,7 Хлор 45,1
Магний 8,8 Сульфат-ион 4,6
Кальций 1,7 Карбонат-ион 0,2
Калий 0,8 Бром 0,1

К физическим свойствам морской воды относятся: соленость, температура плотность, оптические и акустические свойства.

Морская вода обладает горько-солёным вкусом и большим, чем у пресной воды, удельным весом. Соленый вкус морской воде придает хлористый натрий (поваренная соль), а горький – хлористый магний.

Соленостью принято называть количество солей в граммах, растворённых в килограмме морской воды. Средняя солёность воды Мирового океана 35г на 1кг воды или 35%О (промилле). В отдельных районах исходя из гидрологических и климатических условий соленость может резко отклоняться от средней. Солёность Чорного моря у поверхности состаляет18%О,на глубинœе> 1км - 22%О, Азовского - 12%О Средиземного 38-39%О , Персидского залива 38-40%О.

Минимум солёности расположен в высоких широтах (на широте 10º–34,72%О), максимум на широте 30°–35,56%О.

Установлена связь между соленостью и относительной электропроводностью морской воды:

S = ∑ ƒ (R15) (1)

где S - соленость. %О.

R15 - относительная электропроводность при температуре 15 оС.

Под относительной электропроводностью принято понимать отношение удельной электропроводности проб морской воды к удельной электропроводности воды, имеющей соленость 35 %О.

На базе зависимости (1) сконструированы судовые солемеры

ГМ-55, ГМ-56, ГМ-65, которые определяют соленость воды по ее относительной электропроводности.

Основными причинами уменьшения солености морской воды за счёт ее опреснения являются выпадение атмосферных осадков и интенсивные таяния льда в высоких широтах , а увеличение ее солености происходит вследствие испарения частиц чистой воды с поверхности морей и океанов.

Изменение солёности с глубиной зависит в основном от перемешивания водных масс при движении. Существенное увеличение солёности с глубиной происходит до 1000–5000м. Ниже – колебание солёности малы. К примеру, в полярных областях, начиная с глубины 200м и до дна, солёность не меняется. В морях величина солености, как на поверхности, так и на глубинœе, меняется в значительно больших пределах, чем в океанах.

Температура морской воды. Основными факторами, которые непрерывно изменяют температуру морской воды являются: суммарное действие прямой и рассеянной солнечной радиации, эффективное излучение системы вода- атмосфера, конвекция и испарение. В прибрежной зоне на температуру морской воды оказывает влияние еще и сток речных вод.

Повышению температурыморской воды способствуют:

- поглощение морем прямой и рассеянной солнечной радиации,

- излучение из более теплой атмосферы в более холодный океан.

- конденсация влаги из атмосферы над более холодным океаном,

- выпадение осадков, более теплых, чем поверхностные слои океанов.

Понижение температурыводы происходит за счет:

- излучения океана в атмосферу,

- испарения,

- конвекции в атмосфере,

- выпадения на поверхность океанов более холодных осадков.

В восточных частях океана обоих полушарий в тропической зоне изотермы сходятся к экватору, в западных частях – отходят от него. Такое расположение изотерм связывает с режимом поверхностных течений воды – с востока на запад к северу и к югу - пассатные течения. Здесь температура поверхностных вод океана составляет в среднем 28°, к югу и северу понижается до 0 на широтах 60º Ю.Ш. и 75° С.Ш.

Средняя температура океана летом +18°, зимой +10. Температура замерзания морской воды при S=35%О равна – 1,9°С, кипения 100,53°.

В северном полушарии температура выше на соответствующих высотах. Разница объясняется постоянным охлаждающим влиянием Антарктики, льды которой доходят до умеренных широт всœех 3х океанов.

В Атлантическом океане заметное влияние на режим температуры показывает тёплое течение Гольфстрим, в Тихом океане Куро-Сио.

Суточные колебания температуры воды редко превышают 1°С. Наибольшая температура в северном полушарии наблюдается в августе, в южном - в феврале.

Изменение температуры воды с глубиной зависит как от лучистой энергии солнца (прямая теплопередача) так и от вертикального перемешивания воды при штормовой погоде.

Тепло солнечной радиации распространяется на глубину до 100м (глубже темнота), а ветровое перемешивание захватывает слои воды не более 200м. Суточное колебание температуры прослеживаются до глубины не более 30м от поверхности, а годовые колебания до глубины 350–450м. Ниже температура постоянна.

На глубинœе 3000–4000м температура в разных местах океанов находится в пределах от +2 до -1°.

Тепловой режим океана оказывает существенное влияние на годовой ход температуры воздуха над океаном и материками.

Плотность морской воды.Под плотностью принято понимать отношение массы вещества к его объёму, т.е это масса единицы объёма.

кг/м3 (2).

В океанографии и судовождении для решения практических задач используется относительная плотность d , под которой понимают отношение массы единицы объёма воды при температуре t оС к массе единицы объёма дистиллированной воды при 4 оС, обозначается S .

Относительная плотностьморской воды зависит от солёности и температуры. При t=0°C, S=35 %О ρ=1.028г/м3. Плотность уменьшается от полюсов к экватору. Наименьшая плотность в тропиках, там же и наименьшая солёность.

Для удобства записи применяют величину условной плотности

σt = (d - 1)103 (3)

Так, к примеру, в случае если по ʼʼОкеанологическим таблицамʼʼ относительная плотность морской воды d при t = 20 оС и солености S = 35 %О в полном выражении составляет 1,0247781, то условная плотность в данном случае будет иметь вид 24,7781.

Плотность имеет большое значение при расчете изменения осадки судов в водах различной плотности. Для этого используется формула:

∆d = , (4)

где ∆d - изменение осадки,

∆ - объёмное водоизмещение,

ρ1 и ρ2 - относительные плотности морской воды.

В Мировом океане встречаются следующие характерные изменения относительной плотности морской воды и соответствующие осадки судов.

1. Вода малой солености (<5 ‰) летом при температуре > 20 оС, относительная плотность d = 1.0009, характерна для устьев рек. Осадка судов в таких районах наибольшая.

2. Вода малой солености (<5 ‰) осœенью при температуре 1-3оС. Относительная плотность пониженная d = 1,0032, характерно для районов портов в устьях рек. Осадка судов близка к наибольшей.

3. Вода высокой солености (>30 ‰) и сильно прогретая, d =1,0217. Такие условия наблюдаются в тропической и экваториальной зонах океанов. Осадка судов близка к минимальной.

4. Вода имеет высокую соленость (>30 ‰) и низкую температуру (1-3 оС). Относительная плотность максимальная - d = 1,0264. Такие условия встречаются у Мурманского побережья в осœенне- зимний период. Осадка судов минимальная.

5. Вода имеет соленость менее 20 ‰ и высокую температуру порядка 20-30 оС.

Относительная плотность близка к среднему значению. Такие условия характерны для Азовского и Черного морей. Осадка судов средняя.

Сведения о плотности воды в открытых морях снять с карт №19 и№20 2-го тома Морского Атласа или с карт ʼʼАтласов океановʼʼ.

В портах сведения о фактической плотности морской воды бывают получены на портовой гидрометеостанции.

Оптические свойства морской воды отличаются тем, что морская вода вдали от берегов более прозрачна, чем пресная речная. При этом, даже в наиболее чистой океанической воде только 1% световой энергии проникает ниже 100м. Солнечный свет можно увидеть только в верхнем 100 метровом слое океана; более 97% объёма Мирового океана находится в состоянии вечной темноты.

По мере погружения в глубь океана солнечный свет быстро исчезает, и цвет его изменяется от белого к голубому. Многие из обитателœей морского дна окрашены в яркие цвета. При этом они невидимы при естественном освещении и обнаруживаются только при искусственном освещении.

Поглощение света значительно ограничивает видимость с подводных лодок. В чистой океанической воды можно получить отчётливые фотографии предметов только на расстоянии 5–7м от камеры, а на расстоянии до 10м картина резко ухудшается. Во многих прибрежных районах оптические наблюдения практически невозможны.

В 10 метровом слое морской воды наблюдается полное поглощение 100% коротких (ультрафиолетовых) и длинных (инфракрасных) волн. Минимальное поглощение наблюдается вблизи 0,47мкн (окно прозрачности), в голубой части спектра, но даже энергия голубого света уменьшается вдвое на глубинœе 47м.

Акустические свойства морской воды несколько отличаются от акустических свойств пресной воды. Так, в случае если скорость звука в пресной воде в среднем составляет при температуре 150 С –1462 м/с, то в морской воде –1500м/с. Учитывая зависимость отдавления, температуры и солёности она изменяется следующим образом:

- при увеличении глубины на 1км на +11%,

- при увеличении температуры на 1°С на +0,3%,

- при увеличении солёности на 1%Она +0,09%.

Для измерения глубины используются эхолоты, принцип действия которых основан на измерении времени прохождения ультразвукового сигнала от излучателя до приёмника, отразившегося от дна океана.

referatwork.ru

Физические свойства морской воды - Легкое дело

Физические свойства морской воды

Как известно, за международную единицу измерения массы принят килограмм. Платиновый килограммовый эталон хранится в Палате мер и весов в Париже, а очень точные дубликаты имеются в аналогичных учреждениях многих стран. Но почему именно килограмм (а не фунт, унция или золотник) принят теперь во всем мире за единицу измерения массы? Дело в том, что все другие единицы были произвольными, а килограмм имеет свой природный эквивалент: такова масса одного кубического дециметра воды при 4 градусах Цельсия.

Учитывать температуру совершенно необходимо, так как с ее изменением меняется и плотность воды. Всякая ли вода годится для установления эталона массы? В учебниках об этом обычно ничего не говорится, так как в данном случае под словом «вода» подразумевают вовсе не ту жидкость, которая течет из водопроводного крана, а химически чистое вещество: воду, подвергшуюся специальной обработке или же синтезированную из водорода и кислорода и не содержащую никаких примесей.

Морская вода, представляющая собой сложный раствор, таким требованиям совершенно не удовлетворяет: ее физические свойства, в том числе и плотность, значительно отличаются от свойств химически чистой воды. В среднем плотность морской воды равна 1,025 грамма на кубический сантиметр. Стало быть, ее литр на 25 граммов тяжелее пресной. Но плотность воды неодинакова по всему Мировому океану, она несколько меняется в зависимости от солености и температуры. Чем выше соленость, тем больше и плотность. Зависимость плотности от температуры обратная: чем вода теплее, тем плотность ее меньше. Так, наименьшая плотность морской воды — 1,022 грамма на кубический сантиметр — была отмечена в поверхностных слоях экваториальной зоны Тихого океана, а наибольшая—1,028 грамма на кубический сантиметр — вблизи океанского дна.

Даже незначительное изменение плотности морской воды влечет за собой весьма существенные последствия. Так, при охлаждении верхних слоев океана вода становится плотнее и опускается. Навстречу ей устремляются менее плотные глубинные воды. Возникают вертикальные токи. В сочетании с горизонтальными течениями они придают Мировому океану вид слоеного пирога, каждый слой которого характеризуется своими особыми показателями плотности, солености и температуры. Благодаря вертикальным токам вода в океане до известной степени перемешивается, в глубину проникают насыщенные кислородом поверхностные воды, из придонных слоев поднимаются богатые биогенными солями придонные массы воды.

Азбучная истина о том, что вода замерзает при О градусов, не распространяется на морскую воду. Из-за растворенных солей она остается жидкой и при отрицательной температуре. Только охлажденная ниже минус 1,9 градуса Цельсия, она начинает переходить в твердое состояние. Правда, это касается только воды с нормальной океанической соленостью. Если же в ней растворено не 35 граммов соли на килограмм, а меньше, то она станет замерзать при более высокой температуре. Так, Азовское море, соленость которого равна 12 промилле, замерзает при 0,6 градуса ниже нуля, а Белое море (соленость его 25 промилле) — при 1,4 градуса ниже нуля.

Когда изменяется агрегатное состояние пресной воды, ее состав не меняется. Совсем иначе обстоит дело с морской водой. Замерзание моря начинается с образования тонких, похожих на иглы ледяных кристалликов, совершенно лишенных соли. Если в этот момент марлевым сачком собрать такие иглы и растопить, то получится вполне чистая пресная вода. Естественно, что на первых порах образования льда соленость верхних слоев воды несколько повышается за счет поступления в эти слои тех порций соли, которые не вошли в кристаллические ледяные иглы. Только потом, когда начинается смерзание комков этих кристаллов, лед также становится соленым, но его соленость все же ниже солености окружающей морской воды. Во время таяния льда прилежащие слои воды несколько распресняются.

Распространение в морской воде световых и звуковых волн также имеет свои особенности. Еще 20— 25 лет назад большинство людей могло судить о том, как выглядит подводный мир, только Наблюдая его через поверхность воды. Но с тех пор, как подводные очки и маски повсюду вошли в моду, любой желающий может лично познакомиться с красотами царстве Нептуна. При этом стала очевидной одна весьма существенная деталь: в маске не очень хорошо виден подводный мир реки, в море же видимость превосходна. Удивительного в этом ничего нет: морская воде значительно прозрачнее воды большинства пресноводных водоемов.

Самая высокая прозрачность отмечена в центральной части Атлантического океана, где служащий эталоном белый металлический круг диаметром в 30 сантиметров — «диск Секки» — виден через поверхность воды на глубине более 65 метров. Прозрачность вод Тихого и Индийского океанов несколько меньше и равна соответственно 60 и 50 метрам. Чем ближе к берегу, тем больше в морской воде различных взвешенных частиц и мельчайших планктонных организмов, поэтому прозрачность там ниже, чем в открытом океане.

В Средиземном море «диск Секки» не виден уже на глубине 30 метров, в Черном море — на глубине 20 метров, а в Балтийском — даже на 13 метрах. В большинстве пресноводных водоемов прозрачность воды не превышает 10 метров, в реках она, как правило, значительно меньше, иногда лишь 0,5—1 метр. Только в Байкале, который славится чистотой своей воды, ее прозрачность равна 30—40 метрам.

По сравнению с атмосферой водная среда пропускает свет хуже, потому что сильнее поглощает его и рассеивает. Когда солнце находится в зените (это возможно только в тропиках), в воду проникает почти весь его световой поток; косые же лучи утреннего или полуденного времени в значительной степени отражаются водной гладью. Поэтому сумерки под водой наступают раньше, чем на суше; день там короче, а ночь длиннее.

Даже в прозрачной воде открытых частей океана яркость света убывает с глубиной примерно в десять раз на каждые 50 метров. Человек, совершающий глубоководное погружение, уже ниже 400 метров не различает за стеклом иллюминатора аппарата никаких следов дневного света. Правда, чувствительная фотографическая пластинка после часовой экспозиции на глубине 1000 метров при проявлении темнеет, но на глубине 1700 метров она вообще не засвечивается.

Прозрачность морской воды неодинакова для разных частей видимого спектра: более короткие световые волны (фиолетовая часть спектра) проникают через нее легче и дальше, чем длинные (красная часть спектра). Первыми в море поглощаются красные лучи, поэтому на глубине более метра красные предметы кажутся уже не такими яркими, как на воздухе. Синие и фиолетовые лучи проникают значительно дальше, они придают подводным пейзажам своеобразный цветовой колорит, за который освещаемая днем часть морского дна получила образное название «голубого континента».

На глубине цвет самых обыденных и хорошо известных предметов меняется до неузнаваемости. Жак Кусто рассказывает: «Мы брали с собой таблицы с ярко-красными, голубыми, желтыми, зелеными, пурпурными и оранжевыми квадратами, а также шкалу серых тонов от белого до черного и фотографировали на различной глубине вплоть до сумеречной зоны. На глубине пять метров красный цвет казался розовым, а на двенадцатом метре абсолютно черным. Одновременно исчезал и оранжевый цвет. На глубине 35 метров желтый цвет начал превращаться в зеленый, здесь царит уже почти полная монохроматия.

Как-то раз мы охотились в море под уединенными скалами Ла Кассадань. Нырнув на 35 метров, Дюма подстрелил гигантскую ставриду. Гарпун прошел сквозь тело позади головы, но не задел позвоночника. Загарпуненная рыба отчаянно сопротивлялась. Дюма стал подтягиваться все ближе и ближе к ставриде по тросу. Наконец он подобрался вплотную, схватил кинжал и вонзил его прямо в сердце рыбины. Кровь брызнула мощным фонтаном.

Но кровь была зеленая! Ошеломленный этим зрелищем, я подплыл и уставился на струю. Она была изумрудного цвета. Мы с Дюма переглянулись в недоумении. Мы не раз плавали среди гигантских ставрид, но никогда не подозревали, что у них зеленая кровь. Потрясая гарпуном со своим поразительным трофеем, Дюма направился к поверхности. На глубине пятнадцати метров кровь стала коричневой. Шесть метров — она уже розовая, а на поверхности она растеклась алым потоком».

Цвет моря зависит именно от того, что часть лучей поглощается морской водой. Чем вода чище и прозрачней, тем синее цвет. Впервые попав в открытый океан, трудно поверить, что вода в нем не подкрашена. Ближе к материкам цвет воды зеленеет от примеси взвешенных частиц, у самого берега он может быть желтоватым. Вообще говоря, чистая вода обладает крайне низкой по сравнению с другими жидкостями способ» полностью рассеивать свет. Это связано с тем, что рассеяние в любой чистой оптической среде происходит из-за неоднородности ее плотности. Вода же в отличи от многих других жидкостей очень малосжимаема, поэтому плотность ее почти однородна. По-видимому, наблюдающееся светорассеяние в чистой морской воде и в воде чистых горных озер связано с наличием в ней мельчайших пузырьков воздуха.

При отражении от морской поверхности спектральный состав света не меняется. А поскольку источником света обычно служит небосвод, то его цвет и придает окраску морской воде. Чем чище небо, чем меньше в нем облаков и аэрозолей (дымов и пыли), тем оно синее и тем синее должен быть дальний план морской поверхности, поскольку дальний план отражает значительно большую часть света, чем передний. Практически можно считать, что дальний план в этом смысле начинается, когда луч зрения составляет с морской поверхностью угол менее 10 градусов; для человека, стоящего на борту судна высотой около 4 метров, эта зона начинается приблизительно на расстоянии 20—30 метров.

Вода служит хорошим проводником для звука. До тех пор, пока человек не проник во владения Нептуна, они казались ему безмолвными. Поэт В. Жуковский так представлял себе тишину подводного мира: «Все спало для слуха в той бездне глухой». Но ведь ни он сам, ни Ф. Шиллер, балладу которого «Ныряльщик» под новым названием «Кубок» перевел В. Жуковский, никогда не были под водой. Они лишь выражали в поэтической форме господствовавшее тогда общее мнение о полной тишине, царящей в морских глубинах. Действительно, человеческое ухо, приспособленное к воздушной среде, не воспринимает звуки, исходящие из воды, но стоит применить простейшие слуховые аппараты, как подводный мир окажется наполненным самыми разнообразными звуками.

В годы первой мировой войны по всем морям и океанам безнаказанно разбойничали немецкие подводные лодки, обнаружить которые военные корабли союзников никак не могли. Но вот удалось изготовить и спустить в воду гидрофоны. На оборудованных ими военных судах — охотниках за субмаринами — натренированные операторы с наушниками — «слухачи» — стали среди тысяч звуков распознавать шумы винтов немецких подводных лодок. Поначалу, правда, не только проплывающий кит, но даже стая сельдей нередко служили поводом для боевой тревоги.

Подводный мир оказался вовсе не безмолвным. Большой знаток морских животных зоолог Н. Тарасова так описывает подводную симфонию вблизи Севастополя: «. Непрекращающееся щелканье бесчисленного множества рачков-альфеусов, в которое по временам врываются «стоны» горбылей или ритмичное урчание морских петухов, а то и лающий «скрежет зубовный» ставрид, наполняют воду разнообразными и громкими звуками».

Услышать голос морских обитателей теперь можно и у себя дома, поставив на проигрыватель пластинку с записями звуков, демонстрирующих «голосовые» возможности некоторых видов рыб и водных беспозвоночных животных.

Звук распространяется в воздухе с постоянной скоростью 340 метров в секунду. В воде он успевает за это же время пробежать расстояние в 4,5 раза больше. Но скорость эта непостоянна и зависит от температуры, солености и давления воды, то есть в конечном счете от ее плотности. В воде с нормальной океанической соленостью при нуле градусов вблизи поверхности скорость звука равна 1440 метрам в секунду. На глубине 10 километров при тех же прочих условиях его скорость возрастает до 1630 метров в секунду. В нагретых до 30 градусов поверхностных водах тропической зоны океана скорость звука повышается до 1543 метров в секунду.

Ультразвук, то есть акустические волны с частотой свыше 16 тысяч колебаний в секунду, уже не воспринимаемый человеческим ухом, поглощается водной средой гораздо сильнее, чем звуки низкой частоты, но зато его можно направлять в виде узкого пучка. Эта особенность ультразвуковых колебаний использована в эхолоте, с помощью которого точно и быстро измеряется глубина. От специального ультразвукового датчика, помещенного на судне, через небольшие промежутки времени вертикально вниз посылается ультразвуковой сигнал. Отразившись от дна, он возвращается обратно и улавливается чувствительной приемной аппаратурой.

Зная скорость прохождения ультразвука и определив время между посылкой и возвращением сигнала, можно легко вычислить расстояние от поверхности до дна. В современных приборах регистрация глубины производится автоматически, а самописец на бумажной ленте вычерчивает кривую, соответствующую профилю дна моря. Так как скорость ультразвука, как и слышимых звуков, зависит от солености, температуры и давления воды, в данные эхолота необходимо вносить поправки.

Моряки, пользующиеся эхолотом, давно заметили, что любые препятствия, находящиеся между поверхностью моря и его дном, также регистрируются на ленте прибора. Оказалось возможным, слегка видоизменив эхолот, использовать его для поисков скоплений промысловых рыб. Хорошо натренированный специалист по характеру кривой на ленте может не только определить местонахождение и размер стаи, но и сказать, к какому виду относятся составляющие ее рыбы.

http://www.seapeace.ru

legkoe-delo.ru

Физические свойства морской воды - Детская энциклопедия

Written by Jack Sparrow. Posted in Мир океана

Как известно, за международную единицу измерения массы принят килограмм. Платиновый килограммовый эталон хранится в Палате мер и весов в Париже, а очень точные дубликаты имеются в аналогичных учреждениях многих стран. С ними сверяют массу гирь и разновесов, употребляемых в научных лабораториях, производстве и торговле. И в повседневной жизни мы давно привыкли пользоваться этой единицей. С нее, можно сказать, начинается жизнь каждого человека: новорожденного, еще до того, как он получил имя и первую порцию молока, непременно взвешивают; любая покупка в продовольственном магазине непременно выражена в килограммах или его долях.

Но почему именно килограмм (а не фунт, унция или золотник) принят теперь во всем мире за единицу измерения массы? Дело в том, что все другие единицы были произвольными, а килограмм имеет свой природный эквивалент: такова масса одного кубического дециметра воды при 4 градусах Цельсия. Учитывать температуру совершенно необходимо, так как с ее изменением меняется и плотность воды. Всякая ли вода годится для установления эталона массы? В учебниках об этом обычно ничего не говорится, так как в данном случае под словом «вода» подразумевают вовсе не ту жидкость, которая течет из водопроводного крана, а химически чистое вещество: воду, подвергшуюся специальной обработке или же синтезированную из водорода и кислорода и не содержащую никаких примесей.

Морская вода, представляющая собой сложный раствор, таким требованиям совершенно не удовлетворяет: ее физические свойства, в том числе и плотность, значительно отличаются от свойств химически чистой воды. В среднем плотность морской воды равна 1,025 грамма на кубический сантиметр. Стало быть, ее литр на 25 граммов тяжелее пресной. Но плотность воды неодинакова по всему Мировому океану, она несколько меняется в зависимости от солености и температуры. Чем выше соленость, тем больше и плотность. Зависимость плотности от температуры обратная: чем вода теплее, тем плотность ее меньше. Так, наименьшая плотность морской воды — 1,022 грамма на кубический сантиметр — была отмечена в поверхностных слоях экваториальной зоны Тихого океана, а наибольшая— 1,028 грамма на кубический сантиметр — вблизи океанского дна.

Даже незначительное изменение плотности морской воды влечет за собой весьма существенные последствия. Так, при охлаждении верхних слоев океана вода становится плотнее и опускается. Навстречу ей устремляются менее плотные глубинные воды. Возникают вертикальные токи. В сочетании с горизонтальными течениями они придают Мировому океану вид слоеного пирога, каждый слой которого характеризуется своими особыми показателями плотности, солености и температуры. Благодаря вертикальным токам вода в океане до известной степени перемешивается, в глубину проникают насыщенные кислородом поверхностные ВОДЫ, ИЗ придонных слоев »Поднимаются богатые биогенными солями придонные массы воды.

Азбучная истина о том, что вода замерзает при 0 градусов, не распространяется на морскую воду. Из-за растворенных солей она остается жидкой и при отрицательной температуре. Только охлажденная ниже минус 1,9 градуса Цельсия, она начинает переходить в твердое состояние. Правда, это касается только воды с нормальной океанической соленостью. Если же в ней растворено не 35 граммов соли на килограмм, а меньше, то она станет замерзать при более высокой температуре. Так, Азовское море, соленость которого равна 12 промилле, замерзает при 0,6 градуса ниже нуля, а Белое море (соленость его 25 промилле) — при 1,4 градуса ниже нуля.

Когда изменяется агрегатное состояние пресной воды, ее состав не меняется. Совсем иначе обстоит дело с морской водой. Замерзание моря начинается с образования тонких, похожих на иглы ледяных кристалликов, совершенно лишенных соли. Если в этот момент марлевым сачком собрать такие иглы и растопить, то получится вполне чистая пресная вода. Естественно, что на первых порах образования льда соленость верхних слоев воды несколько повышается за счет поступления в эти слои тех порций соли, которые не вошли в кристаллические ледяные иглы. Только потом, когда начинается смерзание комков этих кристаллов, лед также становится соленым, но его соленость все же ниже солености окружающей морской воды. Во время таяния льда прилежащие слои воды несколько распресняются.

Распространение в морской воде световых и звуковых волн также имеет свои особенности. Еще 20— 25 лет назад большинство людей могло судить о том, как выглядит подводный мир, только наблюдая его через поверхность воды. Но с тех пор, как подводные очки и маски повсюду вошли в моду, любой желающий может лично познакомиться с красотами царства Нептуна. При этом стала очевидной одна весьма существенная деталь: в маске не очень хорошо виден подводный мир реки, в море же видимость превосходна. Удивительного в этом ничего нет: морская вода значительно прозрачнее воды большинства пресноводных водоемов.

Самая высокая прозрачность отмечена в центральной части Атлантического океана, где служащий эталоном белый металлический круг диаметром в 30 сантиметров — «диск Секки» — виден через поверхность воды на глубине более 65 метров. Прозрачность вод Тихого и Индийского океанов несколько меньше и равна соответственно 60 и 50 метрам. Чем ближе к берегу, тем больше в морской воде различных взвешенных частиц и мельчайших планктонных организмов, поэтому прозрачность там ниже, чем в открытом океане. В Средиземном море «диск Секки» не виден уже на глубине 30 метров, в Черном море — на глубине 20 метров, а в Балтийском — даже на 13 метрах. В большинстве пресноводных водоемов прозрачность воды не превышает 10 метров, в реках она, как правило, значительно меньше, иногда лишь 0,5—1 метр. Только в Байкале, который славится чистотой своей воды, ее прозрачность равна 30—40 метрам.

По сравнению с атмосферой водная среда пропускает свет хуже, потому что сильнее поглощает его и рассеивает. Когда солнце находится в зените (это возможно только в тропиках), в воду проникает почти весь его световой поток; косые же лучи утреннего или полуденного времени в значительной степени отражаются водной гладью. Поэтому сумерки под водой наступают раньше, чем на суше; день там короче, а ночь длиннее.

Даже в прозрачной воде открытых частей океана яркость света убывает с глубиной примерно в десять раз на каждые 50 метров. Человек, совершающий глубоководное погружение, уже ниже 400 метров не различает за стеклом иллюминатора аппарата никаких следов дневного света. Правда, чувствительная фотографическая пластинка после часовой экспозиции на глубине 1000 метров при проявлении темнеет, но на глубине 1700 метров она вообще не засвечивается.

Прозрачность морской воды неодинакова для разных частей видимого спектра: более короткие световые волны (фиолетовая часть спектра) проникают через нее легче и дальше, чем длинные (красная часть спектра). Первыми в море поглощаются красные лучи, поэтому на глубине более метра красные предметы кажутся уже не такими яркими, как на воздухе. Синие и фиолетовые лучи проникают значительно дальше, они придают подводным пейзажам своеобразный цветовой колорит, за который освещаемая днем часть морского дна получила образное название «голубого континента».

На глубине цвет самых обыденных и хорошо известных предметов меняется до неузнаваемости. Жак-Ив Кусто рассказывает: «Мы брали с собой таблицы с ярко-красными, голубыми, желтыми, зелеными, пурпурными и оранжевыми квадратами, а также шкалу серых тонов от белого до черного и фотографировали на различной глубине вплоть до сумеречной зоны. На глубине пять метров красный цвет казался розовым, а на двенадцатом метре абсолютно черным. Одновременно исчезал и оранжевый цвет. На глубине 35 метров желтый цвет начал превращаться в зеленый, здесь царит уже почти полная монохроматия.

Как-то раз мы охотились в море под уединенными скалами Ла Кассадань. Нырнув на 35 метров, Дюма подстрелил гигантскую ставриду. Гарпун прошел сквозь тело позади головы, но не задел позвоночника. Загарпуненная рыба отчаянно сопротивлялась. Дюма стал подтягиваться все ближе и ближе к ставриде по тросу. Наконец он подобрался вплотную, схватил кинжал и вонзил его прямо в сердце рыбины. Кровь брызнула мощным фонтаном.

Но кровь была зеленая! Ошеломленный этим зрелищем, я подплыл и уставился на струю. Она была изумрудного цвета. Мы с Дюма переглянулись в недоумении. Мы не раз плавали среди гигантских ставрид, но никогда не подозревали, что у них зеленая кровь. Потрясая гарпуном со своим поразительным трофеем, Дюма направился к поверхности. На глубине пятнадцати метров кровь стала коричневой. Шесть метров — она уже розовая, а на поверхности она растеклась алым потоком».

Цвет моря зависит именно от того, что часть лучей поглощается морской водой. Чем вода чище и прозрачней, тем синее цвет. Впервые попав в открытый океан, трудно поверить, что вода в нем не подкрашена. Ближе к материкам цвет воды зеленеет от примеси взвешенных частиц, у самого берега он может быть желтоватым. Вообще говоря, чистая вода обладает крайне низкой по сравнению с другими жидкостями способностью рассеивать свет. Это связано с тем, что рассеяние в любой чистой оптической среде происходит из-за неоднородности ее плотности. Вода же в отличие от многих других жидкостей очень малосжимаема, поэтому плотность ее почти однородна. По-видимому, наблюдающееся светорассеяние в чистой морской воде и в воде чистых горных озер связано с наличием в ней мельчайших пузырьков воздуха.

При отражении от морской поверхности спектральный состав света не меняется. А поскольку источником света обычно служит небосвод, то его цвет и придает окраску морской воде. Чем чище небо, чем меньше в нем облаков и аэрозолей (дымов и пыли), тем оно синее и тем синее должен быть дальний план морской поверхности, поскольку дальний план отражает значительно большую часть света, чем передний. Практически можно считать, что дальний план в этом смысле начинается, когда луч зрения составляет с морской поверхностью угол менее 10 градусов; для человека, стоящего на борту судна высотой около 4 метров, эта зона начинается приблизительно на расстоянии 20—30 метров.

Вода служит хорошим проводником для звука. До тех пор, пока человек не проник во владения Нептуна, они казались ему безмолвными. Поэт В. Жуковский так представлял себе тишину подводного мира: «Все спало для слуха в той бездне глухой». Но ведь ни он сам, ни Ф. Шиллер, балладу которого «Ныряльщик» под новым названием «Кубок» перевел В. Жуковский, никогда не были под водой. Они лишь выражали в поэтической форме господствовавшее тогда общее мнение о полной тишине, царящей в морских глубинах. Действительно, человеческое ухо, приспособленное к воздушной среде, не воспринимает звуки, исходящие из воды, но стоит применить простейшие слуховые аппараты, как подводный мир окажется наполненным самыми разнообразными звуками.

В годы первой мировой войны по всем морям и океанам безнаказанно разбойничали немецкие подводные лодки, обнаружить которые военные корабли союзников никак не могли. Но вот удалось изготовить и спустить в воду гидрофоны. На оборудованных ими военных судах — охотниках за субмаринами — натренированные операторы с наушниками — «слухачи» — стали среди тысяч звуков распознавать шумы винтов немецких подводных лодок. Поначалу, правда, не только проплывающий кит, но даже стая сельдей нередко служили поводом для боевой тревоги.

Подводный мир оказался вовсе не безмолвным. Большой знаток морских животных зоолог Н. Тарасова так описывает подводную симфонию вблизи Севастополя: «…Непрекращающееся щелканье бесчисленного множества рачков-альфеусов, в которое по временам врываются «стоны» горбылей или ритмичное урчание морских петухов, а то и лающий «скрежет зубовный» ставрид, наполняют воду разнообразными и громкими звуками».

Услышать голос морских обитателей теперь можно и у себя дома, поставив на проигрыватель пластинку с записями звуков, демонстрирующих «голосовые» возможности некоторых видов рыб и водных беспозвоночных животных.

Звук распространяется в воздухе с постоянной скоростью 340 метров в секунду. В воде он успевает за это же время пробежать расстояние в 4,5 раза больше. Но скорость эта непостоянна и зависит от температуры, солености и давления воды, то есть в конечном счете от ее плотности. В воде с нормальной океанической соленостью при нуле градусов вблизи поверхности скорость звука равна 1440 метрам в секунду. На глубине 10 километров при тех же прочих условиях его скорость возрастает до 1630 метров в секунду. В нагретых до 30 градусов поверхностных водах тропической зоны океана скорость звука повышается до 1543 метров в секунду.

Ультразвук, то есть акустические волны с частотой свыше 16 тысяч колебаний в секунду, уже не воспринимаемый человеческим ухом, поглощается водной средой гораздо сильнее, чем звуки низкой частоты, но зато его можно направлять в виде узкого пучка. Эта особенность ультразвуковых колебаний использована в эхолоте, с помощью которого точно и быстро измеряется глубина. От специального ультразвукового датчика, помещенного на судне, через небольшие промежутки времени вертикально вниз посылается ультразвуковой сигнал. Отразившись от дна, он возвращается обратно и улавливается чувствительной приемной аппаратурой. Зная скорость прохождения ультразвука и определив время между посылкой и возвращением сигнала, можно легко вычислить расстояние от поверхности до дна. В современных приборах регистрация глубины производится автоматически, а самописец на бумажной ленте вычерчивает кривую, соответствующую профилю дна моря. Так как скорость ультразвука, как и слышимых звуков, зависит от солености, температуры и давления воды, в данные эхолота необходимо вносить поправки.

Моряки, пользующиеся эхолотом, давно заметили, что любые препятствия, находящиеся между поверхностью моря и его дном, также регистрируются на ленте прибора. Оказалось возможным, слегка видоизменив эхолот, использовать его для поисков скоплений промысловых рыб. Хорошо натренированный специалист по характеру кривой на ленте может не только определить местонахождение и размер стаи, но и сказать, к какому виду относятся составляющие ее рыбы.

Откуда в океане соль? Температура океана

Трекбэк с Вашего сайта.

enslov.ru

Физические свойства морской воды - путеводитель

Физические свойства морской воды

УДК: 656.62.052.4:551.5 (075) Кузнецов Ю.М. к.т.н. доцент,

1. Химический состав морской воды

2. Физические свойства морской воды.

3. Цвет и прозрачность, свечение и цветение моря, морское обрастание.

Морская вода является очень разбавленным и почти полностью ионизированным раствором. В ней кроме твердых веществ. составляющих по весу не более 4 %, растворены газы: азот, кислород, углекислый газ и в некоторых случаях сероводород (Черное, Каспийское море).

Морская вода состоит из 96,5 % пресной воды и 3,5 % солей, растворенных газов и взвесей. Считается, что в морской воде в различной концентрации содержатся более 72 элементов таблицы Менделеева.

Общее содержание растворенных минеральных веществ в единице массы морской воды в зависимости от притока речных вод, выпадения атмосферных осадков, испарения и таяния льдов может изменяться в довольно широких пределах (от 2 до35 г/кг), но процентное содержание солевого состава воды остается постоянным (закон постоянства солевого состава морской воды ).

По своему солевому составу морская вода резко отличается от речной (табл.1)

Таблица 1- Солевой состав воды

К физическим свойствам морской воды относятся: соленость, температура плотность, оптические и акустические свойства.

Морская вода обладает горько-солёным вкусом и большим, чем у пресной воды, удельным весом. Соленый вкус морской воде придает хлористый натрий (поваренная соль), а горький – хлористый магний.

Соленостью называется количество солей в граммах, растворённых в килограмме морской воды. Средняя солёность воды Мирового океана 35г на 1кг воды или 35%О (промилле). В отдельных районах в зависимости от гидрологических и климатических условий соленость может резко отклоняться от средней. Солёность Чорного моря у поверхности состаляет18%О ,на глубине> 1км - 22%О. Азовского - 12%О Средиземного 38-39%О. Персидского залива 38-40%О.

Минимум солёности расположен в высоких широтах (на широте 10º–34,72%О ), максимум на широте 30°–35,56%О .

Установлена связь между соленостью и относительной электропроводностью морской воды:

R15 - относительная электропроводность при температуре 15 о С.

Под относительной электропроводностью понимается отношение удельной электропроводности проб морской воды к удельной электропроводности воды, имеющей соленость 35 %О .

На основе зависимости (1) сконструированы судовые солемеры

ГМ-55, ГМ-56, ГМ-65, которые определяют соленость воды по ее относительной электропроводности.

Основными причинами уменьшения солености морской воды за счет ее опреснения являются выпадение атмосферных осадков и интенсивные таяния льда в высоких широтах. а увеличение ее солености происходит вследствие испарения частиц чистой воды с поверхности морей и океанов.

Изменение солёности с глубиной зависит в основном от перемешивания водных масс при движении. Существенное увеличение солёности с глубиной происходит до 1000–5000м. Ниже – колебание солёности малы. Например, в полярных областях, начиная с глубины 200м и до дна, солёность не меняется. В морях величина солености, как на поверхности, так и на глубине, меняется в значительно больших пределах, чем в океанах.

Температура морской воды. Основными факторами, которые непрерывно изменяют температуру морской воды являются: суммарное действие прямой и рассеянной солнечной радиации, эффективное излучение системы вода- атмосфера, конвекция и испарение. В прибрежной зоне на температуру морской воды оказывает влияние еще и сток речных вод.

Повышению температуры морской воды способствуют:

- поглощение морем прямой и рассеянной солнечной радиации,

- излучение из более теплой атмосферы в более холодный океан.

- конденсация влаги из атмосферы над более холодным океаном,

- выпадение осадков, более теплых, чем поверхностные слои океанов.

Понижение температуры воды происходит за счет:

- излучения океана в атмосферу,

- конвекции в атмосфере,

- выпадения на поверхность океанов более холодных осадков.

В восточных частях океана обоих полушарий в тропической зоне изотермы сходятся к экватору, в западных частях – отходят от него. Такое расположение изотерм связывает с режимом поверхностных течений воды – с востока на запад к северу и к югу - пассатные течения. Здесь температура поверхностных вод океана составляет в среднем 28°, к югу и северу понижается до 0 на широтах 60º Ю.Ш. и 75° С.Ш.

Средняя температура океана летом +18°, зимой +10. Температура замерзания морской воды при S=35%О равна – 1,9°С, кипения 100,53°.

В северном полушарии температура выше на соответствующих высотах. Разница объясняется постоянным охлаждающим влиянием Антарктики, льды которой доходят до умеренных широт всех 3 х океанов.

В Атлантическом океане заметное влияние на режим температуры показывает тёплое течение Гольфстрим. в Тихом океане Куро-Сио .

Суточные колебания температуры воды редко превышают 1°С. Наибольшая температура в северном полушарии наблюдается в августе, в южном - в феврале.

Изменение температуры воды с глубиной зависит как от лучистой энергии солнца (прямая теплопередача) так и от вертикального перемешивания воды при штормовой погоде.

Тепло солнечной радиации распространяется на глубину до 100м (глубже темнота), а ветровое перемешивание захватывает слои воды не более 200м. Суточное колебание температуры прослеживаются до глубины не более 30м от поверхности, а годовые колебания до глубины 350–450м. Ниже температура постоянна.

На глубине 3000–4000м температура в разных местах океанов находится в пределах от +2 до -1°.

Тепловой режим океана оказывает существенное влияние на годовой ход температуры воздуха над океаном и материками.

Плотность морской воды. Под плотностью понимается отношение массы вещества к его объему, т.е это масса единицы объема.

В океанографии и судовождении для решения практических задач используется относительная плотность d. под которой понимают отношение массы единицы объема воды при температуре t о С к массе единицы объема дистиллированной воды при 4 о С, обозначается S .

Относительная плотностьморской воды зависит от солёности и температуры. При t=0°C, S=35 %О ρ=1.028г/м 3. Плотность уменьшается от полюсов к экватору. Наименьшая плотность в тропиках, там же и наименьшая солёность.

Загрузка.

Для удобства записи применяют величину условной плотности

Так, например, если по «Океанологическим таблицам» относительная плотность морской воды d при t = 20 о С и солености S = 35 %О в полном выражении составляет 1,0247781, то условная плотность в этом случае будет иметь вид 24,7781.

Плотность имеет большое значение при расчете изменения осадки судов в водах различной плотности. Для этого используется формула:

где ∆d - изменение осадки,

∆ - объемное водоизмещение,

ρ1 и ρ2 - относительные плотности морской воды.

В Мировом океане встречаются следующие характерные изменения относительной плотности морской воды и соответствующие осадки судов.

1. Вода малой солености ( 20 о С, относительная плотность d = 1.0009, характерна для устьев рек. Осадка судов в таких районах наибольшая.

2. Вода малой солености (

3. Вода высокой солености (>30 ‰) и сильно прогретая, d =1,0217. Такие условия наблюдаются в тропической и экваториальной зонах океанов. Осадка судов близка к минимальной.

4. Вода имеет высокую соленость (>30 ‰) и низкую температуру (1-3 о С). Относительная плотность максимальная - d = 1,0264. Такие условия встречаются у Мурманского побережья в осенне- зимний период. Осадка судов минимальная.

5. Вода имеет соленость менее 20 ‰ и высокую температуру порядка 20-30 о С.

Относительная плотность близка к среднему значению. Такие условия характерны для Азовского и Черного морей. Осадка судов средняя.

Сведения о плотности воды в открытых морях снять с карт №19 и№20 2-го тома Морского Атласа или с карт «Атласов океанов».

В портах сведения о фактической плотности морской воды могут быть получены на портовой гидрометеостанции.

Оптические свойства морской воды отличаются тем, что морская вода вдали от берегов более прозрачна, чем пресная речная. Однако, даже в наиболее чистой океанической воде только 1% световой энергии проникает ниже 100м. Солнечный свет можно увидеть только в верхнем 100 метровом слое океана; более 97% объёма Мирового океана находится в состоянии вечной темноты.

По мере погружения в глубь океана солнечный свет быстро исчезает, и цвет его изменяется от белого к голубому. Многие из обитателей морского дна окрашены в яркие цвета. Однако они невидимы при естественном освещении и обнаруживаются только при искусственном освещении.

Поглощение света значительно ограничивает видимость с подводных лодок. В чистой океанической воды можно получить отчётливые фотографии предметов только на расстоянии 5–7м от камеры, а на расстоянии до 10м картина резко ухудшается. Во многих прибрежных районах оптические наблюдения практически невозможны.

В 10 метровом слое морской воды наблюдается полное поглощение 100% коротких (ультрафиолетовых) и длинных (инфракрасных) волн. Минимальное поглощение наблюдается вблизи 0,47мкн (окно прозрачности), в голубой части спектра, но даже энергия голубого света уменьшается вдвое на глубине 47м.

Акустические свойства морской воды несколько отличаются от акустических свойств пресной воды. Так, если скорость звука в пресной воде в среднем составляет при температуре 15 0 С –1462 м/с, то в морской воде –1500м/с. В зависимости от давления, температуры и солёности она изменяется следующим образом:

- при увеличении глубины на 1км на +11%,

- при увеличении температуры на 1°С на +0,3%,

- при увеличении солёности на 1%О на +0,09%.

Для измерения глубины используются эхолоты. принцип действия которых основан на измерении времени прохождения ультразвукового сигнала от излучателя до приёмника, отразившегося от дна океана.

Рекомендуем ознакомится: http://studopedia.ru

worldunique.ru

Физические свойства морской воды - путеводитель

Физические свойства морской воды

Как известно, за международную единицу измерения массы принят килограмм. Платиновый килограммовый эталон хранится в Палате мер и весов в Париже, а очень точные дубликаты имеются в аналогичных учреждениях многих стран. Но почему именно килограмм (а не фунт, унция или золотник) принят теперь во всем мире за единицу измерения массы? Дело в том, что все другие единицы были произвольными, а килограмм имеет свой природный эквивалент: такова масса одного кубического дециметра воды при 4 градусах Цельсия.

Учитывать температуру совершенно необходимо, так как с ее изменением меняется и плотность воды. Всякая ли вода годится для установления эталона массы? В учебниках об этом обычно ничего не говорится, так как в данном случае под словом «вода» подразумевают вовсе не ту жидкость, которая течет из водопроводного крана, а химически чистое вещество: воду, подвергшуюся специальной обработке или же синтезированную из водорода и кислорода и не содержащую никаких примесей.

Морская вода, представляющая собой сложный раствор, таким требованиям совершенно не удовлетворяет: ее физические свойства, в том числе и плотность, значительно отличаются от свойств химически чистой воды. В среднем плотность морской воды равна 1,025 грамма на кубический сантиметр. Стало быть, ее литр на 25 граммов тяжелее пресной. Но плотность воды неодинакова по всему Мировому океану, она несколько меняется в зависимости от солености и температуры. Чем выше соленость, тем больше и плотность. Зависимость плотности от температуры обратная: чем вода теплее, тем плотность ее меньше. Так, наименьшая плотность морской воды — 1,022 грамма на кубический сантиметр — была отмечена в поверхностных слоях экваториальной зоны Тихого океана, а наибольшая—1,028 грамма на кубический сантиметр — вблизи океанского дна.

Даже незначительное изменение плотности морской воды влечет за собой весьма существенные последствия. Так, при охлаждении верхних слоев океана вода становится плотнее и опускается. Навстречу ей устремляются менее плотные глубинные воды. Возникают вертикальные токи. В сочетании с горизонтальными течениями они придают Мировому океану вид слоеного пирога, каждый слой которого характеризуется своими особыми показателями плотности, солености и температуры. Благодаря вертикальным токам вода в океане до известной степени перемешивается, в глубину проникают насыщенные кислородом поверхностные воды, из придонных слоев поднимаются богатые биогенными солями придонные массы воды.

Азбучная истина о том, что вода замерзает при О градусов, не распространяется на морскую воду. Из-за растворенных солей она остается жидкой и при отрицательной температуре. Только охлажденная ниже минус 1,9 градуса Цельсия, она начинает переходить в твердое состояние. Правда, это касается только воды с нормальной океанической соленостью. Если же в ней растворено не 35 граммов соли на килограмм, а меньше, то она станет замерзать при более высокой температуре. Так, Азовское море, соленость которого равна 12 промилле, замерзает при 0,6 градуса ниже нуля, а Белое море (соленость его 25 промилле) — при 1,4 градуса ниже нуля.

Когда изменяется агрегатное состояние пресной воды, ее состав не меняется. Совсем иначе обстоит дело с морской водой. Замерзание моря начинается с образования тонких, похожих на иглы ледяных кристалликов, совершенно лишенных соли. Если в этот момент марлевым сачком собрать такие иглы и растопить, то получится вполне чистая пресная вода. Естественно, что на первых порах образования льда соленость верхних слоев воды несколько повышается за счет поступления в эти слои тех порций соли, которые не вошли в кристаллические ледяные иглы. Только потом, когда начинается смерзание комков этих кристаллов, лед также становится соленым, но его соленость все же ниже солености окружающей морской воды. Во время таяния льда прилежащие слои воды несколько распресняются.

Распространение в морской воде световых и звуковых волн также имеет свои особенности. Еще 20— 25 лет назад большинство людей могло судить о том, как выглядит подводный мир, только Наблюдая его через поверхность воды. Но с тех пор, как подводные очки и маски повсюду вошли в моду, любой желающий может лично познакомиться с красотами царстве Нептуна. При этом стала очевидной одна весьма существенная деталь: в маске не очень хорошо виден подводный мир реки, в море же видимость превосходна. Удивительного в этом ничего нет: морская воде значительно прозрачнее воды большинства пресноводных водоемов.

Самая высокая прозрачность отмечена в центральной части Атлантического океана, где служащий эталоном белый металлический круг диаметром в 30 сантиметров — «диск Секки» — виден через поверхность воды на глубине более 65 метров. Прозрачность вод Тихого и Индийского океанов несколько меньше и равна соответственно 60 и 50 метрам. Чем ближе к берегу, тем больше в морской воде различных взвешенных частиц и мельчайших планктонных организмов, поэтому прозрачность там ниже, чем в открытом океане.

В Средиземном море «диск Секки» не виден уже на глубине 30 метров, в Черном море — на глубине 20 метров, а в Балтийском — даже на 13 метрах. В большинстве пресноводных водоемов прозрачность воды не превышает 10 метров, в реках она, как правило, значительно меньше, иногда лишь 0,5—1 метр. Только в Байкале, который славится чистотой своей воды, ее прозрачность равна 30—40 метрам.

По сравнению с атмосферой водная среда пропускает свет хуже, потому что сильнее поглощает его и рассеивает. Когда солнце находится в зените (это возможно только в тропиках), в воду проникает почти весь его световой поток; косые же лучи утреннего или полуденного времени в значительной степени отражаются водной гладью. Поэтому сумерки под водой наступают раньше, чем на суше; день там короче, а ночь длиннее.

Даже в прозрачной воде открытых частей океана яркость света убывает с глубиной примерно в десять раз на каждые 50 метров. Человек, совершающий глубоководное погружение, уже ниже 400 метров не различает за стеклом иллюминатора аппарата никаких следов дневного света. Правда, чувствительная фотографическая пластинка после часовой экспозиции на глубине 1000 метров при проявлении темнеет, но на глубине 1700 метров она вообще не засвечивается.

Прозрачность морской воды неодинакова для разных частей видимого спектра: более короткие световые волны (фиолетовая часть спектра) проникают через нее легче и дальше, чем длинные (красная часть спектра). Первыми в море поглощаются красные лучи, поэтому на глубине более метра красные предметы кажутся уже не такими яркими, как на воздухе. Синие и фиолетовые лучи проникают значительно дальше, они придают подводным пейзажам своеобразный цветовой колорит, за который освещаемая днем часть морского дна получила образное название «голубого континента».

На глубине цвет самых обыденных и хорошо известных предметов меняется до неузнаваемости. Жак Кусто рассказывает: «Мы брали с собой таблицы с ярко-красными, голубыми, желтыми, зелеными, пурпурными и оранжевыми квадратами, а также шкалу серых тонов от белого до черного и фотографировали на различной глубине вплоть до сумеречной зоны. На глубине пять метров красный цвет казался розовым, а на двенадцатом метре абсолютно черным. Одновременно исчезал и оранжевый цвет. На глубине 35 метров желтый цвет начал превращаться в зеленый, здесь царит уже почти полная монохроматия.

Как-то раз мы охотились в море под уединенными скалами Ла Кассадань. Нырнув на 35 метров, Дюма подстрелил гигантскую ставриду. Гарпун прошел сквозь тело позади головы, но не задел позвоночника. Загарпуненная рыба отчаянно сопротивлялась. Дюма стал подтягиваться все ближе и ближе к ставриде по тросу. Наконец он подобрался вплотную, схватил кинжал и вонзил его прямо в сердце рыбины. Кровь брызнула мощным фонтаном.

Но кровь была зеленая! Ошеломленный этим зрелищем, я подплыл и уставился на струю. Она была изумрудного цвета. Мы с Дюма переглянулись в недоумении. Мы не раз плавали среди гигантских ставрид, но никогда не подозревали, что у них зеленая кровь. Потрясая гарпуном со своим поразительным трофеем, Дюма направился к поверхности. На глубине пятнадцати метров кровь стала коричневой. Шесть метров — она уже розовая, а на поверхности она растеклась алым потоком».

Цвет моря зависит именно от того, что часть лучей поглощается морской водой. Чем вода чище и прозрачней, тем синее цвет. Впервые попав в открытый океан, трудно поверить, что вода в нем не подкрашена. Ближе к материкам цвет воды зеленеет от примеси взвешенных частиц, у самого берега он может быть желтоватым. Вообще говоря, чистая вода обладает крайне низкой по сравнению с другими жидкостями способ» полностью рассеивать свет. Это связано с тем, что рассеяние в любой чистой оптической среде происходит из-за неоднородности ее плотности. Вода же в отличи от многих других жидкостей очень малосжимаема, поэтому плотность ее почти однородна. По-видимому, наблюдающееся светорассеяние в чистой морской воде и в воде чистых горных озер связано с наличием в ней мельчайших пузырьков воздуха.

При отражении от морской поверхности спектральный состав света не меняется. А поскольку источником света обычно служит небосвод, то его цвет и придает окраску морской воде. Чем чище небо, чем меньше в нем облаков и аэрозолей (дымов и пыли), тем оно синее и тем синее должен быть дальний план морской поверхности, поскольку дальний план отражает значительно большую часть света, чем передний. Практически можно считать, что дальний план в этом смысле начинается, когда луч зрения составляет с морской поверхностью угол менее 10 градусов; для человека, стоящего на борту судна высотой около 4 метров, эта зона начинается приблизительно на расстоянии 20—30 метров.

Вода служит хорошим проводником для звука. До тех пор, пока человек не проник во владения Нептуна, они казались ему безмолвными. Поэт В. Жуковский так представлял себе тишину подводного мира: «Все спало для слуха в той бездне глухой». Но ведь ни он сам, ни Ф. Шиллер, балладу которого «Ныряльщик» под новым названием «Кубок» перевел В. Жуковский, никогда не были под водой. Они лишь выражали в поэтической форме господствовавшее тогда общее мнение о полной тишине, царящей в морских глубинах. Действительно, человеческое ухо, приспособленное к воздушной среде, не воспринимает звуки, исходящие из воды, но стоит применить простейшие слуховые аппараты, как подводный мир окажется наполненным самыми разнообразными звуками.

В годы первой мировой войны по всем морям и океанам безнаказанно разбойничали немецкие подводные лодки, обнаружить которые военные корабли союзников никак не могли. Но вот удалось изготовить и спустить в воду гидрофоны. На оборудованных ими военных судах — охотниках за субмаринами — натренированные операторы с наушниками — «слухачи» — стали среди тысяч звуков распознавать шумы винтов немецких подводных лодок. Поначалу, правда, не только проплывающий кит, но даже стая сельдей нередко служили поводом для боевой тревоги.

Подводный мир оказался вовсе не безмолвным. Большой знаток морских животных зоолог Н. Тарасова так описывает подводную симфонию вблизи Севастополя: «. Непрекращающееся щелканье бесчисленного множества рачков-альфеусов, в которое по временам врываются «стоны» горбылей или ритмичное урчание морских петухов, а то и лающий «скрежет зубовный» ставрид, наполняют воду разнообразными и громкими звуками».

Услышать голос морских обитателей теперь можно и у себя дома, поставив на проигрыватель пластинку с записями звуков, демонстрирующих «голосовые» возможности некоторых видов рыб и водных беспозвоночных животных.

Звук распространяется в воздухе с постоянной скоростью 340 метров в секунду. В воде он успевает за это же время пробежать расстояние в 4,5 раза больше. Но скорость эта непостоянна и зависит от температуры, солености и давления воды, то есть в конечном счете от ее плотности. В воде с нормальной океанической соленостью при нуле градусов вблизи поверхности скорость звука равна 1440 метрам в секунду. На глубине 10 километров при тех же прочих условиях его скорость возрастает до 1630 метров в секунду. В нагретых до 30 градусов поверхностных водах тропической зоны океана скорость звука повышается до 1543 метров в секунду.

Ультразвук, то есть акустические волны с частотой свыше 16 тысяч колебаний в секунду, уже не воспринимаемый человеческим ухом, поглощается водной средой гораздо сильнее, чем звуки низкой частоты, но зато его можно направлять в виде узкого пучка. Эта особенность ультразвуковых колебаний использована в эхолоте, с помощью которого точно и быстро измеряется глубина. От специального ультразвукового датчика, помещенного на судне, через небольшие промежутки времени вертикально вниз посылается ультразвуковой сигнал. Отразившись от дна, он возвращается обратно и улавливается чувствительной приемной аппаратурой.

Зная скорость прохождения ультразвука и определив время между посылкой и возвращением сигнала, можно легко вычислить расстояние от поверхности до дна. В современных приборах регистрация глубины производится автоматически, а самописец на бумажной ленте вычерчивает кривую, соответствующую профилю дна моря. Так как скорость ультразвука, как и слышимых звуков, зависит от солености, температуры и давления воды, в данные эхолота необходимо вносить поправки.

Моряки, пользующиеся эхолотом, давно заметили, что любые препятствия, находящиеся между поверхностью моря и его дном, также регистрируются на ленте прибора. Оказалось возможным, слегка видоизменив эхолот, использовать его для поисков скоплений промысловых рыб. Хорошо натренированный специалист по характеру кривой на ленте может не только определить местонахождение и размер стаи, но и сказать, к какому виду относятся составляющие ее рыбы.

Рекомендуем ознакомится: http://www.seapeace.ru

worldunique.ru

Морская вода — Википедия

Стандартная морская вода

Морска́я вода́ — вода морей и океанов. Солёность Мирового океана составляет в среднем 3,47 % (34,7 ‰), с колебаниями от 3,4 до 3,6 % (34-36 ‰). Это значит, что в каждом литре морской воды растворено 35 граммов солей (в основном хлорида натрия). Это 0,6 моль/литр (в предположении, что вся соль представляет собой NaCl, что на самом деле не так)[1].

Солёность[править | править код]

Химический состав морской воды

В океанах солёность воды почти повсеместно близка к 3,5 %, однако в морях вода имеет неравномерно распределённую солёность. Наименее солёной является вода Финского залива и северной части Ботнического залива, входящих в акваторию Балтийского моря. Наиболее солёной является вода Красного моря и восточная часть Средиземного моря. Солёные озёра, такие как Мёртвое море, могут иметь значительно больший уровень содержания солей.

Морская вода слабощелочная, pH варьируется в пределах от 7,5 до 8,4. Относительно высокая стабильность pH связана с наличием карбонатной буферной системы[2][3][4]. Несколько меньшее значение для поддержания pH имеет боратная система[5]. Наиболее высоко значение pH у поверхности моря, с глубиной оно несколько снижается. В опреснённых участках величина pH может снижаться до нейтральной и даже слабокислой[6].

Химические элементы (по массе) Элемент Процент Элемент Процентное содержание
Кислород 85,7 Сера 0,0885
Водород 10,8 Кальций 0,04
Хлор 1,9 Калий 0,0380
Натрий 1,05 Бром 0,0065
Магний 0,1350 Углерод 0,0026
Общий молярный состав морской воды[7] Компонент Концентрация (моль/кг)
h3O 53,6
Cl− 0,546
Na+ 0,469
Mg2+ 0,0528
SO42− 0,0283
Ca2+ 0,0103
K+ 0,0102
C 0,00206
Br− 0,000844
B 0,000416
Sr2+ 0,000091
F− 0,000068
Au3+ 0,00000000002

Биогенные вещества[править | править код]

Биогенные элементы необходимы для живых организмов. К ним относят фосфор, азот (в неорганических соединениях) и (для некоторых организмов) кремний. Важную роль играют металлы, встречающиеся в следовых количествах[8].

Содержание биогенных веществ в морской воде непостоянно, и различается в зависимости от места, глубины и времени взятия пробы. Обычно их содержание минимально у поверхности, возрастает до максимума до глубины 1000—1500 метров, и затем снова плавно снижается. Содержание фосфатов может резко повышаться у дна океана[9].

При апвеллинге вода поднимается к поверхности и приносит туда содержащиеся в ней биогены.

Растворённые газы[править | править код]

Контактируя с атмосферой, морская вода обменивается с воздухом содержащимися в нём газами: кислородом, азотом и углекислым газом. Эти же газы попадают в морскую воду в результате химических и биологических процессов, протекающих в океане. Некоторое количество газов вносится в океан с речной водой.

Количество газов, растворенных в морской воде, зависит от их растворимости и от парциального давления в воздухе. С повышением температуры растворимость газов и, соответственно, содержание их в морской воде уменьшается.

Соотношение растворенного кислорода и азота в морской воде отличается от их соотношения в атмосфере. Из-за лучшей растворимости кислорода концентрация его в воде относительно выше, его соотношение с азотом 1:2[10].

В анаэробных условиях в воде может накапливаться сероводород — например, в Черном море на глубине более 200 метров.

Физические свойства[править | править код]

Плотность морской воды колеблется в пределах от 1020 до 1030 кг/м³ и зависит от температуры и солености. При солености, превышающей 24 ‰, температура максимальной плотности становится ниже температуры замерзания[11] — при охлаждении морская вода всегда сжимается, и плотность её растет[12].

Скорость звука в морской воде — около 1500 м/с.

Свойства морской воды с солёностью 35 ‰:[1]
Морская вода Чистая вода
Плотность при 25 °C, г/см3: 1,02412 0,9971
Вязкость при 25 °C, миллипуаз: 9,02 8,90
Давление пара при 20 °C, мм. рт. ст.: 17,35 17,54
Температура максимальной плотности, °C: -3,52 (переохлаждённая жидкость) +3,98[1]
Точка замерзания, °C: -1,91 0,00
Поверхностное натяжение при 25 °C, дин/см: 72,74 71,97
Скорость звука при 0 °C, м/с: 1450 1407
Удельная теплоёмкость при 7,5 °C, Дж/(г·°C): 3,898 4,182

Научное объяснение появлению солёной воды в море было положено работами Эдмунда Галлея в 1715 году. Он предположил, что соль и другие минералы вымывались из почвы и доставлялись в море реками. Достигнув океана, соли оставались и постепенно концентрировались. Галлей заметил, что большинство озёр, не имеющих водной связи с океанами, имеют солёную воду.

Теория Галлея отчасти верна. Вдобавок к ней следует упомянуть, что соединения натрия вымывались из дна океанов на ранних этапах их формирования. Присутствие другого элемента соли, хлора, объясняется его высвобождением (в виде хлороводорода) из недр Земли при извержениях вулканов. Атомы натрия и хлора постепенно стали основными составляющими солевого состава морской воды.

Морская вода непригодна для питья из-за высокого содержания солей и минеральных веществ, для выведения которых из организма требуется воды больше, чем её выпитое количество. Однако после опреснения такую воду можно пить.

В 1950-х годах французский врач и путешественник Ален Бомбар экспериментально доказал, что морскую воду можно без вреда для здоровья пить в небольших (порядка 700 мл/сутки) количествах в течение 5—7 дней[13]. См.также Физиологическая адаптация. Распреснённая морская вода соленостью в 3-4 раза ниже океанической (не более 8—11 промилле) в некоторых заливах, лагунах, эстуариях, куда впадают крупные реки, таких морях, как Азовское, Балтийское, Каспийское, намного менее вредна, чем океаническая, и может понемногу применяться для питья и выживания в чрезвычайных ситуациях. Аналогичное достигается, если разбавить океанскую воду пресной как минимум в соотношении 2:3.

В Гонконге морская вода широко используется в сливных системах туалетов. Более чем 90 % из них используют для смыва именно морскую воду в целях экономии воды пресной. Начало этой практике было положено в 1960-х и 1970-х годах, когда добыча пресной воды стала затруднительна для жителей бывшей британской колонии.

  1. ↑ 1 2 3 Хорн, 1972, с. 51.
  2. ↑ Хорн, 1972, с. 160.
  3. ↑ Zeebe et al, 2001, с. 3.
  4. ↑ Схема карбонатной системы океана (по R. Zeebe 2001):CO2atm.⇕CO2+h3O=HCO3−+H+=CO32−+2H+{\displaystyle {\begin{matrix}CO_{2}{\mbox{atm.}}\\\Updownarrow \\CO_{2}+H_{2}O=HCO_{3}^{-}+H^{+}=CO_{3}^{2-}+2H^{+}\end{matrix}}}Б.Находящаяся в равновесии с атмосферой океанская вода при солёности 35 ‰ и температуре 25 °C имеет pH 8,1. Соотношение форм неорганического растворённого углерода при этом:CO2:HCO3−:CO32−≈0,5%:86,5%:13%{\displaystyle CO_{2}:HCO_{3}^{-}:CO_{3}^{2-}\approx 0,5\%:86,5\%:13\%}
  5. ↑ Zeebe et al, 2001, с. 8.
  6. ↑ Хорн, 1972, с. 139.
  7. ↑ Chapter 5 — Physical and thermodynamic data
  8. ↑ Grasshoff et al, 1999, с. 159.
  9. ↑ Grasshoff et al, 1999, с. 160.
  10. ↑ Смирнов и др., 1988, с. 37.
  11. ↑ Вейль, 1977, с. 89—90.
  12. ↑ в отличие от пресной воды, имеющей максимальную плотность при 4 °C.
  13. ↑ Ален Бомбар. За бортом по своей воле. — М.: Альпина Паблишер, 2014. — 234 с. — ISBN 978-5-9614-4794-1.
  • Хорн Р. Морская химия (структура воды и химия гидросферы) = Marine Chemistry (The structure of Water and the Chemistry of Hydrosphere). — Москва: Мир, 1972. — (Науки о земле).
  • Руководство по химическому анализу морских вод (РД52.10.243-293) / С. Г. Орадовский. — С.-Пб: «Гидрометеоиздат», 1993. — (Руководящий документ).
  • Zeebe R. E., Wolf-Gladrow D. CO2 in Seawater: equilibrum, kinetics, isotopes. — Elsevier Science B.V, 2001. — P. 346. — (Elsevier Oceanography Series). — ISBN 0 444 50579 2.
  • Grasshoff K., Kremling K., Ehrhardt M. Methods of seawater analysis. — Third, Completely Revised and Extended Edition. — WILEY-VCH, 1999. — ISBN 3-527-29589-5.
  • Смирнов Г.Н., Курлович Е.В., Витрешко И.А., Мальгина И.А. Гидрология и гидротехнические сооружения: Учеб. для вузов по спец. «Водоснабжение и канализация» / под ред. Г.Н. Смирнова. — Высш. шк.. — М., 1988. — 472 с. — 10 000 экз.
  • Вейль П. Популярная океанография = Oceanography. An Introduction to the Marine Environment by Peter K. Weyl / Пер. с англ. Г.И. Баранова, В.В. Панова, А.О. Шпайхера. Под ред. А.Ф. Трешникова. — Л.: «Гидрометеоиздат», 1977. — 504 с илл. с. — 50 000 экз.

ru.bywiki.com


Смотрите также

">