6. Методы улучшения качества питьевой воды; их гигиеническая характеристика. Методы улучшения качества питьевой воды гигиена


6. Методы улучшения качества питьевой воды; их гигиеническая характеристика

Все методы улучшения качества питьевой воды условно делятся на 2группы: основные и специальные, к основным методам относятся те из них, которые используются наиболее часто и повсеместно и направлены на улучшение показателей качества, как правило, не отвечающих гигиеническим нормативам: органолептические, микробиологические. Следует не забывать и о том, что нарушение технологии обработки воды само по себе может привести к нарушению качества воды (повышенное содержание хлора, остаточных количеств других реагентов).

Основные методы улучшения качества воды условно делятся на 2 группы: методы осветления (очистка) и обесцвечивания и методы обеззараживания. К методам очистки, которые направлены, прежде всего, на улучшение органолептических свойств воды, относятся отстаивание, фильтрация и коагуляция. Если в некоторых случаях фильтрация как метод очистки воды может использоваться изолированно, то отстаивание и коагуляция используются в комплексе с другими методами.

Особенно эффективен метод коагуляции, который основан на химической реакции так называемых коагулянтов с минеральными компонентами воды, обусловливающими общую жесткость, в результате чего в воде образуются соединения в виде плотных и крупных хлопьев, которые быстро оседая, увлекают за собой все мельчайшие взвешенные частицы, находящиеся в воде. Этот метод используется в комплексе с отстаиванием или фильтрацией для освобождения от остаточных количеств коагулянта или образующихся хлопьев. Наиболее часто в качестве коагулянтов используются глинозем (Al2(SO4)3), хлорное железо (FeCl3).

Отстаивание - метод хотя и простой, но очень длительный и используется как вспомогательный метод в комплексе с другими.

Фильтрация через различные твердые фильтры (гравий, щебень, песок, уголь, ионообменные синтетические смолы и т.д.), часто комбинированные, достаточно эффективный метод, но зачастую без предшествующей коагуляции не обеспечивает достаточное качество и приемлемую скорость очистки воды.

Следует отметить, что ранее сделанная ссылка на то, что деление на группы методов улучшения качества воды носит условный характер, справедлива в связи с тем, что при очистке воды уже в какой-то степени осуществляется ее обеззараживание.

К методам обеззараживания относятся:

- хлорирование и суперхлорирование;

- озонирование;

- облучение воды ультрафиолетовыми лучами;

- обработка полями УВЧ-СВЧ-диапазона и ультразвуком;

- облучение воды гамма-лучами;

- ионный обмен с помощью ионообменных смол или тяжелых металлов;

- кипячение.

Перспективными методами являются озонирование и облучение воды ультрафиолетовыми лучами.

Специальные методы улучшения качества воды используются в тех случаях, когда вода в той или иной местности имеет какие-либо выраженные специфические особенности, в целях массовой профилактики заболеваний и поражений в условиях применения оружия массового поражения.

Могут применяться следующие методы.

Дезодорирование. Освобождение от запахов достигается аэрацией воды в комплексе с указанными методами очистки.

Обезжелезивание. Применяется в тех регионах, где повышенное содержание в воде железа является ее природной особенностью и при этом отсутствует возможность использования альтернативных водоисточников.

Фторирование. Используется в тех регионах, в которых природная вода содержит мало фтора.

Обесфторивание. Также актуален для ряда регионов, где природная вода содержит много фтора, что представляет, как и его дефицит, опасность для здоровья населения. Используется редко из-за неэкономичности.

Дезактивация. Освобождение воды от радиоактивных веществ. Принципы дезактивации те же, что и очистки воды. Однако следует использовать и дезактивацию временем.

Дегазация. Освобождение воды от отравляющих веществ или их связывание. Принципы дегазации те же, что и при очистке воды. Однако используются и реагентные способы дегазации, направленные на связывание и дезинтоксикацию отравляющих веществ или их трансформацию.

studfiles.net

33. Методы улучшения качества питьевой воды при централизованном водоснабжении.

Освобождение от механических примесей забираемой из поверхностных источников воды проводится в несколько этапов.

В самом простом случае при очистке моделируются естественные условия самоочищения подземных вод, когда вода сначала отстаивается, а затем фильтруется через мелкопористый материал.

На первом этапе очистки вода поступает в горизонтальные или вертикальные отстойники. Более распространены горизонтальные отстойники - резервуары прямоугольной формы.Осаждение взвеси основано на резком замедлении тока воды при переходе из узкой входной трубы в полость отстойника. Так, скорость движения воды в горизонтальных отстойниках составляет 2-4 мм/с, в вертикальных - менее 1 мм/с, а время прохождения воды через отстойник достигает 8 ч. Создаются условия для осаждения взвеси, близкие к таковым в неподвижной воде, когда основным действующим фактором становится собственная тяжесть взвешенных частиц.

На втором этапе вода, освобожденная от крупнодисперсных примесей, подается на медленные фильтры, которые представляют собой емкости, заполненные песком. Профильтрованная вода отводится через дренаж в нижней части емкости. Такой фильтр должен «созреть», т.е. должна образоваться активная биологическая пленка, состоящая из адсорбированных взвешенных частиц, планктона и бактерий в верхней части песчаного слоя. Пленка имеет поры столь малого диаметра, что сама является эффективным фильтром для мелкодисперсных частиц, яиц гельминтов и бактерий. К несомненным достоинствам медленных фильтров относятся равномерная, близкая к естественной фильтрация, при которой задерживание бактерий достигает 99%, а также простота устройства. Однако фильтрация в таких фильтрах происходит очень медленно и составляет лишь 10 см вод. ст./час. Кроме того, в такой классической схеме очистки воды не используется коагуляция, в связи с чем в данном виде эта схема в настоящее время почти не применяется.

В современных условиях для ускорения и повышения эффективности выпадения взвеси и коллоидных веществ перед отстаиванием воды проводится ее коагуляция. Задача коагуляции состоит в укрупнении коллоидных частиц, более быстром образовании и осаждении хлопьев.

Наиболее распространенный коагулянт - сернокислый алюминий - в воде гидролизуется и вступает в реакцию с бикарбонатами кальция и магния, определяющими устранимую жесткость и щелочность воды. В результате реакции образуется коллоидный раствор гидрата окиси алюминия, который в дальнейшем коагулирует с образованием хлопьев. Одновременно коагулянт способствует нейтрализации заряда находящихся в воде собственных коллоидных частиц, их агломерации и хлопьеобразованию. Появившиеся крупные хлопья оседают, адсорбируя на своей поверхности мелкодисперсные взвешенные частицы, бактерии и водоросли.

Рассмотренная система очистки воды с медленными фильтрами в настоящее время используется на малых водопроводах.

Нашли в последние годы широкое применение скорые фильтры. Это бетонные резервуары с двойным дном. Нижнее дно сплошное, а верхнее - перфорированное, что обеспечивает дренажные свойства фильтра. На перфорированное дно укладывают поддерживающий слой гравия, а на него - слой промытого речного песка. Вода для фильтрации подается сверху и отводится снизу через дренажное пространство. Фильтры промывают чистой питьевой водой, подаваемой снизу вверх.

Если замена фильтрующего слоя в медленных фильтрах проводится 1 раз в 1,5-2 мес, то скорые фильтры приходится промывать 2 раза в сутки. Несколько ниже у скорых фильтров и способность задерживать бактерии, которая составляет 95%. Это объясняется высокой скоростью пропускания воды, а также тем, что полноценная биологическая пленка в песчаном слое образоваться не успевает. Ее роль в скорых фильтрах выполняет слой из неосевших в отстойниках хлопьев флоккулянта.

Академией коммунального хозяйства разработаны новые фильтры АКХ, в которых устранен недостаток односторонней фильтрации обычных фильтров. В фильтрах АКХ вода подается как сверху, так и снизу, а профильтрованную воду отводят из средней части фильтра через специальное дренажное устройство. Такой принцип фильтрации позволяет повысить производительность очистки воды до 12-15 м3/ч.

Наконец, наиболее удобной и эффективной моделью скорых фильтров следует считать контактный осветлитель (КО). В нем максимально используется принцип контактного осветления на крупнозернистом слое. Так же, как и в обычных скорых фильтрах, в КО нижний слой загрузки состоит из гравия, а верхний - из кварцевого песка. Очищаемая вода в фильтрах этой конструкции подается снизу вверх.

Однако в отличие от стандартной двухступенчатой схемы очистки воды с использованием отстойников раствор коагулянта в КО добавляется непосредственно перед подачей воды в фильтр. За очень короткий промежуток времени происходит контакт коагулянта с коллоидами воды. Дальнейшее осветление осуществляется уже не в свободном объеме, как в отстойниках, а на зернах загрузки. Процесс контактной коагуляции идет быстрее и полнее в результате образования на гравии крупных хлопьев и задержки на них взвеси. Грязеемкость таких фильтров значительно повышена. Скорость фильтрации достигает 5-6 м3/ч, а полный цикл обработки воды составляет около 8 ч.

Поскольку одноступенчатая схема полностью заменяет камеры реакции, отстойники и фильтры вместе взятые, метод контактного осветления следует признать наиболее перспективным для водоснабжения крупных населенных пунктов.

Следует отметить, что хотя адсорбция микроорганизмов при осветлении и фильтрации воды весьма велика, полной гарантии эпидемической безопасности такая схема очистки не обеспечивает. В связи с этим после очистки на фильтрах вода проходит обеззараживание.

Методы обеззараживания воды. Из таких известных методов обеззараживания воды, как хлорирование, озонирование, йодирование, обработка солями тяжелых металлов, ультрафиолетовое облучение, действие ионизирующей радиации, ультразвука, в настоящее время наиболее широко распространено хлорирование.

Для дезинфекции воды используют газообразный хлор или хлорную известь. В отдельных случаях можно применять и такие хлорсодержащие препараты, как соединения гипохлорита кальция, дихлоризоциануровой кислоты, двуокиси хлора.

Молекулярный хлор в воде гидролизуется с образованием хлорноватистой и хлористоводородной кислот. Нестойкая хлорноватистая кислота, в свою очередь, диссоциирует, в результате чего образуется гипохлоритный ион:

Cl2 + h3O = HOCl + HCl HOCl = H+ + OCl-

Основное биологическое действие оказывают хлорноватистая кислота и гипохлоритный ион, которые вместе и обозначают понятием «активный хлор».

Активный хлор легко проникает в бактериальные клетки и инактивирует ферменты, содержащие SH-группы. В первую очередь это относится к дегидрогеназе глюкозы, а также к другим ферментам, обеспечивающим окислительно-восстановительные процессы клетки.

Достаточная эффективность хлорирования обеспечивается рядом условий:

1. Вода должна быть предварительно освобождена от взвешенных коллоидных веществ, которые, окутывая бактерии, защищают их от воздействия хлора.

2. Эффективность обеззараживания зависит от вида микроорганизмов. Наиболее устойчивы в этом отношении спорообразующие микроорганизмы и вирусы. Легче поддаются действию хлора бактерии группы кишечной палочки.

3. Важно обеспечить хорошее перемешивание хлора в объеме воды и достаточную длительность его действия. Оптимальным следует считать контакт воды с хлором в теплое время года в течение 30 мин, а в холодное - 60 мин.

4. Полное обеззараживание происходит при внесении достаточного количества хлора.

Хлор, поступающий в воду, связывается микроорганизмами, органическими веществами и недоокисленными неорганическими соединениями, что составляет хлорпоглощаемость воды. После связывания активного хлора в воде должно остаться некоторое количество свободного остаточного хлора. Обеззараживание воды считается надежным, если остаточный хлор составляет 0,3-0,5 мг/л. Таким образом, необходимая доза хлора представляет собой сумму хлорпоглощаемости воды и остаточного активного хлора. Она определяется опытным путем.

В отдельных случаях нужны более эффективные методы обеззараживания. Так, при повышенном органическом и бактериальном загрязнении воды водоемов паводковыми и ливневыми стоками применяют двойное хлорирование и суперхлорирование (перехлорирование, гиперхлорирование).

При двойном хлорировании хлор вводят в воду первый раз в смеситель перед отстойниками, что облегчает коагуляцию и подавляет рост бактерий на фильтре. При таком способе второе хлорирование воды после фильтрации происходит значительно эффективнее.

Суперхлорирование отличается от обычного хлорирования тем, что хлор подают в повышенных дозах - 5-10 мг/л и более. Это существенно повышает скорость и надежность обеззараживания. Однако появляются и неблагоприятные последствия: уровень остаточного хлора достигает 1-5 мг/л. Поскольку пороговая концентрация хлора в питьевой воде по органолептическому признаку составляет 0,5 мг/л, такая вода нуждается в дополнительной обработке. Дехлорирование осуществляют химической реакцией с гипосульфитом и сернистым газом или сорбцией активированным углем.

Нередко встречаются случаи загрязнения водоемов промышленными и городскими ливневыми стоками, содержащими соединения фенола. Образовавшиеся при хлорировании такой воды даже малыми дозами хлора хлорфенолы придают питьевой воде неприятный «аптечный» запах. Это явление предупреждается предварительным внесением в воду аммиака. Преаммонизация заключается во внесении аммиака или его солей в воду за несколько секунд до подачи хлора. Хлор связывается с аммиаком, и образуются хлорамины, оказывающие мощное и длительное обеззараживающее действие.

В последнее десятилетие значительно изменилось отношение к проблеме галогеносодержащих соединений (ГСС), образующихся при хлорировании питьевой воды. К ним относятся хлороформ, четыреххлористый углерод, 2,4,6-трихлорфенол, бромдихлорметан, дибромхлорметан, бромоформ.

Перспективным методом обеззараживания воды является озонирование. Сильные окислительные свойства обеспечивает выраженное бактерицидное действие озона. Озон действует быстрее хлора и при этом не только надежно обеззараживает воду, но одновременно и достаточно эффективно обесцвечивает ее, устраняет запахи и привкусы. Ни сам озон, ни его соединения не обладают ни запахом, ни вкусом. Даже в большом количестве озон в воде нетоксичен, так как в течение нескольких секунд превращается в кислород. Его действие в отличие от хлора мало зависит от физических и химических свойств воды. Кроме того, озон не требует сложного оборудования для доставки и хранения, поскольку производится непосредственно на месте газоразрядным методом в озонаторах.

Несмотря на явные гигиенические преимущества озонирования воды, метод хлорирования на водопроводных станциях находит гораздо более широкое применение по экономическим причинам.

Эффективно обеззараживают воду тяжелые металлы, в первую очередь серебро. Ионы серебра фиксируются на мембранах бактериальных клеток, нарушая мембранные процессы и вызывая гибель микроорганизмов. Важным преимуществом дезинфекции воды серебрением является наряду с обеззараживающим консервирующее действие серебра. Вода, обработанная ионным серебром или пропущенная через посеребренный песок, не теряет своих бактерицидных, биохимических и вкусовых свойств в течение многих месяцев.

Другие реагентные способы обеззараживания воды, например применение соединений йода, марганца, перекиси водорода, не нашли широкого применения в практике водоснабжения и используются в основном для дезинфекции индивидуальных запасов воды в полевых условиях и экстремальных ситуациях.

Отдельно следует охарактеризовать специальные устройства для повышения качества воды в бытовых условиях путем доочистки. К таким устройствам относятся портативные фильтры («Родничок», «Аква», «Кувшинчик» и др.).

Наиболее эффективным и распространенным способом физического безреагентного обеззараживания воды является ультрафиолетовое облучение. Несомненными достоинствами обеззараживания воды ультрафиолетовыми лучами следует считать быстроту действия, эффективность влияния не только на вегетативные, но и на споровые формы бактерий, а также на яйца гельминтов и вирусы.

Для обеззараживания наиболее благоприятны ультрафиолетовые лучи с длиной волны 200-295 нм и с максимальным бактерицидным действием в пределах длины волны 260 нм. Применяемые в практике водоснабжения ультрафиолетовые установки делятся на непогружные и погружные. Другие известные физические способы обеззараживания воды используются в современных условиях либо для обработки индивидуальных запасов воды (кипячение), либо находятся на стадии экспериментальных разработок (воздействие ультразвука, ионизирующего излучения, радиоволн).

Специальные методы повышения качества питьевой воды.

Так, для снижения жесткости применяют кипячение, реагентные методы, метод ионного обмена. Снижение общей минерализации подземных и морских вод достигается дистилляцией, ионной сорбцией, электролизом, вымораживанием. Удаление соединений железа и сероводорода осуществляется аэрацией с последующей сорбцией на специальном грунте. Подземные воды с избытком фтора подвергают дефторированию осаждением, ионной сорбцией, разбавлением. Дезактивация проводится как реагентными и ионообменными методами, так и разбавлением и выдержкой. В воде поверхностных водоемов, горных рек и в талых водах недостаточно содержание фтора. В такие воды вносят фтористый натрий, кремнефтористый натрий, кремнефтористую кислоту и другие фторсодержащие реагенты.

studfiles.net

4. Гигиеническая характеристика методов улучшения качества питьевой воды.

Методы улучшения качества питьевой воды подразделяются на:

  1. Основные – осветление и обесцвечивание, обеззараживание

  2. Специальные - умягчение, обезжелезивание, опреснение, фторирование, обесфторивание и др.

4.1. Основные методы.

Целью основных методов обработки питьевой воды является улучшение органолептических (осветление и обесцвечивание) и бактериологических (обеззараживание) показателей.

4.1.1. Осветление, обесцвечивание.

Под осветлением воды понимают удаление взвешенных веществ. Обесцвечивание воды – устранение окрашенных коллоидов или истинно растворенных веществ. Осветление и обесцвечивание воды достигается методами отстаивания, фильтрования через пористые материалы и коагулирования. Очень часто эти методы применятся в комбинации друг с другом, например, отстаивание с фильтрованием или коагулирование с отстаиванием и фильтрованием.

Отстаивание.

С помощью отстаивания можно достичь освобождения воды лишь от крупных взвешенных частиц диаметром не менее 0,1-0,01 мм. Более мелкие частицы практически не оседают. Для их удаления требуется проводить коагулирование. В составе большинства сооружений водопроводных станций имеются специальные бассейны непрерывного действия, называемые отстойниками. Принципом работы отстойника является замедление скорости движения воды при переходе из узкого русла трубы в широкое русло бассейна (с 1 м до нескольких мл в секунду). Движение воды настолько замедляется, что оседание взвеси происходит в условиях, близким тем, какие создаются при ее полной неподвижности. При этом мелкие частицы нередко агломерируют (укрупняются) и также приобретают способность к оседанию. В зависимости от направления движения воды различают горизонтальные и вертикальные отстойники.

Горизонтальный отстойник представляет собой прямоугольный, вытянутый в направлении движения воды резервуар, снабженный приспособлениями для сообщения воде ламинарного течения. Дно горизонтального отстойника имеет наклон в сторону входной части, где находится приямок для сбора осадка. Осветляемая вода поступает через водосливной лоток и далее через дырчатую перегородку с одной из торцовых сторон отстойника, а выходит с другой торцовой стороны через дырчатую перегородку и затем через лоток. Обычно отстойник разбивают на ряд параллельно работающих коридоров шириной не более 6 м, расчетная скорость движения воды составляет 2 - 4 мм/с. В отстойнике частица взвеси находится под действием двух взаимно перпендикулярных сил: скорости выпадения по вертикали и скорости движения вод, увлекающей частицу в горизонтальном направлении. В результате действия этих сил частица либо опускается на дно или выносится из отстойника.

Вертикальный отстойник — резервуар конической или пирамидальной формы. В центре резервуара помещается металлическая труба, в верхнюю часть которой поступает осветляемая вода. Пройдя ее сверху вниз, осветляемая вода поступает в зону осаждения, которую проходит по всему ее сечению снизу вверх с небольшой скоростью.

Осветленная вода переливается через борт отстойника в круговой желоб. Осадок, накапливающийся в нижней части отстойника, периодически (1—2 раза в сутки) удаляют. В вертикальных отстойниках скорость воды составляет 0,4 - 0,6 мм/с и время прохождения 4 - 8 часов. Преимуществом вертикальных отстойников является малая площадь.

Недостатком метода отстаивания является: медленность, и увеличение объема отстойников для удлинения времени осаждения, кроме того, наиболее мелкая взвесь не успевает осесть и коллоидные вещества совсем не выделяются.

рис.1 Вертикальный отстойник

В военно-полевой практике, особенно при длительном пребывании войск на одном месте, метод отстаивания может применяться в виде устройства небольших запруд и искусственных водоемов, имеющих сообщение с рекой.

При длительном отстаивании, которое не редко происходит в естественных природных условиях (пруды, водохранилища), наблюдается не только увеличение прозрачности, но и снижение цветности и количества микроорганизмов (по Хлопину на 75-90%),

studfiles.net

4. Гигиеническая характеристика методов улучшения качества питьевой воды.

Методы улучшения качества питьевой воды подразделяются на:

  1. Основные – осветление и обесцвечивание, обеззараживание

  2. Специальные - умягчение, обезжелезивание, опреснение, фторирование, обесфторивание и др.

4.1. Основные методы.

Целью основных методов обработки питьевой воды является улучшение органолептических (осветление и обесцвечивание) и бактериологических (обеззараживание) показателей.

4.1.1. Осветление, обесцвечивание.

Под осветлением воды понимают удаление взвешенных веществ. Обесцвечивание воды – устранение окрашенных коллоидов или истинно растворенных веществ. Осветление и обесцвечивание воды достигается методами отстаивания, фильтрования через пористые материалы и коагулирования. Очень часто эти методы применятся в комбинации друг с другом, например, отстаивание с фильтрованием или коагулирование с отстаиванием и фильтрованием.

Отстаивание.

С помощью отстаивания можно достичь освобождения воды лишь от крупных взвешенных частиц диаметром не менее 0,1-0,01 мм. Более мелкие частицы практически не оседают. Для их удаления требуется проводить коагулирование. В составе большинства сооружений водопроводных станций имеются специальные бассейны непрерывного действия, называемые отстойниками. Принципом работы отстойника является замедление скорости движения воды при переходе из узкого русла трубы в широкое русло бассейна (с 1 м до нескольких мл в секунду). Движение воды настолько замедляется, что оседание взвеси происходит в условиях, близким тем, какие создаются при ее полной неподвижности. При этом мелкие частицы нередко агломерируют (укрупняются) и также приобретают способность к оседанию. В зависимости от направления движения воды различают горизонтальные и вертикальные отстойники.

Горизонтальный отстойник представляет собой прямоугольный, вытянутый в направлении движения воды резервуар, снабженный приспособлениями для сообщения воде ламинарного течения. Дно горизонтального отстойника имеет наклон в сторону входной части, где находится приямок для сбора осадка. Осветляемая вода поступает через водосливной лоток и далее через дырчатую перегородку с одной из торцовых сторон отстойника, а выходит с другой торцовой стороны через дырчатую перегородку и затем через лоток. Обычно отстойник разбивают на ряд параллельно работающих коридоров шириной не более 6 м, расчетная скорость движения воды составляет 2 - 4 мм/с. В отстойнике частица взвеси находится под действием двух взаимно перпендикулярных сил: скорости выпадения по вертикали и скорости движения вод, увлекающей частицу в горизонтальном направлении. В результате действия этих сил частица либо опускается на дно или выносится из отстойника.

Вертикальный отстойник — резервуар конической или пирамидальной формы. В центре резервуара помещается металлическая труба, в верхнюю часть которой поступает осветляемая вода. Пройдя ее сверху вниз, осветляемая вода поступает в зону осаждения, которую проходит по всему ее сечению снизу вверх с небольшой скоростью.

Осветленная вода переливается через борт отстойника в круговой желоб. Осадок, накапливающийся в нижней части отстойника, периодически (1—2 раза в сутки) удаляют. В вертикальных отстойниках скорость воды составляет 0,4 - 0,6 мм/с и время прохождения 4 - 8 часов. Преимуществом вертикальных отстойников является малая площадь.

Недостатком метода отстаивания является: медленность, и увеличение объема отстойников для удлинения времени осаждения, кроме того, наиболее мелкая взвесь не успевает осесть и коллоидные вещества совсем не выделяются.

рис.1 Вертикальный отстойник

В военно-полевой практике, особенно при длительном пребывании войск на одном месте, метод отстаивания может применяться в виде устройства небольших запруд и искусственных водоемов, имеющих сообщение с рекой.

При длительном отстаивании, которое не редко происходит в естественных природных условиях (пруды, водохранилища), наблюдается не только увеличение прозрачности, но и снижение цветности и количества микроорганизмов (по Хлопину на 75-90%),

studfiles.net


Смотрите также