Топливо из воды: Топливо из воды: какой транспорт в Европе уже ездит на водороде

Топливо из воды: какой транспорт в Европе уже ездит на водороде

Как делают экологичное водородное топливо

Это топливо получают из воды. С помощью электричества ее расщепляют на основные элементы – водород и кислород. Если использовать для производства водорода альтернативную энергию (например, из солнца или ветра), то водород становится «зеленым» от и до: не только его использование, но и само производство не выбросит в атмосферу ни единого кубического миллиметра СО2.

Водород внутри транспортного средства превращается в электричество, которое и служит собственно топливом (как у электрокаров). А при сжигании водорода в атмосферу попадает только водяной пар.

В отличие от электроэнергии, водород можно хранить и использовать по мере необходимости. А кроме того, его производство не зависит от погодных условий, как энергия ветра или солнца.

Автомобили на водороде

В Европе уже ездит несколько сотен автомобилей на водороде. Их уже могло бы быть гораздо больше, но для них нужна инфраструктура – то есть заправочные водородные станции. Пока что их не хватает за немногими исключениями: например, Дания стала первой страной в мире с общенациональной сетью водородных заправок.

Поэтому в Евросоюзе в 2017 году запустили проект h3ME, который стал строить по всей Европе водородные станции. Заправить бак там можно за 3-5 минут, а затем проехать на этом топливе 400-600 километров. Пока таких заправок всего 50 в нескольких странах, но это только начало. Поэтому к 2027 году по Европе будут ездить уже сотни тысяч водородных автомобилей. А по прогнозам ReThink Energy, к 2040 году в Европе появится 17 миллионов автомобилей на водородных топливных элементах.

Начиная с 2035 года в странах Евросоюза больше нельзя будет купить автомобиль на бензине или дизеле – том топливе, которое выбрасывает в атмосферу парниковые газы. А к 2050 году в Европе вообще не останется «грязных» автомобилей. В первую очередь это будут электромобили, но и водородных будет достаточно. И не только автомобилей, но и легкого транспорта.

Так, во Франции изобрели скутер, работающий на водороде. Чтобы его заправить, нужно просто заменить разряженный картридж на заряженный и не зависеть от заправочной станции.

А еще французская компания Hopium разработала спортивный автомобиль на водородном топливе. Если все пойдет по плану, он сможет победить Tesla в гонке по снижению парниковых выбросов CO2. Французские спорткары выпустят в продажу в 2025 году, а пока что компания принимает предзаказы на первые 1000 автомобилей.

Поезда на водороде

С 2018 года в Германии можно сесть на первый в мире водородный поезд Coradia iLint. Он развивает скорость до 140 километров в час и может преодолеть почти тысячу километров без дозаправки – примерно столько же, сколько поезда на дизеле.

Пока что по Германии курсируют два водородных поезда. Разработчик этих поездов, французская компания Alstom, поначалу собиралась построить еще 14. Но поезда на водороде оказались настолько востребованными, что в 2020 году немецкие железнодорожные компании заказали уже 41 водородный поезд.

В Португалии тоже есть поезд на водороде, всего один, зато какой: винтажный Vouginha, на котором летом можно прокатиться в Порту. Этот исторический поезд ходит по последней оставшейся в Португалии узкоколейной железной дороге, а его вагоны сохранились с 1908 года.

Общественный транспорт на водороде

В европейских городах на маршруты начинает выходить водородный общественный транспорт – хотя и только в пилотном режиме.

Например, в Эстонии появились беспилотные микроавтобусы на водородном топливе, а по Риге ездят 10 троллейбусов, которые используют водород на случай отключения электричества или поломки. Такой троллейбус курсирует без дозаправки весь день, только к вечеру заезжая на пока что единственную в Риге заправочную станцию (на ней заправляются и частные авто).

Есть в Риге и водородный автобус – пока он ходит по одному маршруту в тестовом режиме: нужно оценить, сколько топлива ему понадобится зимой, когда потребуется отапливать салон. Через два года в Риге уже 12 автобусов будут ездить на водороде.

А в Копенгагене появились «водородные» такси. Таксопарк, правда, пока что небольшой — всего на 20 автомобилей.

Коммунальная техника тоже начала переходить на водород. Например, во Фрайбурге (Германия) появились два водородных мусоровоза.

Самолеты на водороде

Это пока дело будущего, но уже сейчас идут активные разработки водородных самолетов. Например, во Франции европейская компания Airbus создала три прототипа коммерческого самолета на водороде. Конструкция одного из них позволяет безопасно хранить водородное топливо, поэтому такой самолет сможет поднять в воздух до 200 человек для перелета на 3,7 тысячи километров — в отличие от двух других моделей, рассчитанных на 100 пассажиров при той же дальности маршрута.

Конструкторы того же Airbus разработали съемный водородный двигатель для самолетов, который позволит не зависеть от наземной инфраструктуры. Водородное топливо в него не закачивается, а устанавливается в переносных капсулах. Поэтому самолеты с такими двигателями смогут заправляться в аэропортах без устройств для подачи водородного топлива.

В прошлом году Евросоюз объявил новую инициативу RefuelEU: поиск решений для экологически чистой авиации. Теперь перед Евросоюзом стоит задача перевести до 1-2% европейских самолетов на «зеленое» топливо, в том числе на водород.

А хватит ли водорода для транспорта?

К 2030 году Евросоюз собирается ежегодно производить 40 гигаватт водородной энергии, а к 2050 году водород будет обеспечивать четверть всей потребности в энергии. Этого водорода хватит, например, чтобы обеспечить экологичным топливом 42 миллиона автомобилей, 1,7 миллиона грузовиков, около 500 тысяч автобусов и более 5,5 тысяч поездов. Это часть «Водородной стратегии для климатически нейтральной Европы»: там Евросоюз определил водород в качестве одной из шести ключевых стратегических областей, где необходимы серьезные инвестиции.

Где в Европе производят водород?

Пять стран Евросоюза делают серьезную ставку на производство водородной энергии: это Германия, Италия, Португалия, Испания и Франция.

Например, Германия к 2030 году собирается делать восьмую часть всего водорода в Евросоюзе. В Германии же через два года появится крупнейший в мире хаб для хранения «зеленого» водородного топлива.

А Испания хочет сделать водород главным источником энергии к 2050 году – и это позволит стране на 100% сократить выбросы углекислого газа. Через 9 лет Испания собирается производить 10% от общего объема в ЕС.

И прежде всего водород в Испании собираются использовать как транспортное топливо. В 2030 году в стране на водороде будут ездить 5 тысяч частных автомобилей, 150 автобусов и поезда на двух железнодорожных маршрутах. Причем не меньше 25% этого экологичного топлива должно приходиться на «зеленый» водород – выработанный без использования углеродных источников вроде нефти.

Исключительно «зеленый» водород будут делать на Майорке: этот испанский остров станет первым центром водородной энергетики в Средиземном море. Там будут тестировать инновационные подходы к производству «зеленого» водорода, и найденные решения потом можно будет применить и на других средиземноморских островах.

Чем больше водород будет заменять собой неэкологичное топливо, тем ближе Евросоюз окажется к своей цели сделать свою территорию климатически нейтральной.

Россия тоже решила не отставать от глобального тренда. Летом прошлого года Минэнерго разработало дорожную карту «Развитие водородной энергетики в России»: в частности, в 2024 году Газпром и Росатом начнут производить «зеленый» водород.

обещает ли водородный поезд революцию в энергетике — РБК

Водородное топливо само по себе не решит всех проблем, но может стать способом более эффективного и безопасного для окружающей среды использования энергии

В Германии начал работать первый регулярный поезд на водородном топливе. Состав, изготовленный французской компанией Alstom, проехал от Букстехуде недалеко от Гамбурга до Куксхафена на побережье Северного моря. Поезд движется со скоростью до 140 км/ч, одной заправки ему хватает на тысячу километров. Топливный бак находится на крыше, топливный элемент преобразует энергию горения водорода в электричество, за счет которого работает мотор. Для экономии энергии состав также снабжен аккумуляторами, запасающими электричество в случае перепроизводства (допустим, мы едем под горку) и поставляющими — в случае недостатка (наоборот — в горку). К 2021 году число таких поездов на маршруте обещают довести до 14. Чем же хорошо (и чем плохо) водородное топливо?

Бегство от нефти

Основным сырьем для моторного топлива была и остается нефть. Долгое время переживали, что это ископаемый вид топлива, который может в какой-то момент кончиться. Этот отдаленный риск имеет более серьезные последствия, чем неработающие двигатели: нефть — основной источник сырья для органического синтеза. Практически все синтетические материалы — ткани, пластики для мебели, бытовой техники и прочих полезных современных вещей — производятся из нефти. Собственно, приписываемое Менделееву выражение «топить печь нефтью — это все равно что топить печь ассигнациями» предостерегало именно от этого. Нефть слишком ценна, чтобы ее сжигать.

adv. rbc.ru

Встал вопрос о поиске возобновляемого источника углеводородов. Им могло бы стать биотопливо, и в начале века это направление было очень важным и перспективным в науке. Перед учеными стояла задача — научиться перерабатывать растения так, чтобы из них получалось топливо, не уступающее по эффективности ископаемому. Собственно, самое простое такое топливо — тот же алкоголь. Одна беда — перерабатывать в него хорошо получается только съедобные растения, а их производство энергозатратно само по себе. К тому же многие люди на Земле и так голодают, — как можно использовать продукты питания для топлива?

adv.rbc.ru

Есть еще и проблема изменения климата. Традиционное топливо плохо не только ископаемостью, но и неизменным выделением углекислого газа в атмосферу. Бум биотоплива закончился, не начавшись, в том числе и потому, что при сжигании этилового спирта тоже производится углекислота. Хотя свою нишу биотопливо, несомненно, займет, — там, где его производство легко и выгодно. Например, в Бразилии, где его делают из прекрасно там растущего сахарного тростника, биоэтанол успешно используется на обычных заправках.

Неудивительно, что наука ищет источники энергии, совсем не завязанные на углеводородах — ни ископаемых, ни возобновляемых. Основные направления этих поисков хорошо известны: использование энергии атома, Солнца, ветра и разные типы гидроэнергии — реки, приливы и отливы. Однако все эти источники энергии сложно взять с собой на поезд или автомобиль. Энергию нужно или передавать по проводам, что влечет ее потери, или хранить — для этого нужны очень мощные аккумуляторы, возможности которых тоже ограничены. Поэтому для работы двигателей требуется что-то другое. Образно говоря, то, что можно залить в бак и сжечь.

Водородный запас

Собственно, так возникла идея сжигать водород. Молекула H2 «запасает» энергию связи между двумя атомами водорода, она рвется при окислении, а в результате получается только вода — в жидком виде или в виде пара. Выглядит идеально, но нужно понять, откуда брать водород и как его хранить для использования в виде топлива.

Водорода в чистом виде на Земле очень мало — 0,00005% по объему в сухом воздухе. Значит, его нужно производить, а на это тоже потребуется энергия (впрочем, энергия расходуется и на крекинг нефти). Есть два основных варианта производства водорода: из воды под действием электрического тока в ходе процесса электролиза (так она разлагается на водород и кислород) и из все тех же углеводородов. Второе можно рассматривать, конечно, только как временное решение — оно воспроизводит, хотя и в меньшем масштабе, проблему зависимости от ископаемого топлива и угрозу для климата. Значит, вода?

Проводить электролиз можно там, где есть источник энергии — АЭС, например, если мы не берем станции, работающие на нефти и газе. Ну, а вода есть более или менее везде. Но зачем тратить энергию на электролиз, когда можно просто пустить ее в двигатель? Дело в том, что водород позволяет решать описанную выше проблему сложности хранения и транспортировки энергии. Возвращаясь к Нижней Саксонии — как раз проблему запасания энергии пытаются решить немецкие транспортники. Железнодорожная сеть Германии очень развита: по общей длине дорог она всего вдвое уступает России и занимает в мире шестое место по длине. Однако 40% линий не электрифицированы, там сейчас используются дизели. Аккумуляторы для таких расстояний пока слишком маломощны. Электрификация — дорогая инфраструктура. Поэтому ставка на водородное топливо выглядит вполне естественной.

Необходимые условия

Однако водород не так просто хранить. О рисках взрыва при скоплениях газообразного водорода известно со времен катастрофы «Гинденбурга», да и занимает он неадекватно большой объем. Поэтому об использовании его в такой форме речь, конечно, не идет. На помощь приходит химия — хранение водорода в виде таких соединений, как боргидрид натрия, компактно и безопасно, а вещества-носители — натрий с бором — могут быть использованы повторно. Плюс к этому сами водородные двигатели работают не в точности как двигатели внутреннего сгорания, а с помощью так называемых топливных элементов. Вместо обычного горения (взаимодействия с кислородом) реакция происходит электрохимически — это немного похоже на процесс зарядки-разрядки батареек. Это позволяет вести ее более эффективно и контролируемо.

Водородное топливо само по себе не является панацеей, решением всех проблем. Это не источник энергии, а один из способов ее более эффективного и безопасного для окружающей среды использования. Он может быть экономически обоснован, но для этого необходима продуманная система производства и распределения энергии из возобновляемых источников. Ее можно создать, если государственные и надгосударственные образования (такие как ЕС) возьмут на себя затраты на необходимую инфраструктуру, а также меры, стимулирующие частный сектор к ее эффективному использованию. Сейчас этой системы нет, но черты ее уже просматриваются на улицах — в тех же зарядках для электромобилей и первом поезде на водородном топливе. Ничего принципиально нового в этой задаче нет. Если задуматься, то массовое использование современных автомобилей стало экономически обоснованным только потому, что в свое время были построены сети заправок и автомобильных дорог.

Основы водородного топлива | Департамент энергетики

Управление технологий водорода и топливных элементов

Водород — это чистое топливо, при потреблении которого в топливном элементе образуется только вода. Водород можно производить из различных внутренних ресурсов, таких как природный газ, атомная энергия, биомасса и возобновляемые источники энергии, такие как солнечная энергия и ветер. Эти качества делают его привлекательным вариантом топлива для транспорта и производства электроэнергии. Его можно использовать в автомобилях, в домах, в портативных источниках питания и во многих других областях.

Водород — энергоноситель, который можно использовать для хранения, перемещения и доставки энергии, произведенной из других источников.

Сегодня водородное топливо можно производить несколькими способами. В настоящее время наиболее распространенными методами являются конверсия природного газа (термический процесс) и электролиз. Другие методы включают солнечные и биологические процессы.

Термические процессы

Термические процессы для производства водорода обычно включают паровой риформинг, высокотемпературный процесс, в котором пар реагирует с углеводородным топливом с образованием водорода. Многие виды углеводородного топлива могут быть преобразованы для производства водорода, включая природный газ, дизельное топливо, возобновляемое жидкое топливо, газифицированный уголь или газифицированную биомассу. Сегодня около 95% всего водорода производится путем паровой конверсии природного газа.

Узнайте больше о:

  • Конверсия природного газа
  • Газификация угля
  • Газификация биомассы
  • Конверсия возобновляемого жидкого топлива.

Электролитические процессы

Воду можно разделить на кислород и водород с помощью процесса, называемого электролизом. Электролитические процессы происходят в электролизере, который во многом похож на топливный элемент, но наоборот: вместо того, чтобы использовать энергию молекулы водорода, как это делает топливный элемент, электролизер создает водород из молекул воды.

Узнайте больше о производстве электролитического водорода.

Солнечные процессы

Процессы, основанные на использовании солнечной энергии, используют свет в качестве агента для производства водорода. Есть несколько процессов, управляемых солнечными лучами, в том числе фотобиологические, фотоэлектрохимические и солнечные термохимические. Фотобиологические процессы используют естественную фотосинтетическую активность бактерий и зеленых водорослей для производства водорода. В фотоэлектрохимических процессах используются специальные полупроводники для разделения воды на водород и кислород. Солнечное термохимическое производство водорода использует концентрированную солнечную энергию для запуска реакций расщепления воды, часто вместе с другими веществами, такими как оксиды металлов.

Узнайте больше о фотобиологических процессах, солнечных термохимических процессах и фотоэлектрохимических процессах.

Биологические процессы

В биологических процессах используются микробы, такие как бактерии и микроводоросли, и они могут производить водород посредством биологических реакций. При микробной конверсии биомассы микробы расщепляют органические вещества, такие как биомасса или сточные воды, с образованием водорода, а в фотобиологических процессах микробы используют солнечный свет в качестве источника энергии.

Узнайте больше о производстве биологического водорода путем преобразования микробной биомассы и фотобиологических процессов.

Использование алюминия и воды для производства чистого водородного топлива — когда и где это необходимо | Новости Массачусетского технологического института

Поскольку мир работает над отказом от ископаемого топлива, многие исследователи изучают, может ли чистое водородное топливо играть расширенную роль в секторах от транспорта и промышленности до зданий и производства электроэнергии. Его можно использовать в транспортных средствах на топливных элементах, тепловых котлах, газовых турбинах, вырабатывающих электроэнергию, системах хранения возобновляемой энергии и многом другом.

Но при использовании водорода выбросы углерода не образуются, как обычно. Сегодня почти весь водород производится с использованием процессов, основанных на ископаемом топливе, которые вместе производят более 2 процентов всех глобальных выбросов парниковых газов. Кроме того, водород часто производится в одном месте, а потребляется в другом, что означает, что его использование также сопряжено с логистическими проблемами.

Многообещающая реакция

Еще один способ получения водорода исходит, возможно, из неожиданного источника: реакции алюминия с водой. Металлический алюминий легко реагирует с водой при комнатной температуре с образованием гидроксида алюминия и водорода. Эта реакция обычно не происходит, потому что слой оксида алюминия естественным образом покрывает необработанный металл, предотвращая его прямой контакт с водой.

Использование реакции алюминия и воды для получения водорода не приводит к выбросам парниковых газов и обещает решить проблему транспортировки в любом месте с доступной водой. Просто переместите алюминий, а затем проведите реакцию с водой на месте. «По сути, алюминий становится механизмом хранения водорода — и очень эффективным», — говорит Дуглас П. Харт, профессор машиностроения Массачусетского технологического института. «Используя алюминий в качестве источника, мы можем «хранить» водород с плотностью в 10 раз выше, чем если бы мы просто хранили его в виде сжатого газа».

Две проблемы не позволяют использовать алюминий в качестве безопасного и экономичного источника для производства водорода. Первая проблема заключается в обеспечении того, чтобы алюминиевая поверхность была чистой и доступной для реакции с водой. С этой целью практическая система должна включать средства, сначала модифицирующие оксидный слой, а затем предотвращающие его повторное формирование по мере протекания реакции.

Вторая проблема заключается в том, что добыча и производство чистого алюминия требует больших затрат энергии, поэтому любой практический подход требует использования лома алюминия из различных источников. Но алюминиевый лом – не самый простой исходный материал. Обычно он встречается в легированной форме, что означает, что он содержит другие элементы, которые добавляются для изменения свойств или характеристик алюминия для различных целей. Например, добавление магния увеличивает прочность и коррозионную стойкость, добавление кремния снижает температуру плавления, а добавление небольшого количества того и другого делает сплав умеренно прочным и устойчивым к коррозии.

Несмотря на обширные исследования алюминия как источника водорода, остаются два ключевых вопроса: как лучше всего предотвратить прилипание оксидного слоя к поверхности алюминия и как легирующие элементы в куске алюминиевого лома влияют на общее количество генерируемого водорода и скорость, с которой он генерируется?

«Если мы собираемся использовать алюминиевый лом для производства водорода в практических целях, мы должны быть в состоянии лучше предсказать, какие характеристики образования водорода мы будем наблюдать в результате реакции алюминия с водой», — говорит доктор философии Лорин Меруэ. 20 лет, получившая докторскую степень в области машиностроения.

Поскольку основные этапы реакции изучены недостаточно, было трудно предсказать скорость и объем образования водорода из алюминиевого лома, который может содержать различные типы и концентрации легирующих элементов. Поэтому Харт, Меруэ и Томас В. Игар, профессор кафедры материаловедения и инженерного менеджмента на факультете материаловедения и инженерии Массачусетского технологического института, решили систематически изучить влияние этих легирующих элементов на реакцию алюминия с водой. и о перспективной методике предотвращения образования мешающего оксидного слоя.

Для подготовки специалисты Novelis Inc. изготовили образцы чистого алюминия и специальных алюминиевых сплавов, изготовленных из технически чистого алюминия в сочетании с 0,6% кремния (по весу), 1% магния или с обоими составами, которые типичны для алюминиевый лом из различных источников. Используя эти образцы, исследователи Массачусетского технологического института провели серию тестов для изучения различных аспектов реакции алюминия с водой.

Предварительная обработка алюминия

Первым шагом была демонстрация эффективного средства проникновения через оксидный слой, образующийся на алюминии на воздухе. Твердый алюминий состоит из крошечных зерен, которые упакованы вместе со случайными границами, где они не совпадают идеально. Чтобы максимизировать производство водорода, исследователям необходимо предотвратить образование оксидного слоя на всех внутренних поверхностях зерен.

Исследовательские группы уже опробовали различные способы «активации» алюминиевых зерен для реакции с водой. Некоторые измельчают образцы металлолома на настолько мелкие частицы, что оксидный слой не прилипает. А вот алюминиевые порошки опасны, так как могут вступить в реакцию с влагой и взорваться. Другой подход требует измельчения образцов лома и добавления жидких металлов для предотвращения осаждения оксидов. Но шлифование – это дорогостоящий и энергоемкий процесс.

По мнению Харта, Меруэ и Игара, наиболее многообещающий подход, впервые предложенный Джонатаном Слокамом, доктором философии ’18, когда он работал в исследовательской группе Харта, заключался в предварительной обработке твердого алюминия путем нанесения на него жидких металлов и предоставления им возможности проникнуть через границы зерен.

Чтобы определить эффективность этого подхода, исследователям необходимо было подтвердить, что жидкие металлы могут достигать внутренних поверхностей зерен, как с присутствием легирующих элементов, так и без них. И им нужно было установить, сколько времени потребуется, чтобы жидкий металл покрыл все зерна чистого алюминия и его сплавов.

Они начали с объединения двух металлов — галлия и индия — в определенных пропорциях, чтобы создать «эвтектическую» смесь; то есть смесь, которая останется в жидкой форме при комнатной температуре. Они покрыли свои образцы эвтектикой и позволили ей проникнуть в течение периода времени от 48 до 96 часов. Затем они подвергали образцы воздействию воды и контролировали выход водорода (количество образовавшегося) и скорость потока в течение 250 минут. Через 48 часов они также сделали изображения с помощью сканирующего электронного микроскопа (СЭМ) с большим увеличением, чтобы увидеть границы между соседними зернами алюминия.

Основываясь на измерениях выхода водорода и изображениях СЭМ, команда Массачусетского технологического института пришла к выводу, что эвтектика галлия-индия естественным образом проникает и достигает внутренних поверхностей зерен. Однако скорость и степень проникновения варьируются в зависимости от сплава. Скорость проникновения в образцах алюминия, легированного кремнием, была такой же, как и в образцах чистого алюминия, но ниже в образцах, легированных магнием.

Возможно, наиболее интересными были результаты для образцов, легированных как кремнием, так и магнием — алюминиевым сплавом, который часто встречается в рециркуляционных потоках. Кремний и магний химически связываются с образованием силицида магния, который образуется в виде твердых отложений на внутренней поверхности зерна. Меруэх предположил, что, когда в алюминиевом ломе присутствуют и кремний, и магний, эти отложения могут действовать как барьеры, препятствующие протеканию эвтектики галлий-индий.

Эксперименты и изображения подтвердили ее гипотезу: твердые отложения действительно действовали как барьеры, а изображения образцов, предварительно обработанных в течение 48 часов, показали, что проникновение не было полным. Ясно, что длительный период предварительной обработки будет иметь решающее значение для максимизации выхода водорода из алюминиевых отходов, содержащих как кремний, так и магний.

Меруэ указывает на несколько преимуществ используемого ими процесса. «Вам не нужно применять какую-либо энергию, чтобы эвтектика галлия-индия воздействовала на алюминий и избавлялась от этого оксидного слоя», — говорит она. «Как только вы активируете алюминий, вы можете бросить его в воду, и он будет генерировать водород — никаких затрат энергии не требуется». Более того, эвтектика не вступает в химическую реакцию с алюминием. «Он просто физически перемещается между зернами», — говорит она. «В конце процесса я мог восстановить весь вложенный галлий и индий и использовать их снова» — ценная функция, поскольку галлий и (особенно) индий дороги и относительно дефицитны.

Влияние легирующих элементов на образование водорода

Затем исследователи исследовали, как присутствие легирующих элементов влияет на образование водорода. Они испытали образцы, обработанные эвтектикой в ​​течение 96 часов; к тому времени выход водорода и скорость потока выровнялись во всех образцах.

Присутствие 0,6 процента кремния увеличило выход водорода для данного веса алюминия на 20 процентов по сравнению с чистым алюминием, даже несмотря на то, что кремнийсодержащий образец содержал меньше алюминия, чем образец чистого алюминия. Напротив, присутствие 1 процента магния производило гораздо меньше водорода, а добавление как кремния, так и магния увеличивало выход, но не до уровня чистого алюминия.

Присутствие кремния также значительно ускоряет скорость реакции, вызывая гораздо более высокий пик скорости потока, но сокращая продолжительность выделения водорода. Присутствие магния приводило к более низкой скорости потока, но позволяло выходу водорода оставаться довольно стабильным с течением времени. И снова алюминий с обоими легирующими элементами давал скорость потока между легированным магнием и чистым алюминием.

Эти результаты дают практическое руководство о том, как отрегулировать выход водорода в соответствии с рабочими потребностями устройства, потребляющего водород. Если исходным материалом является технически чистый алюминий, добавление небольшого количества тщательно подобранных легирующих элементов может регулировать выход водорода и скорость потока. Если исходным материалом является алюминиевый лом, ключевым фактором может быть тщательный выбор источника. Для мощных кратковременных всплесков водорода хорошо подойдут куски кремнийсодержащего алюминия со свалки автомобилей. Для более низких, но более длинных потоков лучше использовать содержащие магний отходы от каркаса снесенного здания. Для результатов где-то посередине хорошо подойдет алюминий, содержащий как кремний, так и магний; такой материал в изобилии доступен из списанных автомобилей и мотоциклов, яхт, велосипедных рам и даже чехлов для смартфонов.

Также должна быть возможность комбинировать обрезки различных алюминиевых сплавов для улучшения результата, отмечает Меруэ. «Если у меня есть образец активированного алюминия, который содержит только кремний, и другой образец, содержащий только магний, я могу поместить их оба в контейнер с водой и дать им прореагировать», — говорит она. «Таким образом, я получаю быстрый рост производства водорода из кремния, а затем магний вступает во владение и имеет такой стабильный выход».

Еще одна возможность для настройки: Уменьшение размера зерна

Другим практическим способом повлиять на производство водорода может быть уменьшение размера алюминиевых зерен — изменение, которое должно увеличить общую площадь поверхности, доступную для протекания реакций.

Чтобы изучить этот подход, исследователи запросили у своего поставщика специально изготовленные образцы. Используя стандартные промышленные процедуры, специалисты Novelis сначала пропускали каждый образец через два ролика, сжимая его сверху и снизу, чтобы внутренние зерна были сплющены. Затем они нагревали каждый образец до тех пор, пока длинные плоские зерна не реорганизовались и не сжались до заданного размера.

В ходе серии тщательно спланированных экспериментов команда Массачусетского технологического института обнаружила, что уменьшение размера зерна увеличивает эффективность и сокращает продолжительность реакции в различной степени в различных образцах. Опять же, большое влияние на результат оказало присутствие определенных легирующих элементов.

Требуется: пересмотренная теория, объясняющая наблюдения

В ходе своих экспериментов исследователи столкнулись с некоторыми неожиданными результатами. Например, стандартная теория коррозии предсказывает, что чистый алюминий будет генерировать больше водорода, чем алюминий, легированный кремнием, — противоположное тому, что они наблюдали в своих экспериментах.

Чтобы пролить свет на лежащие в основе химические реакции, Харт, Меруэ и Игар исследовали «поток» водорода, то есть объем водорода, образующийся с течением времени на каждом квадратном сантиметре поверхности алюминия, включая внутренние зерна. Они изучили три размера зерна для каждого из четырех составов и собрали тысячи точек данных, измеряющих поток водорода.

Их результаты показывают, что уменьшение размера зерна оказывает значительное влияние. Он увеличивает пиковый поток водорода из алюминия, легированного кремнием, в 100 раз, а из трех других составов — в 10 раз. Как для чистого алюминия, так и для алюминия, содержащего кремний, уменьшение размера зерна также уменьшает задержку перед пиковым потоком и увеличивает скорость последующего снижения. В магнийсодержащем алюминии уменьшение размера зерна приводит к увеличению пикового потока водорода и приводит к несколько более быстрому снижению скорости выхода водорода. При наличии как кремния, так и магния поток водорода с течением времени напоминает поток алюминия, содержащего магний, когда размер зерна не изменяется. Когда размер зерна уменьшается, характеристики выхода водорода начинают напоминать поведение, наблюдаемое в кремнийсодержащем алюминии. Этот результат был неожиданным, потому что, когда одновременно присутствуют кремний и магний, они реагируют с образованием силицида магния, в результате чего получается новый тип алюминиевого сплава со своими свойствами.

Исследователи подчеркивают преимущества лучшего фундаментального понимания лежащих в основе химических реакций. В дополнение к руководству по проектированию практических систем, это могло бы помочь им найти замену дорогому индию в их смеси для предварительной обработки.