Справочник химика 21. Кондиционирование воды


Кондиционирование воды

Кондиционирование воды

kondecvodyВода, используемая для питьевых целей, производства различных продуктов, должна обладать определенными свойствами и химическим составом. Наряду с необходимостью обеспечить содержание токсичных веществ в концентрациях ниже допустимых, часто требуется, чтобы в ней присутствовали полезные для данного производства вещества в заданных количествах, соблюдались определенные значения рН и щелочности. В энергетике необходимо обеспечение такого состава и (или) физического состояния примесей, которые не образуют накипи и не вызывают коррозии металлов.

Процесс доведения состава воды до заданных, необходимых для данного процесса параметров называют кондиционированием.

Как правило, он включает ряд операций, при которых удаляются загрязнения, а затем вводятся соответствующие реагенты.

Стабилизационная обработка воды для тепловых процессов

При использовании воды в качестве теплоносителя к числу ее важных качеств относятся отсутствие выпадения осадков на поверхностях теплообмена и минимальная коррозийная активность.

Стабильной называют воду, которая не вызывает коррозии поверхности металла, с которой она соприкасается, и не выделяет на этих поверхностях осадки карбонатов кальция.

Для поддержания стабильности воды в заданных пределах необходимо регулировать несколько параметров: рН, щелочность и карбонатную жесткость. Стабильность увеличивается при введении карбонатов натрия или кальция, подщелачивании, а уменьшается при умягчении воды или введении кислоты.

Выпадение осадков солей жесткости, железа резко ухудшает эффективность теплообмена и приводит к росту тепловых потерь и экономичности установок. Существуют жесткие нормативы на содержание солей жесткости в воде для различных энергетических установок. Для их удаления используются различные методы.

К способам обеспечения стабильности воды относятся умягчение и введение реагентов, т.н. химическая обработка.

Химическая обработка воды заключается во введении в воду малых доз специальных реагентов, связывающих соли жесткости, которые остаются в растворе и не прилипают к греющим поверхностям.

Различают два класса стабилизирующих реагентов: реагенты, связывающие соли жесткости во взвешенные в воде кристаллические образования (фосфаты и пр.), и реагенты, стабилизирующие насыщенные растворы (кислоты, комплексоны и пр.).

Кондиционирование питьевой воды

Вода природных источников может, с одной стороны, содержать различные загрязнения, а с другой стороны, в ней могут отсутствовать вещества, необходимые для нормальной жизнедеятельности. Одновременно с вредными загрязнениями могут извлекаться и полезные для организма вещества. Для создания необходимого солевого состава воды в нее вводят недостающие соли.

Как правило, в воде наблюдается дефицит фтора, йода.

Кроме того, питьевая вода должна быть стабильной. В противном случае в процессе доставки к потребителю она окажется загрязненной продуктами коррозии трубопроводов. Это особенно актуально для вод, прошедших очистку методами опреснения и обессоливания. Как правило, стабилизация такой воды производится путем ее пропускания через известковые минералы или методами дозирования необходимых компонентов.

Кондиционирование воды для пищевой промышленности

Как отмечалось выше, для получения стабильной ликероводочной продукции, соков и питьевой воды необходимо поддержание в очищенной воде, которая является сырьем, не только заданного солевого состава, прежде всего жесткости, но и определенной щелочности. Последняя в большинстве природных вод оказывается выше заданной, поэтому в воду вводится кислота, допущенная для применения в пищевой промышленности. Параллельно ведется контроль рН.

Другими путями контролируемого уменьшения щелочности являются: умягчение воды на слабокислотном катионите, Na-H-катионирование, обессоливание обратным осмосом или нанофильтрация, которые описаны выше.

В производстве пива требования к составу воды противоречивы, например, необходимо иметь достаточное количество солей кальция при отсутствии магния. Обычными способами селективно извлечь магний невозможно, поэтому часто используют метод обессоливания воды с последующим вводом необходимых реагентов.

armbur.ru

Как работают кондиционеры на воде. Испарительное охлаждение воздуха

Охлаждение и увлажнение воздуха посредством испарительного охлаждения - это абсолютно естественный процесс, в котором вода используется как охлаждающая среда, а тепло эффективно рассеивается в атмосфере. Используются простые закономерности - при испарении жидкости происходит поглащение тепла или выделение холода. Эффективность испарения - увеличивается при увеличении скорости воздуха, что обеспечивает принудительная циркуляция вентилятора.

Температура сухого воздуха может быть существенно снижена с помощью фазового перехода жидкой воды в пар, и этот процесс требует значительно меньше энергии, чем компрессионное охлаждение. В очень сухом климате испарительное охлаждение имеет также то преимущество, что при кондиционировании воздуха увеличивает его влажность, и это создаёт больше комфорта для людей, находящихся в помещении. Однако, в отличие от парокомпрессионного охлаждения, оно требует постоянного источника воды, и в процессе эксплуатации постоянно её потребляет.

История развития  

На протяжении веков цивилизации находили оригинальные методы борьбы со зноем на своих территориях. Ранняя форма охлаждающей системы, «ловец ветра», была изобретена много тысяч лет назад в Персии (Иран). Это была система ветряных валов на крыше, которые улавливали ветер, пропускали его через воду, и задували охлаждённый воздух во внутренние помещения. Примечательно, что многие из этих зданий также имели дворы с большими запасами воды, поэтому, если не было ветра, то в результате естественного процесса испарения воды горячий воздух, поднимаясь вверх, испарял воду во дворе, после чего уже охлажденный воздух проходил через здание. В наши дни Иран заменил ловцов ветра на испарительные охладители и широко их использует, а рынок за счет сухого климата - достигает оборота за год в 150.000 испарителей.

В США испарительный охладитель в двадцатом веке был объектом многочисленных патентов. Многие из которых, начиная с 1906г., предлагали использовать древесную стружку, как прокладку переносящую большое количество воды при контакте с движущимся воздухом, и поддерживающую интенсивное испарение. Стандартная конструкция, как показано в патенте 1945г., включает водяной резервуар (обычно оснащённый поплавковым клапаном для регулировки уровня), насос для циркуляции воды через прокладки из древесных стружек, и вентилятор для подачи воздуха через прокладки в жилые помещения. Эта конструкция и материалы остаются основными, в технологии испарительных охладителей, на юго-западе США. В этом регионе они дополнительно используются для увеличения влажности.

Испарительное охлаждение было распространено в авиационных двигателях 1930-х годов, например, в двигателе для дирижабля Beardmore Tornado. Эта система была использована для уменьшения или полного исключения радиатора, который в ином случае мог бы создать существенное аэродинамическое сопротивление. В этих системах вода в двигателе поддерживалась под давлением с помощью насосов, позволявших ей нагреваться до температуры более 100°C, поскольку фактическая точка кипения зависит от давления. Перегретая вода распылялась через сопло на открытую трубу, где мгновенно испарялась, принимая её тепло. Эти трубы могли быть расположены под поверхностью самолёта для создания нулевого сопротивления. 

Внешние приборы испарительного охлаждения устанавливались на некоторые автомобили для охлаждения салона. Зачастую они продавались как дополнительные аксессуары. Использование приборов испарительного охлаждения в автомобилях продолжалось до тех пор, пока не приобрело широкое распространение парокомпрессионное кондиционирование воздуха.

Принцип испарительного охлаждения отличается от того, на котором работают аппараты парокомпрессионного охлаждения, хотя они также требуют испарения (испарение является частью системы). В парокомпрессионном цикле, после испарения хладагента внутри испарительного змеевика, охлаждающий газ сжимается и охлаждается, под давлением конденсируясь в жидкое состояние. В отличие от этого цикла, в испарительном охладителе вода испаряется только один раз. Испарённая вода в охладительном приборе выводится в пространство с охлажденным воздухом. В градирне испарившаяся вода уносится потоком воздуха.

 

Варианты применения испарительного охлаждения 

Различают испарительное охлаждение воздуха прямое, косое, и двухступенчатое (прямое и косвенное). Прямое испарительное охлаждение воздуха основано на изоэнтальпийном процессе и используется в кондиционерах в холодное время года; в теплое время оно возможно лишь при отсутствии или незначительных влаговыделениях в помещении и низком влагосодержании наружного воздуха. Несколько расширяет границы его применения байпасирование камеры орошения.

Прямое испарительное охлаждение воздуха целесообразно в условиях сухого и жаркого климата в приточной системе вентиляции. 

Косвенное испарительное охлаждение воздуха осуществляется в поверхностных воздухоохладителях. Для охлаждения воды, циркулирующей в поверхностном теплообменнике, используют вспомогательный контактный аппарат (градирню). Для косвенного испарительного охлаждения воздуха можно использовать аппараты совмещенного типа, в которых теплообменник выполняет одновременно обе функции — нагрев и охлаждение. Такие аппараты аналогичны воздушным рекуперативным теплообменникам.

По одной группе каналов проходит охлаждаемый воздух, внутренняя поверхность второй группы орошается водой, стекающей в поддон, а затем вновь разбрызгиваемой. При контакте с проходящим во второй группе каналов выбросным воздухом происходит испарительное охлаждение воды, в результате чего воздух в первой группе каналов охлаждается. Косвенное испарительное охлаждение воздуха позволяет снизить производительность системы кондиционирования воэдуха по сравнению с ее производительностью при прямом испарительном охлаждении воздуха и расширяет возможности использования этого принципа, т.к. влагосодержание приточного воздуха во втором случае меньше.

При двухступенчатом испарительном охлаждении воздуха используют последовательное косвенное и прямое испарительное охлаждение воздуха в кондиционере. При этом установку для косвенного испарительного охлаждения воздуха дополняют оросительной форсуночной камерой, работающей в режиме прямого испарительного охлаждения. Типовые оросительные форсуночные камеры используют в системах испарительного охлаждения воздуха как градирни. Помимо одноступенчатого косвенного испарительного охлаждение воздуха возможно многоступенчатое, в котором осуществляется более глубокое охлаждение воздуха, — это так называемая бескомпрессорная система кондиционирования воэдуха.

Прямое испарительное охлаждение (открытый цикл) используется для снижения температуры воздуха с помощью удельной теплоты испарения, изменяя жидкое состояние воды на газообразное. В этом процессе энергия в воздухе не меняется. Сухой, тёплый воздух заменяется на прохладный и влажный. Тепло внешнего воздуха используется для испарения воды.

Непрямое испарительное охлаждение (закрытый цикл) процесс похожий на прямое испарительное охлаждение, но использующий определённый тип теплообменника. В этом случае влажный, охлаждённый воздух не контактирует с кондиционируемой средой.

Двухстадийное испарительное охлаждение, или непрямое/прямое. 

Традиционные испарительные охладители используют только часть энергии необходимой аппаратам парокомпрессионного охлаждения или системам адсорбционного кондиционирования. К сожалению, они повышают влажность воздуха до дискомфортного уровня (за исключением очень сухих климатических зон). Двухстадийные испарительные охладители не повышают уровень влажности настолько, насколько это делают стандартные одноступенчатые испарительные охладители.

На первой стадии двухстадийного охладителя, тёплый воздух охлаждается непрямым путём без увеличения влажности (с помощью прохождения через теплообменник, охлаждаемый испарением снаружи). В прямой стадии предварительно охлаждённый воздух проходит через пропитанную водой прокладку, дополнительно охлаждается и становится более влажным. Поскольку в процесс включена первая, предохлаждающая стадия, на стадии прямого испарения необходимо меньше влажности для достижения требуемых температур. В результате, по словам производителей, процесс охлаждает воздух с относительной влажностью в пределах 50 — 70 %, в зависимости от климата. Для сравнения традиционные системы охлаждения повышают влажность воздуха до 70 — 80 %. 

 

Назначение

При проектировании центральной приточной системы вентиляции возможно оснастить воздухозабор испарительной секцией и так существенно снизить затраты на охлаждение воздуха в теплый период года.

В холодный и переходной периоды года, при нагреве воздуха приточными калориферами систем вентиляции или воздуха внутри помещения системами отопления - воздух нагревается и растет его физическая возможность ассимилировать (впитать) в себя, при увеличении температуры - влагу. Или, чем выше температура воздуха - тем больше влаги он может в себя ассимилировать. Например, при нагреве наружного воздуха калорифером системой вентиляции с температуры -220С и влажности 86% (параметр наружного воздуха для ХП г.Киева), до +200С - влажность падает ниже граничных пределов для биологических организмов до недопустимых 5-8% влажности воздуха. Низкая влажность воздуха - негативно влияет на кожу и слизистые оболочки человека, особенно больных астмой или легочными заболеваниями. Нормированная для жилых и административных помещений влажность воздуха: от 30 до 60%. 

Испарительное охлаждение воздуха сопровождается выделением влаги или увеличения влажности воздуха, до высокого насыщения влажности воздуха 60-70%.

 

Преимущества

Объем испарения – и, соответственно, теплоперенос – зависит от температуры наружного воздуха по мокрому термометру которая, особенно летом, намного ниже, чем эквивалентная температура по сухому термометру. Например, в жаркие летние дни, когда температура по сухому термометру превышает 40°C, испарительное охлаждение может охладить воду до 25°C или охлаждать воздух. Поскольку испарение удаляет намного больше тепла, чем стандартный физический теплоперенос, для теплопереноса используется в четыре раза меньший расход воздуха по сравнению с обычными методами охлаждения воздуха, что сохраняет значительное количество энергии.

Испарительное охлаждение в сравнении с традиционными способами кондиционирования воздухаВ отличие от других видов кондиционирования воздуха охлаждение воздуха испарительного типа (био-охлаждение) не использует в качестве хладагентов вредные газы (фреон и другие), которые наносят вред окружающей среде. Оно также потребляет меньше электричества, экономя таким образом электроэнергию, природные ресурсы и до 80 % эксплутационных затрат по сравнению с кондиционированием воздуха другими системами.

 

Недостатки

Низкая эффективность работы во влажном климате.  Повышение влажности воздуха, что в некоторых случаях нежелательно - выход двухстадийное испарение, где воздух не контактирует и не насыщается влагой.

 

Принцип работы (вариант 1)

Процесс охлаждения осуществляется за счет тесного контакта вода и воздуха, и переноса тепла в воздух путем испарения небольшого количества воды. Далее тепло рассеивается через выходящий из установки теплый и насыщенный влагой воздух.

Обозначения:

1 - подача воды 2 - система раздачи воды для орошения воздухопропускных кассет 3 - поверхность теплопередачи с помощью двух кассет 4 - нагнетатель воздуха (вентилятор или патрубок вентсистемы) 5 - воздухозабор 6 - поддон сбора стекшей воды 7 - выпуск (обратка) холодной воды 8 - подача насыщенного влагой воздуха 9 - каплеуловители 

alt

 

Принцип работы (вариант 2) - установка на воздухозаборе

 

alt

До

alt

После

 

Установки испарительного охлаждения  

Существуют различные типы установок для испарительного охлаждения, но все они имеют: - секцию теплообмена или теплопереноса, постоянно смачиваемую водой методом орошения, - систему вентиляторов для принудительной циркуляции наружного воздуха через секцию теплообмена, - другие вспомогательные компоненты, такие как поддон для сбора воды, каплеуловители и органы управления.

 

 Пример варианта применения для охлаждения шкафов серверной

alt

 

alt

 

alt

 

 опубликовано econet.ru

 

econet.ru

Кондиционирование воды - Справочник химика 21

    ОСНОВЫ и ТЕХНОЛОГИЯ КОНДИЦИОНИРОВАНИЯ ВОДЫ [c.3]

    В вышедшей в 1971 г, монографии Л. А. Кульского Теоретические основы и технология кондиционирования воды рассмотрены вопросы очистки хозяйственно-питьевых и технических вод с точки зрения разработанной автором классификации примесей воды по их фазово-дисперсному состоянию. Методам очистки промышленных сточных вод было уделено значительно меньше внимания, В настоящей книге рассмотрены методы очистки промышленных сточных вод на основе общности протекающих химических, физико-химических или биохимических процессов, которые определяются, главным образом, фазово-дисперсным состоянием веществ, загрязняющих воду. [c.6]

    Проблема получения равномерной температуры по поверхности рабочей части валка может быть решена применением новой системы охлаждения и подогрева валков. Теплообмен в новой системе (рис. 7.16) осуществляется посредством подачи теплоносителя через периферийно расположенный ряд отверстий (диаметром 16— 20 мм при диаметре валка 700 мм) параллельно образующей валка в непосредственной близости (около 50 мм) к рабочей поверхности. Каждый валок имеет индивидуальную систему кондиционирования воды (нагретой или охлажденной до определенной температуры). Если требуется подогреть валок, то включается подогреватель, при охлаждении включается холодильник, В этом случае легко достигается высокая точность и однородность температуры валков каландра и возможность автоматического регулирования температуры валков. [c.165]

    Теоретические основы и технология кондиционирования воды /Кульский л. А.— 3-е изд., перераб. и доп.— Киев Наук, думка, 1980.—564 с. [c.4]

    Кульский Л. А. Теоретические основы и технология кондиционирования воды.— Киев Наукова думка, 1980.— 564 с. [c.162]

    В нынешних условиях очистка, обезвреживание и обеззараживание воды уже не могут успешно осуществляться, опираясь только на эмпирические данные. Описательная форма изложения применяемых в практике методов и схем сооружений для обработки воды недостаточна. Необходимо критически рассмотреть имеющиеся методы на основе физико-химических представлений о протекающих при этом процессах и широких научных обобщений. Подобных пособий ни в отечественной ни в зарубежной литературе не имеется. В настоящей монографии автор подходит к изложению основ технологии кондиционирования воды с теоретических позиций. [c.5]

    Кондиционирование водой применяли в случаях, когда уголь был достаточно сухим и содержал очень мало серы. Воду добавляли из расчета 18—16 г/м газа, к.п.д. электрофильтра повышался от 89 до 97%. Если такое количество воды вводить в виде водяного пара, то это отражается на экономичности котла но если его вводить в виде водяных капель, то из-за дополнитель- [c.471]

    Характеристика комплексов оборудования. Линия начинается с комплекса оборудования для подготовки водно-спиртовых растворов, в состав которого входят аппараты для кондиционирования воды, ультрафильтрационные и обратноосмотические установки, а также сортировочные аппараты и смеситель непрерывного действия. [c.154]

    ТЕОРЕТИЧЕСКИЕ ОСНОВЫ И ТЕХНОЛОГИЯ КОНДИЦИОНИРОВАНИЯ ВОДЫ [c.564]

    Специфичны также условия очистки сточных вод, требующие применения нескольких методов в одной технологической схеме. Комплексный характер методов обработки воды, разрабатываемых на основе достижений физической химии, биохимии, гидравлики и общей теории процессов и аппаратов, нуждается в едином подходе при решении задач, связанных с технологией кондиционирования воды. Возникла острая необходимость в разработке теоретической базы новой отрасли науки — химии и технологии обработки воды, которая должна опираться на научно-обоснованную и практически оправдывающую себя систематизацию примесей и загрязнений воды. Особое значение в связи с этим приобретает созданная автором классификация, основанная на фазово-дисперсном состоянии примесей воды. Она явилась плодотворной рабочей гипотезой, позволившей с единых позиций оценить технологические процессы водоподготовки, найти решения, обеспечивающие эффективную очистку воды в соответствии с современными требованиями к ее качеству, и указать направления дальнейшего развития этой отрасли науки. [c.8]

    В монографии освещается состояние теории и практики водоподготовки для хозяйственно-питьевого и промышленного водоснабжения с учетом прогрессирующего загрязнения водных источников (ресурсов) планеты. Способы очистки воды определяются не только химической природой ее примесей, но и их фазово-дисперсным состоянием, поэтому загрязняющие воду вещества систематизируются по данным признакам, которые в свою очередь предопределяют технологические приемы водоочистки. Описываются технологические режимы и аппаратурное оформление процессов кондиционирования воды. [c.4]

    Большие работы в области рационализации технологии водоподготовки проведены и в других научных центрах страны. Так, в Академии коммунального хозяйства им. К. Д. Памфилова создана теория фильтрования малоконцентрированных суспензий через зернистые загрузки, предложены прогрессивные конструкции установок и аппаратов для очистки и обеззараживания воды. Во ВНИИ Водгео разработаны теория и методы расчета отстойных сооружений, теория и технология биологической очистки сточных вод, рекомендованы технологические схемы кондиционирования воды в оборотных циклах тепловых электростанций и металлургических предприятий, проведены исследования по борьбе с коррозией аппаратуры и трубопроводов, ведутся работы по деминерализации воды. [c.526]

    Рассчитана на инженерно-технических работников, занимающихся научно-исследовательской и практической деятельностью в области кондиционирования воды, аспирантов и студентов вузов указанного профиля. Ил. 379. Табл. 81. Списки лит. в конце глав. [c.4]

    Книга представляет собой третье переработанное и дополненное издание монографии Основы технологии кондиционирования воды , выпущенной в 1963 г. и переизданной затем в 1971 г. под названием Теоретические основы и технология кондиционирования воды . [c.5]

    Технология кондиционирования воды подразделяется на процессы, связанные в корректированием ее физических и химических свойств, и процессы обеззараживания (освобождения от болезнетворных бактерий и микроорганизмов). Однако, несмотря на принципиальное различие задач этих методов обработки, они могут быть общими в зависимости от фазоводисперсного состояния минеральных, органических и биологических примесей воды [24]. [c.73]

    Во ВНИИ Водгео разработаны теория и методы расчета отстойных сооружений, теория и технология биологической очистки сточных вод, созданы основы кондиционирования воды в оборотных циклах тепловых электростанций и металлургических предприятий, проведены исследования по борьбе с коррозией аппаратуры и трубопроводов, ведутся важные работы по деминерализации воды. [c.222]

    Применительно к глинам, глинистым минералам и другим высокодисперсным системам теория лиофильности, разработанная А, В. Думанским, нашла свое дальнейшее развитие в работах отделов Института коллоидной химии и химии воды им. А. В. Думанского АН УССР 12—22]. В них дана количественная оценка лиофильности твердых поверхностей по величинам теплот смачивания, структурносорбционным характеристикам, диэлектрическим показателям, электрической спектроскопии и другим физическим и физико-химическим параметрам. Взгляды А. В. Думанского широко используются при изучении вопросов получения сорбентов, катализаторов, наполнителей, пластификаторов, полиэлектролитов, гетерогенных систем, металлополимеров, сахаристых веществ, кондиционированной воды, ионообменных смол, гранулированных ионитов, коллоидных растворов, структурированных неньютоновских жидкостей и различного рода материалов на их основе, а также при создании теории сорбционных и ионообменных процессов как в живой, так и неживой природе. [c.222]

    Присутствие аммиачного азота в водах подземных источников Гобычно бывает результатом природных восстановительных процессов. На некоторых установках по кондиционированию воды аммиак вносится при дезинфекции воды хлорамином. [c.95]

    Кульский Л. А. 1971. Теоретические основы и тмснология кондиционирования воды. Киев, Наукова думка .  [c.107]

    Водные ресурсы регионов определяют не только возможность нормального функционирования общества, но и опосредованно влияют на качество природной среды, так как при хозяйственной деятельности происходит их существенное за-фязнение всевозможными отходами, делающее их непригодными для непосредственного потребления. Водные ресурсы к тому же являются одним из важнейших факторов самоочи-щающей способности природной среды. В последнее время проблема качественных водных ресурсов особенно обострилась в связи с их значительным использованием и задачей очистки (кондиционирования) воды. [c.10]

    Кондиционирование после удаления карбонатов и умягчения. Все упомянутые выше процессы позволяют получить подпиточ-ную воду с очень малым количеством кальция. Поэтому кондиционирование воды целесообразно выполнять после такой обработки с применением веществ, препятствующих образованию накипи, т. е. диспергаторов (см. п. 14.2.3.). Для этого желательно использовать окислительно-восстановительные агенты (см. п. 14.2.4), природа и количество которых зависят от доступных способов термической деаэрации. Чтобы в процессе такой частичной очистки получить пар достаточной и постоянной чистоты, рекомендуется использовать вещества, мешающие уносу воды паром.  [c.98]

chem21.info


Смотрите также