Амфотерность. Амфотерность воды


Амфотерность - это... Что такое Амфотерность?

Амфоте́рность (от др.-греч. (ἀμφότεροι — «двойственный», «обоюдный») — способность некоторых соединений проявлять в зависимости от условий как кислотные, так и осно́вные свойства.

Понятие амфоте́рность как характеристика двойственного поведения вещества было введено в 1814 г. Ж. Гей-Люссаком и Л. Тенаром. А. Ганч в рамках общей химической теории кислотно-основных взаимодействий (1917-1927 гг.) определил амфоте́рность как «способность некоторых соединений проявлять как кислотные, так и основные свойства в зависимости от условий и природы реагентов, участвующих в кислотно-основном взаимодействии, особенно в зависимости от свойств растворителя»[1].

Амфотерны гидроксиды таких элементов главных подгрупп, как бор, алюминий, галлий, мышьяк, сурьма, селен и др., таких элементов побочных подгрупп как хром, цинк, молибден, вольфрам и многих других. Обычно в химическом поведении гидроксидов преобладает или кислотный, или основный характер[2].

Амфотерность как химическое свойство

Амфотерность как химическое свойство вещества может проявляться по-разному:

1. В рамках теории электролитической диссоциации это способность вещества к электролитической диссоциации как по механизму кислот (с отщеплением ионов гидроксония, H+ ), так и по механизму оснований (отщепление гидроксид-ионов, OH– ). Электролиты, которые в растворе ионизируются одновременно по кислотному и основному типам называются амфолитами[3]. Если обозначить амфотерный электролит формулой ROH, то его диссоциацию можно описать схемой:

H+ + RO–Equilibrium rl.svg ROH Equilibrium rl.svg R+ + OH–

Например, кислотно-основные свойства азотистой кислоты определяются равновесными процессами диссоциации с образованием нитрит-аниона и нитрозильного катиона:

HNO2Equilibrium rl.svg H+ + NO2- (Ka ~ 105) HNO2Equilibrium rl.svg NO+ + OH- (Kb ~ 107).

Идеальным амфолитом будет вода:

h3O Equilibrium rl.svg H+ + OH-

Также к числу идеальных амфолитов относят гидроксид галлия Ga(OH)3, вторые и третьи константы диссоциации которого по кислотному и основному типам практически одинаковы[2].

2. В рамках протолитической теории Брёнстеда-Лоури проявление амфотерности рассматривается как способность протолита выступать донором и акцептором протона. Например, для воды амфотерность проявляется как автопротолиз[4]:

h3O + h3O Equilibrium rl.svg h4O+ + OH-

Амфолитами также будут вещества, имеющие в своём составе функциональные группы, способные быть донорами и акцепторами протонов. Например, к амфотерным органическим электролитам относятся белки, пептиды и аминокислоты. Так аминокислоты имеют в своём составе, по крайней мере, карбоксильную группу –COOH и аминогруппу –Nh3. В растворе эти группы подвергаются частичной ионизации:

R–COOH + h3O Equilibrium rl.svg R–COO– + h4O+ R–Nh3 + h3O Equilibrium rl.svg
R–Nh4+ + OH-

Таким образом, молекула аминокислоты находится в двух равновесных формах, заряженной (цвиттер-ион) и незаряженной. В этих комбинациях R–COOH и R–Nh4+ являются потенциальными кислотами (донорами протонов, катионов), а R–COO– и R–Nh3 – сопряженными потенциальными основаниями (акцепторами протонов, катионов).

3. Амфотерность может проявляться как способность вещества к взаимодействию как с кислотами, так и с основаниями. Это характерно для оксидов, гидроксидов и комплексных соединений некоторых p-элементов и большинства d-элементов в промежуточных степенях окисления. Амфотерность в той или иной степени является общим свойством гидроксидов[3]. Например, для соединений хрома (III) известны реакции[5]:

Cr(Oh4) (тв) + 3HCl (р-р) Biochem reaction arrow foward NNNN horiz med.svg
CrCl3 (р-р) + 3h3O Cr(Oh4) (тв) + NaOH (р-р) + 2h3O Biochem reaction arrow foward NNNN horiz med.svg Na[Cr(OH)4(h3O)2] (р-р) Cr2O3 (тв) + 6HCl (р-р) Biochem reaction arrow foward NNNN horiz med.svg 2CrCl3 (р-р) + 3h3O Cr2O3 (тв) + Na2CO3 (плавл) Biochem reaction arrow foward NNNN horiz med.svg 2NaCrO2 + CO2 (газ)

Не соответствуют действительности традиционные представления о проявлении амфотерности гидроксидов как диссоциации по кислотному и основному типам[2]. В общем виде амфотерное поведение нерастворимых гидроксидов хрома (III), алюминия, цинка может описано как реакции ионного обмена ионов среды с лигандами h3O и OH–. Например, для Al(Oh4) ионные равновесия могут быть записаны следующим образом:

[Al(OH)3(h3O)3] + 3h4O+Equilibrium rl.svg Al(h3O)63+ + 3h3O (в кислой среде) [Al(OH)3(h3O)3] + 3OH-Equilibrium rl.svg Al(OH)63-. (в щелочной среде)

4. В ряде случаев важным косвенным признаком амфотерности является способность элемента образовывать два ряда солей, катионного и анионного типа[6]. Например, для цинка: ZnCl2, [Zn(h3O)4]SO4 (катионные) и Na2ZnO2, Na2(Zn(OH)4) (анионные).

См. также

Ссылки

Литература

  • Амфотерные гидроксиды и их поведение в водных растворах / Корольков Д. В. Основы неорганической химии. - М.: Просвещение, 1982. - 271 с.
  • Кислотные и основные свойства / Общая химия. Под ред. Е. М. Соколовской и Л. С. Гузея. — М.: Изд-во Моск. ун-та, 1989. — 640 с. ун-та, 1989. — 640 с

Примечания

  1. ↑ Танганов Б.Б. Химические методы анализа. - Улан-Удэ, 2005.- 550 с.
  2. ↑ 1 2 3 Амфотерные гидроксиды и их поведение в водных растворах / Корольков Д. В. Основы неорганической химии. - М.: Просвещение, 1982. - 271 с.
  3. ↑ 1 2 Угай Я. А. Общая и неорганическая химия. - М.: Высшая школа, 1997. - 527 с.
  4. ↑ Автопротолиз воды / Жуков С. Т. Химия. 8-9 класс
  5. ↑ Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ. – М.: Химия, 2000. – 480 с.: ил.
  6. ↑ Кислотные и основные свойства / Общая химия. Под ред. Е. М. Соколовской и Л. С. Гузея. — М.: Изд-во Моск. ун-та, 1989. — 640 с. ун-та, 1989. — 640 с .

dic.academic.ru

Амфотерные соединения | Дистанционные уроки

05-Дек-2014 | комментария 4 | Лолита Окольнова

и их свойства

 

амфотерные соединения

 

 Автор статьи — Саид Лутфуллин

Химия – это всегда единство противоположностей.

Посмотрите на периодическую систему.

Некоторые элементы (почти все металлы, проявляющие степени окисления +1 и +2) образуют основные оксиды и гидроксиды. Например, калий образует оксид K2O, и гидроксид KOH. Они проявляют основные свойства, например взаимодействуют с кислотами.

K2O + HCl → KCl + h3O

Некоторые элементы (большинство неметаллов и металлы со степенями окисления +5, +6, +7) образуют кислотные оксиды и гидроксиды. Кислотные гидроксиды – это кислородсодержащие  кислоты, их называют гидроксидами, потому что в строении есть гидроксильная группа, например, сера образует кислотный оксид SO3 и кислотный гидроксид h3SO4 (серную кислоту):

sernaya-kislota

Такие соединения проявляют кислотные свойства, например они реагируют с основаниями:

h3SO4 + 2KOH → K2SO4 + 2h3O

А есть элементы, образующие такие оксиды и гидроксиды, которые проявляют и кислотные, и основные свойства. Это явление называется амфотерностью. Таким оксидам и гидроксидам и будет  приковано наше внимание в этой статье. Все амфотерные оксиды и гидроксиды — твердые вещества, нерастворимые в воде.

Для начала, как определить является ли оксид или гидроксид амфотерным? Есть правило, немного условное, но все-таки пользоваться им можно:

Амфотерные гидроксиды и оксиды образуются металлами, в степенях окисления +3 и +4, например (Al2O3, Al(OH)3, Fe2O3, Fe(OH)3)

И четыре исключения: металлы Zn, Be, Pb, Sn образуют следующие оксиды и гидроксиды: ZnO, Zn(OH)2, BeO, Be(OH)2, PbO, Pb(OH)2, SnO, Sn(OH)2, в которых проявляют степень окисления +2, но не смотря на это, эти соединения проявляют амфотерные свойства.

Наиболее часто встречающиеся амфотерные оксиды (и соответствующие им гидроксиды): ZnO, Zn(OH)2, BeO, Be(OH)2, PbO, Pb(OH)2, SnO, Sn(OH)2, Al2O3, Al(OH)3, Fe2O3, Fe(OH)3, Cr2O3, Cr(OH)3.

Свойства амфотерных соединений запомнить не сложно: они взаимодействуют с кислотами и щелочами.

  • с взаимодействием с кислотами все просто, в этих реакциях амфотерные соединения ведут себя как основные:

 

Оксиды:

 

Al2O3 + 6HCl → 2AlCl3 + 3h3O

ZnO + h3SO4 → ZnSO4 + h3O

BeO + HNO3 → Be(NO3)2 + h3O

 

Точно так же реагируют гидроксиды:

 

Fe(OH)3 + 3HCl → FeCl3 + 3h3O

 

Pb(OH)2 + 2HCl → PbCl2 + 2h3O

 

  • С взаимодействием со щелочами немного сложнее. В этих реакциях амфотерные соединения ведут себя как кислоты, и продукты реакции могут быть различными, все зависит от условий.

Или реакция происходит в растворе, или реагирующие вещества берутся твердые и сплавляются.

 

Разберем на примере гидроксида цинка. Как уже говорилось ранее, амфотерные соединения взаимодействуя с основными, ведут себя как кислоты. Вот и запишем гидроксид цинка Zn(OH)2 как кислоту. У кислоты водород спереди, вынесем его: h3ZnO2. И реакция щелочи с гидроксидом будет протекать как будто он – кислота. «Кислотный остаток» ZnO22- двухвалентный:

 

2KOH(тв.) + h3ZnO2(тв.) (t,сплавление)→ K2ZnO2 + 2h3O

 

Полученное вещество K2ZnO2 называется метацинкат калия (или просто цинкат калия). Это вещество – соль калия и гипотетической «цинковой кислоты» h3ZnO2 (солями такие соединения называть не совсем правильно, но для собственного удобства мы про это забудем). Только гидроксид цинка записывать вот так: h3ZnO2 – нехорошо. Пишем как обычно Zn(OH)2, но подразумеваем (для собственного удобства), что это «кислота»:

 

2KOH(тв.) + Zn(OH)2(тв.) (t,сплавление)→ K2ZnO2 + 2h3O

 

С гидроксидами, в которых 2 группы ОН, все будет так же как и с цинком:

 

Be(OH)2(тв.) + 2NaOH(тв.) (t,сплавление)→ 2h3O + Na2BeO2 (метабериллат натрия, или бериллат)

 

Pb(OH)2(тв.) + 2NaOH(тв.) (t,сплавление)→ 2h3O + Na2PbO2 (метаплюмбат натрия, или плюмбат)

 

С амфотерными гидроксидов с тремя группами OH (Al(OH)3, Cr(OH)3, Fe(OH)3) немного иначе.

 

Разберем на примере гидроксида алюминия: Al(OH)3, запишем в виде кислоты: h4AlO3, но в таком виде не оставляем, а выносим оттуда воду:

 

h4AlO3 – h3O → HAlO2 + h3O.

 

Вот с этой «кислотой» (HAlO2) мы и работаем:

 

HAlO2 + KOH → h3O + KAlO2 (метаалюминат калия, или просто алюминат)

Но гидроксид алюминия вот так HAlO2 записывать нельзя, записываем как обычно, но подразумеваем там «кислоту»:

Al(OH)3(тв.) + KOH(тв.) (t,сплавление)→ 2h3O + KAlO2(метаалюминат калия)

 

То же самое и с гидроксидом хрома:

 

Cr(OH)3 → h4CrO3 → HCrO2

 

Cr(OH)3(тв.) + KOH(тв.) (t,сплавление)→ 2h3O + KCrO2(метахромат калия,

 

НО НЕ ХРОМАТ, хроматы – это соли хромовой кислоты).

 

С гидроксидами содержащими четыре группы ОН точно так же: выносим вперед водород и убираем воду:

 

Sn(OH)4 → h5SnO4 → h3SnO3

 

Pb(OH)4 → h5PbO4 → h3PbO3

 

Следует помнить, что свинец и олово образуют по два амфотерных гидроксида: со степенью окисления +2 (Sn(OH)2, Pb(OH)2), и +4 (Sn(OH)4, Pb(OH)4).

 

И эти гидроксиды будут образовывать разные «соли»:

 

Степень окисления

+2

+4

Формула гидроксида

Sn(OH)2

Pb(OH)2

Sn(OH)4

Pb(OH)4

Формула гидроксида в виде кислоты

h3SnO2

h3PbO2

h3SnO3

h3PbO3

Соль (калиевая)

K2SnO2

K2PbO2

K2SnO3

K2PbO3

Название соли

станнИТ

блюмбИТ

метастаннАТ

метаблюмбАТ

 

Те же принципы, что и в названиях обычных «солей», элемент в высшей степени окисления – суффикс АТ, в промежуточной – ИТ.

 

Такие «соли» (метахроматы, метаалюминаты, метабериллаты, метацинкаты и т.д.) получаются не только в результате взаимодействия щелочей и амфотерных гидроксидов. Эти соединения всегда образуются, когда соприкасаются сильноосновный «мир» и амфотерный (при сплавлении). То есть точно так же как и амфотерные гидроксиды со щелочами будут реагировать и амфотерные оксиды, и соли металлов, образующих амфотерные оксиды (соли слабых кислот). И вместо щелочи можно взять сильноосновный оксид, и соль металла, образующего щелочь (соль слабой кислоты).

 

амфотерные соединения

 

Взаимодействия:

 Запомните, реакции, приведенные ниже, протекают при сплавлении.

  1. Амфотерного оксида с сильноосновным оксидом:

 

ZnO(тв.) + K2O(тв.) (t,сплавление)→ K2ZnO2 (метацинкат калия, или просто цинкат калия)

 

  1. Амфотерного оксида со щелочью:

ZnO(тв.) + 2KOH(тв.) (t,сплавление)→ K2ZnO2 + h3O↑

 

  1. Амфотерного оксида с солью слабой кислоты и металла, образующего щелочь:

 

ZnO(тв.)+ K2CO3(тв.) (t,сплавление)→ K2ZnO2 + CO2↑

 

  1. Амфотерного гидроксида с сильноосновным оксидом:

 

Zn(OH)2(тв.) + K2O(тв.) (t,сплавление)→ K2ZnO2 + h3O↑

 

  1. Амфотерного гидроксида со щелочью:

 

Zn(OH)2(тв.) + 2KOH(тв.) (t,сплавление)→ K2ZnO2 + 2h3O↑

 

  1. Амфотерного гидроксида с солью слабой кислоты и металла, образующего щелочь:

 

Zn(OH)2(тв.) + K2CO3(тв.) (t,сплавление)→ K2ZnO2 + CO2↑ + h3O↑

 

  1. Соли слабой кислоты и металла, образующего амфотерные соединение с сильноосновным оксидом:

 

ZnCO3(тв.) + K2O(тв.) (t,сплавление)→ K2ZnO2 + CO2↑

 

  1. Соли слабой кислоты и металла, образующего амфотерные соединение со щелочью:

 

ZnCO3(тв.) + 2KOH(тв.) (t,сплавление)→ K2ZnO2 + CO2↑ + h3O↑

 

  1. Соли слабой кислоты и металла, образующего амфотерные соединение с солью слабой кислоты и металла, образующего щелочь:

ZnCO3(тв.)+ K2CO3(тв.) (t,сплавление)→ K2ZnO2 + 2CO2↑

 

Ниже представлена информация по солям амфотерных гидроксидов, красным помечены наиболее встречающиеся в ЕГЭ.

 

Оксид

Гидроксид

Гидроксид в виде кислоты

Кислотный остаток

Соль

Название соли

BeO

Be(OH)2

h3BeO2

BeO22-

K2BeO2

Метабериллат (бериллат)

ZnO

Zn(OH)2

h3ZnO2

ZnO22-

K2ZnO2

Метацинкат (цинкат)

Al2O3

Al(OH)3

HAlO2

AlO2—

KAlO2

Метаалюминат (алюминат)

Fe2O3

Fe(OH)3

HFeO2

FeO2—

KFeO2

Метаферрат (НО НЕ ФЕРРАТ)

SnO

Sn(OH)2

h3SnO2

SnO22-

K2SnO2

СтаннИТ

PbO

Pb(OH)2

h3PbO2

PbO22-

K2PbO2

БлюмбИТ

SnO2

Sn(OH)4

h3SnO3

SnO32-

K2SnO3

МетастаннАТ (станнат)

PbO2

Pb(OH)4

h3PbO3

PbO32-

K2PbO3

МетаблюмбАТ (плюмбат)

Cr2O3

Cr(OH)3

HCrO2

CrO2—

KCrO2

Метахромат (НО НЕ ХРОМАТ)

 

 

 

В ЕГЭ это называют «растворением гидроксида алюминия (цинка, бериллия и т.д.) щелочи». Это обусловлено способностью металлов в составе амфотерных гидроксидов в присутствии избытка гидроксид-ионов (в щелочной среде) присоединять к себе эти ионы. Образуется частица с металлом (алюминием, бериллием и т.д.) в центре, который окружен гидроксид-ионами. Эта частица становится отрицательно-заряженной (анионом) за счет гидроксид-ионов, и называться этот ион будет гидроксоалюминат, гидроксоцинкат, гидроксобериллат и т.д.. Причем процесс может протекать по-разному металл может быть окружен разным числом гидроксид-ионов.

 

Мы будем рассматривать два случая: когда металл окружен четырьмя гидроксид-ионами, и когда он окружен шестью гидроксид-ионами.

 

Запишем сокращенное ионное уравнение этих процессов:

 

Al(OH)3 + OH— → Al(OH)4—

 

Образовавшийся ион называется Тетрагидроксоалюминат-ион. Приставка «тетра-» прибавляется, потому что гидроксид-иона четыре. Тетрагидроксоалюминат-ион имеет заряд -, так как алюминий несет заряд 3+, а четыре гидроксид-иона 4-, в сумме получается -.

 

Al(OH)3 + 3OH— → Al(OH)63-

 

Образовавшийся в этой реакции ион называется гексагидроксоалюминат ион. Приставка «гексо-» прибавляется, потому что гидроксид-иона шесть.

 

Прибавлять приставку, указывающую на количество гидроксид-ионов обязательно. Потому что если вы напишете просто «гидроксоалюминат», не понятно, какой ион вы имеете в виду: Al(OH)4— или Al(OH)63-.

 

При взаимодействии щелочи с амфотерным гидроксидом в растворе образуется соль. Катион которой – это катион щелочи, а анион – это сложный ион, образование которого мы рассмотрели ранее. Анион заключается в квадратные скобки.

 

Al(OH)3 + KOH → K[Al(OH)4] (тетрагидроксоалюминат калия)

 

Al(OH)3 + 3KOH → K3[Al(OH)6] (гексагидроксоалюминат калия)

 

Какую именно (гекса- или тетра-) соль вы напишете как продукт – не имеет никакого значения. Даже в ответниках ЕГЭ написано: «…K3[Al(OH)6] (допустимо образование K[Al(OH)4]». Главное не забывайте следить, чтобы все индексы были верно проставлены. Следите за зарядами, и имейте ввиду, что сумма их должна быть равна нулю.

 

Кроме амфотерных гидроксидов, со щелочами реагируют амфотерные оксиды. Продукт будет тот же. Только вот если вы запишете реакцию вот так:

 

Al2O3 + NaOH → Na[Al(OH)4]

 

Al2O3 + NaOH → Na3[Al(OH)6]

 

Но эти реакции у вас не уравняются. Надо добавить воду в левую часть, взаимодейтсиве ведь происходит в растворе, воды там дотаточно, и все уравняется:

 

Al2O3 + 2NaOH + 3h3O → 2Na[Al(OH)4]

 

Al2O3 + 6NaOH + 3h3O → 2Na3[Al(OH)6]

 

Помимо амфотерных оксидов и гидроксидов, с растворами щелочей взаимодействуют некоторые особо активные металлы, которые образуют амфотерные соединения. А именно это: алюминий, цинк и бериллий. Чтобы уравнялось, слева тоже нужна вода. И, кроме того, главное отличие этих процессов – это выделение водорода:

 

2Al + 2NaOH + 6h3O → 2Na[Al(OH)4] + 3h3↑

 

2Al + 6NaOH + 6h3O → 2Na3[Al(OH)6] + 3h3↑

 

В таблице ниже приведены наиболее распространенные в ЕГЭ примеры свойства амфотерных соединений:

 

Амфотерное вещество

Соль

Название соли

Реакции

Al

Al2O3

Al(OH)3

Na[Al(OH)4]

Тетрагидроксоалюминат натрия

Al(OH)3 + NaOH → Na[Al(OH)4]

Al2O3 + 2NaOH + 3h3O → 2Na[Al(OH)4]

2Al + 2NaOH + 6h3O → 2Na[Al(OH)4] + 3h3↑

Na3[Al(OH)6]

Гексагидроксоалюминат натрия

Al(OH)3 + 3NaOH → Na3[Al(OH)6]

Al2O3 + 6NaOH + 3h3O → 2Na3[Al(OH)6]

2Al + 6NaOH + 6h3O → 2Na3[Al(OH)6] + 3h3↑

Zn

ZnO

Zn(OH)2

K2[Zn(OH)4]

Тетрагидроксоцинкат натрия

Zn(OH)2 + 2NaOH → Na2[Zn(OH)4]

ZnO + 2NaOH + h3O → Na2[Zn(OH)4]

Zn + 2NaOH + 2h3O → Na2[Zn(OH)4]+ h3↑

K4[Zn(OH)6]

Гексагидроксоцинкат натрия

Zn(OH)2 + 4NaOH → Na4[Zn(OH)6]

ZnO + 4NaOH + h3O → Na4[Zn(OH)6]

Zn + 4NaOH + 2h3O → Na4[Zn(OH)6]+ h3↑

Be

BeO

Be(OH)2

Li2[Be(OH)4]

Тетрагидроксобериллат лития

Be(OH)2 + 2LiOH → Li2[Be(OH)4]

BeO + 2LiOH + h3O → Li2[Be(OH)4]

Be + 2LiOH + 2h3O → Li2[Be(OH)4]+ h3↑

Li4[Be(OH)6]

Гексагидроксобериллат лития

Be(OH)2 + 4LiOH → Li4[Be(OH)6]

BeO + 4LiOH + h3O → Li4[Be(OH)6]

Be + 4LiOH + 2h3O → Li4[Be(OH)6]+ h3↑

Cr2O3

Cr(OH)3

Na[Cr(OH)4]

Тетрагидроксохромат натрия

Cr(OH)3 + NaOH → Na[Cr(OH)4]

Cr2O3 + 2NaOH + 3h3O → 2Na[Cr(OH)4]

Na3[Cr(OH)6]

Гексагидроксохромат натрия

Cr(OH)3 + 3NaOH → Na3[Cr(OH)6]

Cr2O3 + 6NaOH + 3h3O → 2Na3[Cr(OH)6]

Fe2O3

Fe(OH)3

Na[Fe(OH)4]

Тетрагидроксоферрат натрия

Fe(OH)3 + NaOH → Na[Fe(OH)4]

Fe2O3 + 2NaOH + 3h3O → 2Na[Fe(OH)4]

Na3[Fe(OH)6]

Гексагидроксоферрат натрия

Fe(OH)3 + 3NaOH → Na3[Fe(OH)6]

Fe2O3 + 6NaOH + 3h3O → 2Na3[Fe(OH)6]

 

Полученные в этих взаимодействиях соли реагируют с кислотами, образуя две другие соли (соли данной кислоты и двух металлов):

2Na3[Al(OH)6] + 6h3SO4 → 3Na2SO4 + Al2(SO4)3 + 12h3O

Вот и все! Ничего сложного. Главное не путайте, помните что образуется при сплавлении, что в растворе. Очень часто задания по этому вопросу попадаются в B части.

Еще на эту тему:

Обсуждение: "Амфотерные соединения"

(Правила комментирования)

distant-lessons.ru

Амфотерность — WiKi

Амфоте́рность (от др.-греч. ἀμφότεροι «двойственный; обоюдный») — способность некоторых химических веществ и соединений проявлять в зависимости от условий как кислотные, так и осно́вные свойства.

Понятие амфоте́рность как характеристика двойственного поведения вещества было введено в 1814 г. Ж. Гей-Люссаком и Л. Тенаром. А. Ганч в рамках общей химической теории кислотно-основных взаимодействий (1917-1927 гг.) определил амфоте́рность как «способность некоторых соединений проявлять как кислотные, так и основные свойства в зависимости от условий и природы реагентов, участвующих в кислотно-основном взаимодействии, особенно в зависимости от свойств растворителя»[1].

Амфотерны гидроксиды таких элементов главных подгрупп, как бериллий, алюминий, галлий, мышьяк, сурьма, селен и др., таких элементов побочных подгрупп как хром, цинк, молибден, вольфрам и многих других. Обычно в химическом поведении гидроксидов преобладает или кислотный, или основный характер[2].

Амфотерность как химическое свойство вещества может проявляться по-разному:

1. В рамках теории электролитической диссоциации это способность вещества к электролитической диссоциации как по механизму кислот (с отщеплением ионов гидроксония, H+ ), так и по механизму оснований (отщепление гидроксид-ионов, OH– ). Электролиты, которые в растворе ионизируются одновременно по кислотному и основному типам называются амфолитами[3]. Если обозначить амфотерный электролит формулой XOH, то его диссоциацию можно описать схемой:

H++XO−⇄XOH⇄X++OH−{\displaystyle {\mathsf {H^{+}+XO^{-}\rightleftarrows XOH\rightleftarrows X^{+}+OH^{-}}}} 

Например, кислотно-основные свойства азотистой кислоты определяются равновесными процессами диссоциации с образованием нитрит-аниона и нитрозильного катиона:

HNO2⇄H++NO2−  Ka≈10−5{\displaystyle {\mathsf {HNO_{2}\rightleftarrows H^{+}+NO_{2}^{-}\ \ K_{a}\approx 10^{-5}}}}  HNO2⇄NO++OH−  Kb≈10−7{\displaystyle {\mathsf {HNO_{2}\rightleftarrows NO^{+}+OH^{-}\ \ K_{b}\approx 10^{-7}}}} 

Идеальным амфолитом будет вода:

h3O⇄H++OH−{\displaystyle {\mathsf {H_{2}O\rightleftarrows H^{+}+OH^{-}}}} 

Также к числу идеальных амфолитов относят гидроксид галлия Ga(OH)3, вторые и третьи константы диссоциации которого по кислотному и основному типам практически одинаковы[2].

2. В рамках протолитической теории Брёнстеда-Лоури проявление амфотерности рассматривается как способность протолита выступать донором и акцептором протона. Например, для воды амфотерность проявляется как автопротолиз[4]:

2h3O→h4O++OH−{\displaystyle {\mathsf {2H_{2}O\rightarrow H_{3}O^{+}+OH^{-}}}} 

Амфолитами также будут вещества, имеющие в своём составе функциональные группы, способные быть донорами и акцепторами протонов. Например, к амфотерным органическим электролитам относятся белки, пептиды и аминокислоты. Так аминокислоты имеют в своём составе, по крайней мере, карбоксильную группу –COOH и аминогруппу –Nh3. В растворе эти группы подвергаются частичной ионизации:

h3N-CH(R)-COOH+h3O⇄h3N-CH(R)-COO−+h4O+{\displaystyle {\mathsf {H_{2}N{\text{-}}CH(R){\text{-}}COOH+H_{2}O\rightleftarrows H_{2}N{\text{-}}CH(R){\text{-}}COO^{-}+H_{3}O^{+}}}} h3N-CH(R)-COOH+h3O⇄[h4N-CH(R)-COOH]++OH−{\displaystyle {\mathsf {H_{2}N{\text{-}}CH(R){\text{-}}COOH+H_{2}O\rightleftarrows [H_{3}N{\text{-}}CH(R){\text{-}}COOH]^{+}+OH^{-}}}} 

Таким образом, молекула аминокислоты находится в двух равновесных формах, заряженной (цвиттер-ион) и незаряженной. В этих комбинациях R–COOH и R–Nh4+ являются потенциальными кислотами (донорами протонов, катионов), а R–COO– и R–Nh3 – сопряженными потенциальными основаниями (акцепторами протонов, катионов).

3. Амфотерность может проявляться как способность вещества к взаимодействию как с кислотами, так и с основаниями. Это характерно для оксидов, гидроксидов и комплексных соединений некоторых p-элементов и большинства d-элементов в промежуточных степенях окисления. Амфотерность в той или иной степени является общим свойством гидроксидов[3]. Например, для соединений хрома (III) известны реакции[5]:

Cr(OH)3+3HCl→CrCl3+3h3O{\displaystyle {\mathsf {Cr(OH)_{3}+3HCl\rightarrow CrCl_{3}+3H_{2}O}}} Cr(OH)3+3NaOH→Na3[Cr(OH)6]{\displaystyle {\mathsf {Cr(OH)_{3}+3NaOH\rightarrow Na_{3}[Cr(OH)_{6}]}}} Cr2O3+6HCl→2CrCl3+3h3O{\displaystyle {\mathsf {Cr_{2}O_{3}+6HCl\rightarrow 2CrCl_{3}+3H_{2}O}}} Cr2O3+2NaOH→ot2NaCrO2+h3O{\displaystyle {\mathsf {Cr_{2}O_{3}+2NaOH{\xrightarrow[{}]{^{o}t}}2NaCrO_{2}+H_{2}O}}} 

Не соответствуют действительности традиционные представления о проявлении амфотерности гидроксидов как диссоциации по кислотному и основному типам[2]. В общем виде амфотерное поведение нерастворимых гидроксидов хрома (III), алюминия, цинка может описано как реакции ионного обмена ионов среды с лигандами h3O и OH–. Например, для Al(OH)3 ионные равновесия могут быть записаны следующим образом:

[Al(OH)3(h3O)3]+3h4O+⇄[Al(h3O)6]3++3h3O{\displaystyle {\mathsf {[Al(OH)_{3}(H_{2}O)_{3}]+3H_{3}O^{+}\rightleftarrows [Al(H_{2}O)_{6}]^{3+}+3H_{2}O}}} [Al(OH)3(h3O)3]+3OH−⇄[Al(OH)6]3−+3h3O{\displaystyle {\mathsf {[Al(OH)_{3}(H_{2}O)_{3}]+3OH^{-}\rightleftarrows [Al(OH)_{6}]^{3-}+3H_{2}O}}} 

4. В ряде случаев важным косвенным признаком амфотерности является способность элемента образовывать два ряда солей, катионного и анионного типа[6]. Например, для цинка: ZnCl2, [Zn(h3O)4]SO4 (катионные) и Na2ZnO2, Na2(Zn(OH)4) (анионные).

ru-wiki.org

Амфотерность Википедия

Амфоте́рность (от др.-греч. ἀμφότεροι «двойственный; обоюдный») — способность некоторых химических веществ и соединений проявлять в зависимости от условий как кислотные, так и осно́вные свойства.

Понятие амфоте́рность как характеристика двойственного поведения вещества было введено в 1814 г. Ж. Гей-Люссаком и Л. Тенаром. А. Ганч в рамках общей химической теории кислотно-основных взаимодействий (1917-1927 гг.) определил амфоте́рность как «способность некоторых соединений проявлять как кислотные, так и основные свойства в зависимости от условий и природы реагентов, участвующих в кислотно-основном взаимодействии, особенно в зависимости от свойств растворителя»[1].

Амфотерны гидроксиды таких элементов главных подгрупп, как бериллий, алюминий, галлий, мышьяк, сурьма, селен и др., таких элементов побочных подгрупп как хром, цинк, молибден, вольфрам и многих других. Обычно в химическом поведении гидроксидов преобладает или кислотный, или основный характер[2].

Амфотерность как химическое свойство

Амфотерность как химическое свойство вещества может проявляться по-разному:

1. В рамках теории электролитической диссоциации это способность вещества к электролитической диссоциации как по механизму кислот (с отщеплением ионов гидроксония, H+ ), так и по механизму оснований (отщепление гидроксид-ионов, OH– ). Электролиты, которые в растворе ионизируются одновременно по кислотному и основному типам называются амфолитами[3]. Если обозначить амфотерный электролит формулой XOH, то его диссоциацию можно описать схемой:

H++XO−⇄XOH⇄X++OH−{\displaystyle {\mathsf {H^{+}+XO^{-}\rightleftarrows XOH\rightleftarrows X^{+}+OH^{-}}}}

Например, кислотно-основные свойства азотистой кислоты определяются равновесными процессами диссоциации с образованием нитрит-аниона и нитрозильного катиона:

HNO2⇄H++NO2−  Ka≈10−5{\displaystyle {\mathsf {HNO_{2}\rightleftarrows H^{+}+NO_{2}^{-}\ \ K_{a}\approx 10^{-5}}}} HNO2⇄NO++OH−  Kb≈10−7{\displaystyle {\mathsf {HNO_{2}\rightleftarrows NO^{+}+OH^{-}\ \ K_{b}\approx 10^{-7}}}}

Идеальным амфолитом будет вода:

h3O⇄H++OH−{\displaystyle {\mathsf {H_{2}O\rightleftarrows H^{+}+OH^{-}}}}

Также к числу идеальных амфолитов относят гидроксид галлия Ga(OH)3, вторые и третьи константы диссоциации которого по кислотному и основному типам практически одинаковы[2].

2. В рамках протолитической теории Брёнстеда-Лоури проявление амфотерности рассматривается как способность протолита выступать донором и акцептором протона. Например, для воды амфотерность проявляется как автопротолиз[4]:

2h3O→h4O++OH−{\displaystyle {\mathsf {2H_{2}O\rightarrow H_{3}O^{+}+OH^{-}}}}

Амфолитами также будут вещества, имеющие в своём составе функциональные группы, способные быть донорами и акцепторами протонов. Например, к амфотерным органическим электролитам относятся белки, пептиды и аминокислоты. Так аминокислоты имеют в своём составе, по крайней мере, карбоксильную группу –COOH и аминогруппу –Nh3. В растворе эти группы подвергаются частичной ионизации:

h3N-CH(R)-COOH+h3O⇄h3N-CH(R)-COO−+h4O+{\displaystyle {\mathsf {H_{2}N{\text{-}}CH(R){\text{-}}COOH+H_{2}O\rightleftarrows H_{2}N{\text{-}}CH(R){\text{-}}COO^{-}+H_{3}O^{+}}}}h3N-CH(R)-COOH+h3O⇄[h4N-CH(R)-COOH]++OH−{\displaystyle {\mathsf {H_{2}N{\text{-}}CH(R){\text{-}}COOH+H_{2}O\rightleftarrows [H_{3}N{\text{-}}CH(R){\text{-}}COOH]^{+}+OH^{-}}}}

Таким образом, молекула аминокислоты находится в двух равновесных формах, заряженной (цвиттер-ион) и незаряженной. В этих комбинациях R–COOH и R–Nh4+ являются потенциальными кислотами (донорами протонов, катионов), а R–COO– и R–Nh3 – сопряженными потенциальными основаниями (акцепторами протонов, катионов).

3. Амфотерность может проявляться как способность вещества к взаимодействию как с кислотами, так и с основаниями. Это характерно для оксидов, гидроксидов и комплексных соединений некоторых p-элементов и большинства d-элементов в промежуточных степенях окисления. Амфотерность в той или иной степени является общим свойством гидроксидов[3]. Например, для соединений хрома (III) известны реакции[5]:

Cr(OH)3+3HCl→CrCl3+3h3O{\displaystyle {\mathsf {Cr(OH)_{3}+3HCl\rightarrow CrCl_{3}+3H_{2}O}}}Cr(OH)3+3NaOH→Na3[Cr(OH)6]{\displaystyle {\mathsf {Cr(OH)_{3}+3NaOH\rightarrow Na_{3}[Cr(OH)_{6}]}}}Cr2O3+6HCl→2CrCl3+3h3O{\displaystyle {\mathsf {Cr_{2}O_{3}+6HCl\rightarrow 2CrCl_{3}+3H_{2}O}}}Cr2O3+2NaOH→ot2NaCrO2+h3O{\displaystyle {\mathsf {Cr_{2}O_{3}+2NaOH{\xrightarrow[{}]{^{o}t}}2NaCrO_{2}+H_{2}O}}}

Не соответствуют действительности традиционные представления о проявлении амфотерности гидроксидов как диссоциации по кислотному и основному типам[2]. В общем виде амфотерное поведение нерастворимых гидроксидов хрома (III), алюминия, цинка может описано как реакции ионного обмена ионов среды с лигандами h3O и OH–. Например, для Al(OH)3 ионные равновесия могут быть записаны следующим образом:

[Al(OH)3(h3O)3]+3h4O+⇄[Al(h3O)6]3++3h3O{\displaystyle {\mathsf {[Al(OH)_{3}(H_{2}O)_{3}]+3H_{3}O^{+}\rightleftarrows [Al(H_{2}O)_{6}]^{3+}+3H_{2}O}}}[Al(OH)3(h3O)3]+3OH−⇄[Al(OH)6]3−+3h3O{\displaystyle {\mathsf {[Al(OH)_{3}(H_{2}O)_{3}]+3OH^{-}\rightleftarrows [Al(OH)_{6}]^{3-}+3H_{2}O}}}

4. В ряде случаев важным косвенным признаком амфотерности является способность элемента образовывать два ряда солей, катионного и анионного типа[6]. Например, для цинка: ZnCl2, [Zn(h3O)4]SO4 (катионные) и Na2ZnO2, Na2(Zn(OH)4) (анионные).

См. также

Ссылки

Литература

  • Амфотерные гидроксиды и их поведение в водных растворах / Корольков Д. В. Основы неорганической химии. - М.: Просвещение, 1982. - 271 с.
  • Кислотные и основные свойства / Общая химия. Под ред. Е. М. Соколовской и Л. С. Гузея. — М.: Изд-во Моск. ун-та, 1989. — 640 с. ун-та, 1989. — 640 с

Примечания

  1. ↑ Танганов Б.Б. Химические методы анализа. - Улан-Удэ, 2005.- 550 с.
  2. ↑ 1 2 3 Амфотерные гидроксиды и их поведение в водных растворах / Корольков Д. В. Основы неорганической химии. - М.: Просвещение, 1982. - 271 с.
  3. ↑ 1 2 Угай Я. А. Общая и неорганическая химия. - М.: Высшая школа, 1997. - 527 с.
  4. ↑ Автопротолиз воды / Жуков С. Т. Химия. 8-9 класс
  5. ↑ Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ. – М.: Химия, 2000. – 480 с.: ил.
  6. ↑ Кислотные и основные свойства / Общая химия. Под ред. Е. М. Соколовской и Л. С. Гузея. — М.: Изд-во Моск. ун-та, 1989. — 640 с. ун-та, 1989. — 640 с .

wikiredia.ru

Амфотерность - Амфотерность как химическое свойство

Химия - Амфотерность - Амфотерность как химическое свойство

28 февраля 2011

Оглавление:1. Амфотерность2. Амфотерность как химическое свойство

Амфотерность как химическое свойство вещества может проявляться по-разному:

1. В рамках теории электролитической диссоциации это способность вещества к электролитической диссоциации как по механизму кислот, так и по механизму оснований. Электролиты, которые в растворе ионизируются одновременно по кислотному и основному типам называются амфолитами. Если обозначить амфотерный электролит формулой ROH, то его диссоциацию можно описать схемой:

H + RO Equilibrium rl.svg ROH Equilibrium rl.svg R + OH

Амфотерное поведение фторхинолонов

Например, кислотно-основные свойства азотистой кислоты определяются равновесными процессами диссоциации с образованием нитрит-аниона и нитрозильного катиона:

HNO2Equilibrium rl.svg H + NO2 HNO2Equilibrium rl.svg NO + OH.

Идеальным амфолитом будет вода:

h3O Equilibrium rl.svg H + O

Также к числу идеальных амфолитов относят гидроксид галлия Ga3, вторые и третьи константы диссоциации которого по кислотному и основному типам практически одинаковы.

2. В рамках протолитической теории Брёнстеда-Лоури проявление амфотерности рассматривается как способность протолита выступать донором и акцептором протона. Например, для воды амфотерность проявляется как автопротолиз:

h3O + h3O Equilibrium rl.svg h4O + OH

Амфолитами также будут вещества, имеющие в своём составе функциональные группы, способные быть донорами и акцепторами протонов. Например, к амфотерным органическим электролитам относятся белки, пептиды и аминокислоты. Так аминокислоты имеют в своём составе, по крайней мере, карбоксильную группу –COOH и аминогруппу –Nh3. В растворе эти группы подвергаются частичной ионизации:

R–COOH + h3O Equilibrium rl.svg R–COO + h4O R–Nh3 + h3O Equilibrium rl.svg R–Nh4 + OH

Таким образом, молекула аминокислоты находится в двух равновесных формах, заряженной и незаряженной. В этих комбинациях R–COOH и R–Nh4 являются потенциальными кислотами, а R–COO и R–Nh3 – сопряженными потенциальными основаниями.

3. Амфотерность может проявляться как способность вещества к взаимодействию как с кислотами, так и с основаниями. Это характерно для оксидов, гидроксидов и комплексных соединений некоторых p-элементов и большинства d-элементов в промежуточных степенях окисления. Амфотерность в той или иной степени является общим свойством гидроксидов. Например, для соединений хрома известны реакции:

Cr + 3HCl Biochem reaction arrow foward NNNN horiz med.svg CrCl3 + 3h3O Cr + NaOH + 2h3O Biochem reaction arrow foward NNNN horiz med.svg Na Cr2O3 + 6HCl Biochem reaction arrow foward NNNN horiz med.svg 2CrCl3 + 3h3O Cr2O3 + Na2CO3Biochem reaction arrow foward NNNN horiz med.svg 2NaCrO2 + CO2

Не соответствуют действительности традиционные представления о проявлении амфотерности гидроксидов как диссоциации по кислотному и основному типам. В общем виде амфотерное поведение нерастворимых гидроксидов хрома, алюминия, цинка может описано как реакции ионного обмена ионов среды с лигандами h3O и OH. Например, для Al ионные равновесия могут быть записаны следующим образом:

+ 3h4O Equilibrium rl.svg Al6 + 3h3O + 3OH Equilibrium rl.svg Al6.

4. В ряде случаев важным косвенным признаком амфотерности является способность элемента образовывать два ряда солей, катионного и анионного типа. Например, для цинка: ZnCl2,SO4 и Na2ZnO2, Na24).

Просмотров: 2644

4108.ru

Амфотерность — Википедия РУ

Амфоте́рность (от др.-греч. ἀμφότεροι «двойственный; обоюдный») — способность некоторых химических веществ и соединений проявлять в зависимости от условий как кислотные, так и осно́вные свойства.

Понятие амфоте́рность как характеристика двойственного поведения вещества было введено в 1814 г. Ж. Гей-Люссаком и Л. Тенаром. А. Ганч в рамках общей химической теории кислотно-основных взаимодействий (1917-1927 гг.) определил амфоте́рность как «способность некоторых соединений проявлять как кислотные, так и основные свойства в зависимости от условий и природы реагентов, участвующих в кислотно-основном взаимодействии, особенно в зависимости от свойств растворителя»[1].

Амфотерны гидроксиды таких элементов главных подгрупп, как бериллий, алюминий, галлий, мышьяк, сурьма, селен и др., таких элементов побочных подгрупп как хром, цинк, молибден, вольфрам и многих других. Обычно в химическом поведении гидроксидов преобладает или кислотный, или основный характер[2].

Амфотерность как химическое свойство вещества может проявляться по-разному:

1. В рамках теории электролитической диссоциации это способность вещества к электролитической диссоциации как по механизму кислот (с отщеплением ионов гидроксония, H+ ), так и по механизму оснований (отщепление гидроксид-ионов, OH– ). Электролиты, которые в растворе ионизируются одновременно по кислотному и основному типам называются амфолитами[3]. Если обозначить амфотерный электролит формулой XOH, то его диссоциацию можно описать схемой:

H++XO−⇄XOH⇄X++OH−{\displaystyle {\mathsf {H^{+}+XO^{-}\rightleftarrows XOH\rightleftarrows X^{+}+OH^{-}}}} 

Например, кислотно-основные свойства азотистой кислоты определяются равновесными процессами диссоциации с образованием нитрит-аниона и нитрозильного катиона:

HNO2⇄H++NO2−  Ka≈10−5{\displaystyle {\mathsf {HNO_{2}\rightleftarrows H^{+}+NO_{2}^{-}\ \ K_{a}\approx 10^{-5}}}}  HNO2⇄NO++OH−  Kb≈10−7{\displaystyle {\mathsf {HNO_{2}\rightleftarrows NO^{+}+OH^{-}\ \ K_{b}\approx 10^{-7}}}} 

Идеальным амфолитом будет вода:

h3O⇄H++OH−{\displaystyle {\mathsf {H_{2}O\rightleftarrows H^{+}+OH^{-}}}} 

Также к числу идеальных амфолитов относят гидроксид галлия Ga(OH)3, вторые и третьи константы диссоциации которого по кислотному и основному типам практически одинаковы[2].

2. В рамках протолитической теории Брёнстеда-Лоури проявление амфотерности рассматривается как способность протолита выступать донором и акцептором протона. Например, для воды амфотерность проявляется как автопротолиз[4]:

2h3O→h4O++OH−{\displaystyle {\mathsf {2H_{2}O\rightarrow H_{3}O^{+}+OH^{-}}}} 

Амфолитами также будут вещества, имеющие в своём составе функциональные группы, способные быть донорами и акцепторами протонов. Например, к амфотерным органическим электролитам относятся белки, пептиды и аминокислоты. Так аминокислоты имеют в своём составе, по крайней мере, карбоксильную группу –COOH и аминогруппу –Nh3. В растворе эти группы подвергаются частичной ионизации:

h3N-CH(R)-COOH+h3O⇄h3N-CH(R)-COO−+h4O+{\displaystyle {\mathsf {H_{2}N{\text{-}}CH(R){\text{-}}COOH+H_{2}O\rightleftarrows H_{2}N{\text{-}}CH(R){\text{-}}COO^{-}+H_{3}O^{+}}}} h3N-CH(R)-COOH+h3O⇄[h4N-CH(R)-COOH]++OH−{\displaystyle {\mathsf {H_{2}N{\text{-}}CH(R){\text{-}}COOH+H_{2}O\rightleftarrows [H_{3}N{\text{-}}CH(R){\text{-}}COOH]^{+}+OH^{-}}}} 

Таким образом, молекула аминокислоты находится в двух равновесных формах, заряженной (цвиттер-ион) и незаряженной. В этих комбинациях R–COOH и R–Nh4+ являются потенциальными кислотами (донорами протонов, катионов), а R–COO– и R–Nh3 – сопряженными потенциальными основаниями (акцепторами протонов, катионов).

3. Амфотерность может проявляться как способность вещества к взаимодействию как с кислотами, так и с основаниями. Это характерно для оксидов, гидроксидов и комплексных соединений некоторых p-элементов и большинства d-элементов в промежуточных степенях окисления. Амфотерность в той или иной степени является общим свойством гидроксидов[3]. Например, для соединений хрома (III) известны реакции[5]:

Cr(OH)3+3HCl→CrCl3+3h3O{\displaystyle {\mathsf {Cr(OH)_{3}+3HCl\rightarrow CrCl_{3}+3H_{2}O}}} Cr(OH)3+3NaOH→Na3[Cr(OH)6]{\displaystyle {\mathsf {Cr(OH)_{3}+3NaOH\rightarrow Na_{3}[Cr(OH)_{6}]}}} Cr2O3+6HCl→2CrCl3+3h3O{\displaystyle {\mathsf {Cr_{2}O_{3}+6HCl\rightarrow 2CrCl_{3}+3H_{2}O}}} Cr2O3+2NaOH→ot2NaCrO2+h3O{\displaystyle {\mathsf {Cr_{2}O_{3}+2NaOH{\xrightarrow[{}]{^{o}t}}2NaCrO_{2}+H_{2}O}}} 

Не соответствуют действительности традиционные представления о проявлении амфотерности гидроксидов как диссоциации по кислотному и основному типам[2]. В общем виде амфотерное поведение нерастворимых гидроксидов хрома (III), алюминия, цинка может описано как реакции ионного обмена ионов среды с лигандами h3O и OH–. Например, для Al(OH)3 ионные равновесия могут быть записаны следующим образом:

[Al(OH)3(h3O)3]+3h4O+⇄[Al(h3O)6]3++3h3O{\displaystyle {\mathsf {[Al(OH)_{3}(H_{2}O)_{3}]+3H_{3}O^{+}\rightleftarrows [Al(H_{2}O)_{6}]^{3+}+3H_{2}O}}} [Al(OH)3(h3O)3]+3OH−⇄[Al(OH)6]3−+3h3O{\displaystyle {\mathsf {[Al(OH)_{3}(H_{2}O)_{3}]+3OH^{-}\rightleftarrows [Al(OH)_{6}]^{3-}+3H_{2}O}}} 

4. В ряде случаев важным косвенным признаком амфотерности является способность элемента образовывать два ряда солей, катионного и анионного типа[6]. Например, для цинка: ZnCl2, [Zn(h3O)4]SO4 (катионные) и Na2ZnO2, Na2(Zn(OH)4) (анионные).

http-wikipediya.ru


Смотрите также