Теплопроводность. Теплопроводность вода


таблицы при различных температурах и давлениях

Теплопроводность воздуха

Теплопроводность воздуха в зависимости от температуры при атмосферном давлении

В таблице приведены значения теплопроводности воздуха λ в зависимости от температуры при нормальном атмосферном давлении.

Величина коэффициента теплопроводности воздуха необходима при расчетах теплообмена и входит в состав чисел подобия, например таких, как число Прандтля, Нуссельта, Био.

Теплопроводность выражена в размерности Вт/(м·град) и дана для газообразного воздуха в интервале температуры от -183 до 1200°С. Например, при температуре 20°С и нормальном атмосферном давлении теплопроводность воздуха равна 0,0259 Вт/(м·град).

При низких отрицательных температурах охлажденный воздух имеет малую теплопроводность, например при температуре минус 183°С, она составляет всего 0,0084 Вт/(м·град).

По данным таблицы видно, что с ростом температуры теплопроводность воздуха увеличивается. Так, при увеличении температуры с 20 до 1200°С, величина теплопроводности воздуха возрастает с 0,0259 до 0,0915 Вт/(м·град), то есть более чем в 3,5 раза.

Теплопроводность воздуха в зависимости от температуры — таблица t, °С λ, Вт/(м·град) t, °С λ, Вт/(м·град) t, °С λ, Вт/(м·град) t, °С λ, Вт/(м·град)
-183 0,0084 -30 0,022 110 0,0328 450 0,0548
-173 0,0093 -20 0,0228 120 0,0334 500 0,0574
-163 0,0102 -10 0,0236 130 0,0342 550 0,0598
-153 0,0111 0 0,0244 140 0,0349 600 0,0622
-143 0,012 10 0,0251 150 0,0357 650 0,0647
-133 0,0129 20 0,0259 160 0,0364 700 0,0671
-123 0,0138 30 0,0267 170 0,0371 750 0,0695
-113 0,0147 40 0,0276 180 0,0378 800 0,0718
-103 0,0155 50 0,0283 190 0,0386 850 0,0741
-93 0,0164 60 0,029 200 0,0393 900 0,0763
-83 0,0172 70 0,0296 250 0,0427 950 0,0785
-73 0,018 80 0,0305 300 0,046 1000 0,0807
-50 0,0204 90 0,0313 350 0,0491 1100 0,085
-40 0,0212 100 0,0321 400 0,0521 1200 0,0915

Теплопроводность воздуха в жидком и газообразном состояниях при низких температурах и давлении до 1000 бар

В таблице приведены значения теплопроводности воздуха при низких температурах и давлении до 1000 бар.Теплопроводность выражена в Вт/(м·град), интервал температуры от 75 до 300К (от -198 до 27°С).

Величина теплопроводности воздуха в газообразном состоянии увеличивается с ростом давления и температуры.Воздух в жидком состоянии с ростом температуры имеет тенденцию к снижению коэффициента теплопроводности.

Черта под значениями в таблице означает переход жидкого воздуха в газ — цифры под чертой относятся к газу, а выше ее — к жидкости.Смена агрегатного состояния воздуха существенно сказывается на значении коэффициента теплопроводности — теплопроводность жидкого воздуха значительно выше.

Теплопроводность в таблице указана в степени 103. Не забудьте разделить на 1000!

Таблица 2. Теплопроводность воздуха в жидком и газообразном состояниях

Теплопроводность газообразного воздуха при температуре от 300 до 800К и различном давлении

В таблице приведены значения теплопроводности воздуха при различных температурах в зависимости от давления от 1 до 1000 бар.Теплопроводность выражена в Вт/(м·град), интервал температуры от 300 до 800К (от 27 до 527°С).

По данным таблицы видно, что с ростом температуры и давления теплопроводность воздуха увеличивается.Будьте внимательны! Теплопроводность в таблице указана в степени 103. Не забудьте разделить на 1000!

Таблица 3. Теплопроводность газообразного воздуха при температуре от 300 до 800К

Теплопроводность воздуха при высоких температурах и давлении от 0,001 до 100 бар

В таблице приведены значения теплопроводности воздуха при высоких температурах и давлении от 0,001 до 1000 бар.Теплопроводность выражена в Вт/(м·град), интервал температуры от 1500 до 6000К (от 1227 до 5727°С).

С ростом температуры молекулы воздуха диссоциирует и максимальное значение его теплопроводности достигается при давлении (разряжении) 0,001 атм. и температуре 5000К.Примечание: Будьте внимательны! Теплопроводность в таблице указана в степени 103. Не забудьте разделить на 1000!

Таблица 4. Теплопроводность диссоциированного воздуха при высоких температурахИсточники:

  1. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей.
  2. Михеев М.А., Михеева И.М. Основы теплопередачи.

thermalinfo.ru

Существует и другой способ перемещения тепла (теплопередачи). Он возможен не только в подвижной среде (жидкости и газе), но и в твердых телах. Тепло может перемещаться по телу и через него к другому предмету без перемещения частей этого тела относительно друг друга, т.е. без перемещения вещества. Такой способ носит название теплопроводности.

Различные вещества по-разному проводят тепло. Лучшие проводники тепла — металлы (особенно серебро, медь). Хуже всего проводят тепло теплоизоляторы — воздух, войлок, древесина. Плохая теплопроводность воздуха используется в наших домах — слой воздуха между двойными стеклами окон является прекрасным теплоизолятором.

Таблица теплопроводности(сравнение чисел характеризует относительную скорость передачи тепла каждым материалом)

Вещество Коэффициенттеплопроводности
Серебро 428
Медь 397
Золото 318
Алюминий 220
Латунь 125
Железо 74
Сталь 45
Свинец 35
Кирпич 0,77
Вода 0,6
Сосна 0,1
Войлок 0,057
Воздух 0,025

physica-vsem.narod.ru

Теплопроводность

Теплопроводность

Известно, что процесс распространения теплоты в пространстве неразрывно связан с распределением температуры в нем. Совокупность значений температуры в каждый момент времени для всех точек рассматриваемого пространства называется температурным полем. Математически оно выражается уравнением t = f (х, у, z, τ), где х, у, z - координаты точки, а т - время. Если температура во времени не меняется, то поле называется установившимся, или стационарным. Если температура зависит от времени, поле называется неустановившимся, а протекающие в таких условиях тепловые процессы - нестационарными, например нагревание или охлаждение тел.

Температурное поле может быть функцией трех, двух и одной координаты. Соответственно оно называется трех, двух - и одномерным. Наиболее простой вид имеет уравнение одномерного стационарного температурного поля t = f (х). Все точки пространства, имеющие одинаковую температуру, образуют изотермическую поверхность. Естественно, что изменение температуры в теле может наблюдаться лищь в направлениях, пересекающих изотермические поверхности (например, направление х, рис. 13.1). При этом наиболее резкое изменение получается в направлении нормали n к изотермическим поверхностям. Предел отношения изменения температуры Δt к расстоянию между изотермами по нормали Δn при условии, что Δn = 0, называется температурным градиентом, т.е.

Ф1

Частная производная применена здесь потому, что в общем случае температура может изменяться не только в пространстве, но и во времени (при нестационарном режиме).

Температурный градиент - это вектор с положительным знаком при возрастании температуры и с отрицательным при ее падении. Градиент температуры численно равен производной температуры по нормали.

Количество переносимой теплоты в единицу времени называют тепловым потоком Q, который измеряется в Дж/с (Вт). Тепловой поток, отнесенный в единице поверхности тела, называют по верхностной плотностью теплового потока (или просто плотностью теплового потока) q = Q/S, которая измеряется в Вт/м2.

Величина q является вектором, направление которого противоположно направлению градиента температуры, так как тепловая энергия самостоятельно распространяется всегда только в сторону убывания температуры (см.рис. 13.1).

 К определению температурного градиента и теплового потока

Рис. 13.1. К определению температурного градиента и теплового потока.

Исследуя явления теплопроводности в твердых телах, Фурье установил, что тепловая мощность, тока передаваемая теплопроводностью, пропорциональна градиенту температуры пендикулярного направлению теплового потока, т. е.

Ф 13-1 (13.1)

Множитель пропорциональности λ, входящий в это уравнение, характеризует способность вещества, из которою состоит рассматриваемое тело, проводить теплоту и называется коэффициентом теплопроводности, или просто теплопроводностью. Из уравнения (13.1), которое является математическим выражением основного закона распространения теплоты путем теплопроводности (закон Фурье), следует, что теплопроводность λ, Вт/(м×К), определяет мощность теплового потока, проходящего через 1 м2 поверхности при градиенте температуры 1 К/м.

Для различных тел теплопроводность имеет определенное значение и зависит от структуры, плотности, влажности, давления и температуры веществ этих тел. Точные значения λ определяют на основе специальных лабораторных опытов. При технических расчетах обычно используют ориентировочные значения теплопроводности λ, Вт/(м×К).

Таблица серебро

Таким образом, наиболее высокая теплопроводность у металлов, значительно ниже у неметаллических строительных материалов и самые низкие значения у пористых материалов, применяемых специально для тепловой изоляции. У теплоизоляционных материалов λ < 0,20 Вт/(м × К).

У большинства металлов с повышением температуры теплопроводность убывает. Содержание примесей в металлах резко снижает их теплопроводность. Например, для стали при 0,1% углерода λ = 53, а при 1% углерода λ = 39 Вт/(м × К). Для строительных и теплоизоляционных материалов теплопроводность возрастает с увеличением температуры (исключение составляют магнезитовые огнеупоры). Зависимость λ от температуры для этих материалов может быть выражена равенством:

λ1 - λ0 °С(1 + βt)

где β - температурный коэффициент, представляющий собой приращение λ материала при повышении его температуры на 1°.

У различных строительных материалов в интервале температур 0 - 100° С β = 0,0025. Для капельных жидкостей с повышением температуры теплопроводность убывает. Исключение составляют лишь вода и глицерин. У газов с повышением температуры теплопроводность возрастает и практически не зависит от давления, за исключением очень высоких (более 200 МПа) и очень низких (менее 0,003 МПа) давлений. На теплопроводность влияют общая пористость материала, размер и степень замкнутости пор. Для пористых материалов теплопроводность находится в обратной зависимости от их общей пористости и в прямой от размеров пор. Это объясняется увеличением передачи теплоты конвекцией и излучением в общем процессе теплообмена пористого материала и свидетельствует о том, что теплоизоляционные материалы, используемые при высоких температурах, должны иметь мелкопористое строение. Поры, сообщающиеся между собой и с поверхностью материала, создают более благоприятные условия для увлажнения материала и тем самым для увеличения его теплопроводности, поэтому теплоизоляционные материалы должны иметь по возможности замкнутые поры.

Для пористых материалов λ является условной величиной, так как наличие пор в материале не позволяет рассматривать его как сплошное тело. Поэтому λ пористых материалов представляет собой теплопроводность некоторого однородного тела, через которое при одинаковых форме, размерах и температурах на границе его поверхности с окружающей средой передается та же тепловая мощность, что и через пористое тело.

Материалы с большей плотностью, как правило, обладают большей теплопроводностью, однако нужно иметь в виду, что теплопроводные свойства материала зависят не только от объема воздуха, заключенного в порах, но главным образом от равномерного распределения воздуха в пористом материале. С этой точки зрения крупнопористый материал будет менее эффективным теплоизолятором, чем мелкопористый материал с той же плотностью. Среди строительных материалов встречаются такие, которые, имея меньшую плотность, обладают большей теплопроводностью, чем материалы с большей плотностью. Примерами могут служить минеральная вата, торфяная крошка, употребляемая в качестве теплоизоляционного сыпучего материала, и др. В частности, в минеральной ваты при плотности около 125 кг/м3 теплопроводность наименьшая. При меньшей плотности теплопроводность возрастает в результате увеличения передачи теплоты конвекцией в порах вследствие меньшего уплотнения ваты.

Теплопроводность строительных материалов резко возрастает при их увлажнении, так как значительно отличаются теплопроводности воздуха и воды: теплопроводность воздуха в порах материала 0,025 - 0,028, а воды 0,55 Вт/(м×К), т. е. почти в 20 раз больше, чем воздуха. Материал становится еще более теплопроводным, если влага, находящаяся в его порах, замерзает, так как теплопроводность льда равна 2,5 Вт/(м×К), т. е. примерное 4 раза выше, чем у воды, и в 80 раз выше, чем у воздуха. Повышение теплопроводности влажных материалов обусловливается также увеличением контактирующих поверхностей частиц основного вещества материала. Это приводит к тому, что теплопроводность влажного материала значительно выше, чем сухого и воды в отдельности. Например, для сухого кирпича λ равна 0,35, для воды 0,55, а для влажного кирпича 1 Вт/(м×К) Поэтому строительные и особенно теплоизоляционные материалы необходимо предохранять от увлажнения, иначе сильно снижаются их теплозащитные свойства.

Для анизотропных материалов, которые имеют неодинаковую структуру в различных направлениях (древесина, волокнистые и прессованные материалы, кристаллы), теплопроводность зависит от направления теплового потока. Например, у сосновой древесины при направлении теплового потока параллельно направлению волокон увеличивается вдвое по сравнению с теплопроводностью при направлении теплового потока перпендикулярно волокнам. Это объясняется тем, что при направлении, перпендикулярном волокнам, тепловому потоку приходится пересекать большое количество воздушных зазоров, находящихся как внутри волокон древесины, так и между ними и оказывающих сопротивление прохождению теплоты. При направлении теплового потока параллельно волокнам влияние воздуха, заключенного в древесине, будет значительно меньше.

kotel-m.ru


Смотрите также