Теплопередача воды. Термодинамика и теплопередача. Способы теплопередачи и расчет. Теплопередача - это...

Теплопередача. Виды теплопередачи. Теплопроводность. Теплопередача воды


Термодинамика и теплопередача. Способы теплопередачи и расчет. Теплопередача

Сегодня мы попытаемся найти ответ на вопрос “Теплопередача - это?..”. В статье рассмотрим, что представляет собой процесс, какие его виды существуют в природе, а также узнаем, какова связь между теплопередачей и термодинамикой.

Определение

теплопередача это

Теплопередача - это физический процесс, суть которого заключается в передаче тепловой энергии. Обмен происходит между двумя телами или их системой. При этом обязательным условием будет передача тепла от более нагретых тел к менее нагретым.

Особенности процесса

Теплопередача - это тот самый вид явления, который может происходить и при прямом контакте, и при наличии разделяющих перегородок. В первом случае все ясно, во втором же в качестве преград могут быть использованы тела, материалы, среды. Теплопередача будет происходить в случаях, если система, состоящая из двух или более тел, не находится в состоянии теплового равновесия. То есть, один из объектов имеет большую или меньшую температуру по сравнению с другим. Вот тогда происходит передача тепловой энергии. Логично предположить, что она завершится тогда, когда система придет в состояние термодинамического, или теплового равновесия. Процесс происходит самопроизвольно, о чем нам может рассказать второе начало термодинамики.

Виды

Теплопередача - это процесс, который можно разделить на три способа. Они будут иметь основную природу, поскольку внутри них можно выделить настоящие подкатегории, имеющие свои характерные особенности наравне с общими закономерностями. На сегодняшний день принято выделять три вида теплопередачи. Это теплопроводность, конвекция и излучение. Начнем с первой, пожалуй.

расчет теплопередачи

Так называется свойство того или иного материального тела совершать перенос энергии. При этом она переносится от более нагретой части к той, что холоднее. В основе этого явления лежит принцип хаотичного движения молекул. Это так называемое броуновское движение. Чем больше температура тела, тем активнее в нем двигаются молекулы, поскольку они обладают большей кинетической энергией. В процессе теплопроводности участвуют электроны, молекулы, атомы. Осуществляется она в телах, разные части которых имеют неодинаковую температуру.

Если вещество способно проводить тепло, мы можем говорить о наличии количественной характеристики. В данном случае ее роль играет коэффициент теплопроводности. Эта характеристика показывает, какое количество теплоты пройдет через единичные показатели длины и площади за единицу времени. При этом температура тела изменится ровно на 1 К.

Ранее считалось, что обмен теплом в различных телах (в том числе и теплопередача ограждающих конструкций) связана с тем, что от одной части тела к другой перетекает так называемый теплород. Однако признаков его действительного существования никто так и не нашел, а когда молекулярно-кинетическая теория развилась до определенного уровня, про теплород все и думать забыли, поскольку гипотеза оказалось несостоятельной.

Конвекция. Теплопередача воды

термодинамика и теплопередача

Под этим способом обмена тепловой энергией понимается передача при помощи внутренних потоков. Давайте представим себе чайник с водой. Как известно, более нагретые воздушные потоки поднимаются наверх. А холодные, более тяжелые, опускаются вниз. Так почему же с водой все должно быть иначе? С ней все абсолютно так же. И вот в процессе такого цикла все слои воды, сколько бы их ни было, нагреются до наступления состояния теплового равновесия. В определенных условиях, конечно.

Излучение

теплопередача воды

Этот способ заключается в принципе электромагнитного излучения. Оно возникает благодаря внутренней энергии. Сильно вдаваться в теорию теплового излучения не станем, просто отметим, что причина здесь заключается в устройстве заряженных частиц, атомов и молекул.

Простые задачи на теплопроводность

Сейчас поговорим о том, как на практике выглядит расчет теплопередачи. Давайте решим простенькую задачу, связанную с количество теплоты. Допустим, что у нас есть масса воды, равная половине килограмма. Начальная температура воды – 0 градусов по Цельсию, конечная – 100. Найдем количество теплоты, затраченное нами для нагревания этой массы вещества.

Для этого нам потребуется формула Q = cm(t2-t1), где Q – количество теплоты, c – удельная теплоемкость воды, m – масса вещества, t1 – начальная, t2 – конечная температура. Для воды значение c носит табличный характер. Удельная теплоемкость будет равна 4200 Дж/кг*Ц. Теперь подставляем эти значения в формулу. Получим, что количество теплоты будет равно 210000 Дж, или 210 кДж.

Первое начало термодинамики

способы теплопередачи

Термодинамика и теплопередача связаны между собой некоторыми законами. В их основе - знание о том, что изменения внутренней энергии внутри системы можно достичь при помощи двух способов. Первый - совершение механической работы. Второй – сообщение определенного количества теплоты. На этом принципе базируется, кстати, первый закон термодинамики. Вот его формулировка: если системе было сообщено некоторое количество теплоты, оно будет потрачено на совершение работы над внешними телами или на приращение ее внутренней энергии. Математическая запись: dQ = dU + dA.

Плюсы или минусы?

Абсолютно все величины, которые входят в математическую запись первого закона термодинамики, могут быть записаны как со знаком “плюс”, так и со знаком “минус”. Причем выбор их будет диктоваться условиями процесса. Допустим, что система получает некоторое количество теплоты. В таком случае тела в ней нагреваются. Следовательно, происходит расширение газа, а значит, совершается работа. В итоге величины будут положительными. Если же количество теплоты отнимают, газ охлаждается, над ним совершается работа. Величины примут обратные значения.

Альтернативная формулировка первого закона термодинамики

 теплопередача ограждающих конструкций

Предположим, что у нас есть некий периодически действующий двигатель. В нем рабочее тело (или же система) совершают круговой процесс. Его принято называть циклом. В итоге система вернется к первоначальному состоянию. Логично было бы предположить, что в таком случае изменение внутренней энергии будет равным нулю. Получается, что количество теплоты станет равно совершенной работе. Эти положения позволяют сформулировать первый закон термодинамики уже по-другому.

Из него мы можем понять, что в природе не может существовать вечный двигатель первого рода. То есть, устройство, которое совершает работу в большем количестве по сравнению с полученной извне энергией. При этом действия должны совершаться периодически.

Первое начало термодинамики для изопроцессов

Рассмотрим для начала изохорический процесс. При нем объем остается постоянным. А значит, изменение объема будет равно нулю. Следовательно, работа так же будет равна нулю. Выкинем это слагаемое из первого начала термодинамики, после чего получим формулу dQ = dU. Значит, при изохорическом процессе все тепло, подведенное к системе, уходит на увеличение внутренней энергии газа или смеси.

Теперь поговорим об изобарическом процессе. Постоянной величиной в нем остается давление. При этом внутренняя энергия будет изменяться параллельно совершению работы. Вот первоначальная формула: dQ = dU + pdV. Мы можем легко вычислить совершаемую работу. Она будет равна выражению uR(T2-T1). Кстати, это есть физический смысл универсальной газовой постоянной. При наличии одного моля газа и разнице температур, составляющей один Кельвин, универсальная газовая постоянная будет равна работе, совершаемой при изобарическом процессе.

fb.ru

Теплопередача. Виды теплопередачи. Теплопроводность :: Класс!ная физика

Занимательные фишки - 7 класс Занимательные фишки - 8 класс Занимательные фишки - 9 класс 10-11 класс Диафильмы по физике

Теплопередача - это один из способов изменения внутренней энергии тела (или системы тел), при этом внутренняя энергия одного тела переходит во внутреннюю энергию другого тела без совершения механической работы.

Существует 3 вида теплопередачи:

Теплообмен между двумя средами происходит через разделяющую их твердую стенку или через поверхность раздела между ними. Теплота способна переходить только от тела с более высокой температурой к телу менее нагретому.

Теплообмен всегда протекает так, что убыль внутренней энергии одних тел всегда сопровождается таким же приращением внутренней энергии других тел, участвующих в теплообмене. Это является частным случаем закона сохранения энергии.

ИНТЕРЕСНО

Куропатки, утки и другие птицы зимой не мерзнут потому, что температура лап у них может отличаться от температуры тела более чем на 30 градусов. Низкая температура лап сильно понижает теплоотдачу. Таковы защитные силы организма!

Теплопроводность - это перенос энергии от более нагретых участков тела к менее нагретым за счет теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.), который приводит к выравниванию температуры тела.Не сопровождается переносом вещества!

Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей и газов.Теплопроводность различных веществ разная. Металлы обладают самой высокой теплопроводностью,

причем у разных металлов теплопроводность отличается.

Жидкости обладают меньшей теплопроводностью, чем твердые тела, а газы меньшей, чем жидкости.

При нагревании верхнего конца закрытой пальцем пробирки с воздухом внутри можно не бояться обжечь палец, т.к. теплопроводность газов очень низкая.Интересно, что можно было бы поднести руку почти вплотную к пламени, например, газовой горелки (температура больше 1000 градусов) и не обжечь ее, если бы …

А что если бы?

Газ, как правило, очень плохой проводник тепла, поэтому достаточно было бы лишь небольшой прослойки воздуха между рукой и пламенем. Но!Но существует такое явление, как конвекция в газах, поэтому вблизи пламени руку сильно жжет.

ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ

1. Лёд, не тающий в кипятке.

2. Греет ли шуба?3. Бумажная кастрюля.

Знаешь ли ты, что ...

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.Это не сказка, не фантастика!Такой проект реально разработан и испытан!

Итальянские ученые изобрели рубашку, позволяющую поддерживать постоянную температуру тела. Ученые обещают, что летом в ней не будет жарко, а зимой – холодно, поскольку она сшита из специальных материалов. Подобные материалы уже используются при космических полетах.

В старых пулеметах "Максим" нагревание воды предохраняло оружие от расплавления.

На кухне, поднимая посуду , наполненную горячей жидкостью, чтобы не обжечься, можно использовать только сухую тряпку. Теплопроводность воздуха намного меньше, чем у воды! А ткань структура очень рыхлая, и все прмежутки между волокнами заполнены у сухой тряпки воздухом, а у влажной - водой. Смотри, не обожгись!

Огонь в решете

Явление, о котором рассказано ниже демонстрирует свойство металлов хорошо проводить тепло.Если изготовить сетку из проволоки, обеспечив хорошее соединение металла в местах перекрещивания проволоки, и поместить ее над газовой горелкой, то можно при включенном вентиле поджечь газ над сеткой, в то время как под сеткой он гореть не будет. А если зажечь газ под сеткой, то наверх через сетку огонь « не просочится»!

В те времена, когда еще не было электрических шахтерских лампочек, пользовались лампой Дэви. Это была свеча, «посаженная» в металлическую клетку. И даже, если шахта наполнялась легковоспламеняющимися газами, лампа Дэви была безопасна и не вызывала взрыва - пламя не выходило за пределы лампы,благодаря металлической сетке.

ЕСЛИ...

... положить на лежащие рядом на столе кусок пенопласта (или дерева) и зеркало ладони, то ощущения от этих предметов будут разными: пенопласт покажется теплее, а зеркало - холоднее. Почему? Ведь температура окружающего воздуха одинаковая! Стекло - хороший проводник тепла (обладает высокой теплопроводностью), и сразу начнет "отбирать" от руки тепло. Рука будет ощущать холод! Пенопласт хуже проводит тепло. Он тоже будет , нагреваясь, "отбирать" тепло у руки, но медленнее, поэтому и покажется теплее.

ДОМАШНИЕ ОПЫТЫ

Оберните толстый гвоздь или металлический стержень полоской бумаги в один слой. Подержите над пламенем свечи до момента возгорания, засеките время. Объясните, почему бумага загорелась не сразу.

Используйте свои руки как термодатчики – обследуйте окружающие вас предметы. Найдите самые холодные на ощупь, сделайте вывод об их теплопроводности. По своим ощущениям составьте список веществ, обладающих разной теплопроводностью, от самой хорошей до самой плохой.

Подберите ложки из разных материалов (алюминиевую, мельхиоровую, стальную, деревянную и т.д.). Опустите их наполовину в сосуд с горячей водой. Через 1–2 мин проверьте, одинаково ли нагрелись их ручки. Проанализируйте результат.

Приготовьте три одинаковых кусочка льда, один из них заверните в фольгу, второй – в бумагу, третий– в вату и оставьте на блюдцах в комнате. Определите время полного таяния. Объясните разницу.

Приготовьте в морозилке лед. Сложите его в целлофановый пакет и оберните пуховым платком или обложите ватой. Можно дополнительно завернуть в шубу. Оставьте этот сверток на 5–7 ч,затем проверьте сохранность льда. Объясните наблюдаемое состояние. Предложите дома способ сохранения замороженных продуктов при размораживании холодильника.

ЗАДАЧИ ДЛЯ УМЕЮЩИХ ДУМАТЬ

(или " покумекаем"? )

1. Какая почва прогревается солнцем быстрее: влажная или сухая? Почему?

2. Почему толстый человек в холодной воде меньше мерзнет, чем худой?

3. Человек не чувствует прохлады на воздухе при температуре 20 градусов Цельсия, но в воде мерзнет при температуре 25 градусов Цельсия. Почему?

4. Если зимой к замерзшему стеклу( покрытому инеем) трамвая или автобуса приложить на одинаковое время палец, а другим пальцем прижать монету, то площадь оттаивания под монетой окажется больше. Почему?

Устали? - Отдыхаем!

Вверх

class-fizika.ru

Примеры теплопередачи в природе, в быту

Тепловая энергия является термином, который мы используем для описания уровня активности молекул в объекте. Повышенная возбужденность, так или иначе, связана с увеличением температуры, в то время как в холодных объектах атомы перемещаются намного медленней.

примеры теплопередачи

Примеры теплопередачи можно встретить повсюду - в природе, технике и повседневной жизни.

Примеры передачи тепловой энергии

Самым большим примером передачи тепла является солнце, которое согревает планету Земля и все, что на ней находится. В повседневной жизни можно встретить массу подобных вариантов, только в гораздо менее глобальном смысле. Итак, какие же примеры теплопередачи можно наблюдать в быту?

Вот некоторые из них:

  • Газовая или электрическая плита и, например, сковорода для жарки яиц.
  • Автомобильные виды топлива, такие как бензин, являются источниками тепловой энергии для двигателя.
  • Включенный тостер превращает кусок хлеба в тост. Это связано с лучистой тепловой энергией тоста, который вытягивает влагу из хлеба и делает его хрустящим.
  • Горячая чашка дымящегося какао согревает руки.
  • Любое пламя, начиная от спичечного пламени и заканчивая массивными лесными пожарами.
  • Когда лед помещают в стакан с водой, тепловая энергия из воды его плавит, то есть сама вода является источником энергии.примеры теплопередачи в природе
  • Система радиатора или отопления в доме обеспечивает тепло в течение долгих и холодных зимних месяцев.
  • Обычные печи являются источниками конвекции, в результате чего помещенный в них пищевой продукт нагревается, и запускается процесс приготовления.
  • Примеры теплопередачи можно наблюдать и в своем собственном теле, взяв в руку кусочек льда.
  • Тепловая энергия есть даже внутри у кошки, которая может согреть колени хозяина.

Тепло - это движение

Тепловые потоки находятся в постоянном движении. Основными способами их передачи можно назвать конвенцию, излучение и проводимость. Давайте рассмотрим эти понятия более подробно.

Что такое проводимость?

Возможно, многие не раз замечали, что в одном и том же помещении ощущения от прикосновения с полом могут быть совершенно разные. Приятно и тепло ходить по ковру, но если зайти в ванную комнату босыми ногами, ощутимая прохлада сразу дает чувство бодрости. Только не в том случае, где есть подогрев полов.

примеры теплопередачи в быту

Так почему же плиточная поверхность мерзнет? Это все из-за теплопроводности. Это один из трех типов передачи тепла. Всякий раз, когда два объекта различных температур находятся в контакте друг с другом, тепловая энергия будет проходить между ними. Примеры теплопередачи в этом случае можно привести следующие: держась за металлическую пластину, другой конец которой будет помещен над пламенем свечи, со временем можно почувствовать жжение и боль, а в момент прикосновения к железной ручке кастрюли с кипящей водой можно получить ожог.

Факторы проводимости

Хорошая или плохая проводимость зависит от нескольких факторов:

  • Вид и качество материала, из которого сделаны предметы.
  • Площадь поверхности двух объектов, находящихся в контакте.
  • Разница температур между двумя объектами.
  • Толщина и размер предметов.

примеры теплопередачи в природе быту технике

В форме уравнения это выглядит следующим образом: скорость передачи тепла к объекту равна теплопроводности материала, из которого изготовлен объект, умноженной на площадь поверхности в контакте, умноженной на разность температур между двумя объектами и деленной на толщину материала. Все просто.

Примеры проводимости

Прямая передача тепла от одного объекта к другому называются проводимостью, а вещества, которые хорошо проводят тепло, называются проводниками. Некоторые материалы и вещества плохо справляются с этой задачей, их называют изоляторами. К ним относят древесину, пластмассу, стекловолокно и даже воздух. Как известно, изоляторы фактически не останавливают поток тепла, а просто его замедляют в той или иной степени.

Конвекция

Такой вид теплопередачи, как конвекция, происходит во всех жидкостях и газах. Можно встретить такие примеры теплопередачи в природе и в быту. Когда жидкость нагревается, молекулы в нижней части набирают энергию и начинают двигаться быстрее, что приводит к уменьшению плотности. Теплые молекулы текучей среды начинают двигаться вверх, в то время как охладитель (более плотная жидкость) начинает тонуть. После того как прохладные молекулы достигают дна, они опять получают свою долю энергии и снова стремятся к вершине. Цикл продолжается до тех пор, пока существует источник тепла в нижней части.

примеры теплопередачи в технике

Примеры теплопередачи в природе можно привести следующие: при помощи специального оборудованной горелки теплый воздух, наполняя пространство воздушного шара, может поднять всю конструкцию на достаточно большую высоту, все дело в том, что теплый воздух легче холодного.

Излучение

Когда вы сидите перед костром, вас согревает исходящее от него тепло. То же самое происходит, если поднести ладонь к горящей лампочке, не дотрагиваясь до нее. Вы тоже почувствуете тепло. Самые крупные примеры теплопередачи в быту и природе возглавляет солнечная энергия. Каждый день тепло солнца проходит через 146 млн. км пустого пространства вплоть до самой Земли. Это движущая сила для всех форм и систем жизни, которые существуют на нашей планете сегодня. Без этого способа передачи мы были бы в большой беде, и мир был бы совсем не тот, каким мы его знаем.

примеры теплопередачи в природе и технике ветры

Излучение - это передача тепла с помощью электромагнитных волн, будь то радиоволны, инфракрасные, рентгеновские лучи или даже видимый свет. Все объекты излучают и поглощают лучистую энергию, включая самого человека, однако не все предметы и вещества справляются с этой задачей одинаково хорошо. Примеры теплопередачи в быту можно рассмотреть при помощи обычной антенны. Как правило, то, что хорошо излучает, также хорошо и поглощает. Что касается Земли, то она принимает энергию от солнца, а затем отдает ее обратно в космос. Эта энергия излучения называется земной радиацией, и это то, что делает возможной саму жизнь на планете.

Примеры теплопередачи в природе, быту, технике

Передача энергии, в частности тепловой, является фундаментальной областью исследования для всех инженеров. Излучение делает Землю пригодной для обитания и дает возобновляемую солнечную энергию. Конвекция является основой механики, отвечает за потоки воздуха в зданиях и воздухообмен в домах. Проводимость позволяет нагревать кастрюлю, всего лишь поставив ее на огонь.

Многочисленные примеры теплопередачи в технике и природе очевидны и встречаются повсюду в нашем мире. Практически все из них играют большую роль, особенно в области машиностроения. Например, при проектировании системы вентиляции здания инженеры высчитывают теплоотдачу здания в его окрестностях, а также внутреннюю передачу тепла. Кроме того, они выбирают материалы, которые сводят к минимуму или максимизируют передачу тепла через отдельные компоненты для оптимизации эффективности.

Испарение

Когда атомы или молекулы жидкости (например, воды) подвергаются воздействию значительного объема газа, они имеют тенденцию самопроизвольно войти в газообразное состояние или испариться. Это происходит потому, что молекулы постоянно движутся в разных направлениях при случайных скоростях и сталкиваются друг с другом. В ходе этих процессов некоторые из них получают кинетическую энергию, достаточную для того, чтобы отталкиваться от источника нагревания.

примеры теплопередачи в природе и технике картинки

Однако не все молекулы успевают испариться и стать водяным паром. Все зависит от температуры. Так, вода в стакане будет испаряться медленнее, чем в нагреваемой на плите кастрюле. Кипение воды значительно увеличивает энергию молекул, что, в свою очередь, ускоряет процесс испарения.

Основные понятия

  • Проводимость - это передача тепла через вещество при непосредственном контакте атомов или молекул.
  • Конвекция - это передача тепла за счет циркуляции газа (например, воздуха) или жидкости (например, воды).
  • Излучение - это разница между поглощенным и отраженным количеством тепла. Эта способность сильно зависит от цвета, черные объекты поглощают больше тепла, чем светлые.
  • Испарение - это процесс, при котором атомы или молекулы в жидком состоянии получают достаточно энергии, чтобы стать газом или паром.
  • Парниковые газы - это газы, которые задерживают тепло солнца в атмосфере Земли, производя парниковый эффект. Выделяют две основные категории - это водяной пар и углекислый газ.
  • Возобновляемые источники энергии - это безграничные ресурсы, которые быстро и естественно пополняются. Сюда можно отнести следующие примеры теплопередачи в природе и технике: ветры и энергию солнца.
  • Теплопроводность - это скорость, с которой материал передает тепловую энергию через себя.
  • Тепловое равновесие - это состояние, в котором все части системы находятся в одинаковом температурном режиме.

примеры теплопередачи

Применение на практике

Многочисленные примеры теплопередачи в природе и технике (картинки выше) указывают на то, что эти процессы должны быть хорошо изучены и служили во благо. Инженеры применяют свои знания о принципах передачи тепла, исследуют новые технологии, которые связаны с использованием возобновляемых ресурсов и являются менее разрушительными для окружающей среды. Ключевым моментом является понимание того, что перенос энергии открывает бесконечные возможности для инженерных решений и не только.

fb.ru


Смотрите также

">