Требования к воде и пару. Норма жесткости воды для котельной


Вода для паровых и водогрейных котлов (ПБ-10-574-03)

Вода для паровых и водогрейных котлов (ПБ-10-574-03)

 

Требования к качеству питательной воды.

Показатели качества питательной воды для котлов  естественной и многократной принудительной циркуляцией паропроизводительностью 0,7 т/ч и более не должны превышать значений, указанных:

1). для паровых газотрубных котлов - в таблице: 

 

Показатели   Для котлов, работающих
на жидком топливе на других видах топлива

Прозрачность по шрифту, см, не менее

40 20
Общая жесткость, мкг-экв/кг 30 100
Содержание растворенного кислорода (для котлов паропроизводительностью 2 т/ч и более), мкг/кг 50* 100

* - для котлов, не имеющих экономайзеров, и котлов с чугунными экономайзерами содержание растворенного кислорода допускается от 100 мкг/кг.

 

2). для водотрубных котлов с естественной циркуляцией (в т.ч. котлов-бойлеров) и рабочим довлением пара до 4 МПа (40 кгс/см2) - в таблице: 

Показатели   Рабочее давление, МПа (кгс/см2)
0,91 1,42 2,4 4

Прозрачность по шрифту, см, не менее

30 40 40  40 
Общая жесткость, мкг-экв/кг 30 / 401 15 / 201 10 / 151 5 / 101 
Содержание соединений железа (в пересчете на Fe), мкг/кг не норми-руется  300 / не норми-руется1  100/2001  50 / 1001 
Содержание соединений меди (в пересчете на Cu), мкг/кг     не нормируется 10 / ненорми-руется1
Содержание растворенного кислорода (для котлов паропроизводительностью 2 т/ч и более)3, мкг/кг 50 / 1001 30 / 501 20 / 501  20 / 301 
Значение рН при 25 С4     8,5 - 10,5
Содеражание нефтепродуктов, мг/кг 5 3 0,5 

1 - в числителе указаны значения для котлов, работающих на жидком топливе, в знаменателе - на других видах топлива.

2 - для водотрубных котлов с раб. давл. пара 1,8 МПа (18 кгс/см2) жесткость не должна быть более 15 мкг экв/кг.

3 - для котлов, не имеющих экономайзеров, и для котлов с чугунными экономайзерами содержание растворенного кислорода допускается до 100 мкг/ при сжигании любого вида топлива.

4 - в отдельных случаях, может быть допущенно снижение значения рН до 7,0.

 

3). для водотрубных котлов с естественной циркуляцией и рабочим давлением пара 10 МПа (100 кгс/см2) - в таблице: 

 

Показатели   Для котлов, работающих
на жидком топливе на других видах топлива
Общая жесткость, мкг-экв/кг 1 3
Содержание соединений железа (в пересчете на Fe), мкг/кг 20  30 
Содержание соединений меди (в пересчете на Cu), мкг/кг 

Содержание растворенного кислорода, мкг/кг

10  10 
Значение рН при 25 С1 9,1 9,1 
Содержание нефтепродуктов,мкг/кг 0,3 0,3

 1 - при восполнении потерь пара и конденсата химически очищенной водой допускается повышение значений рН до 10,5.

4). для энерготехнологических котлов и котлов-утилизаторов с рабочим давлением пара до 5 МПа (50 кгс/см2) - в таблице: 

 

Показатели   Рабочее давление, МПа (кгс/см2)
0,91 1,42 4 и 5
Температура греющего газа (расчетная), С
до 1200  до 1200 свыше 1200 до 1200 свыше 1200 

Прозрачность по шрифту, см, не менее

30/203 40/303     40
Общая жесткость, мкг-экв/кг 40/703  20/502  15  10 
Содержание соединений железа (в пересчете на Fe), мкг/кг  не нормируется   150 100 50 
Содержание растворенного кислорода:
1. для котлов с чугунным экономайзером или без экономайзера,мкг/кг 150 100  50  50 
30
2. для котлов со стальным экономайзером,мкг/кг 50 30  30  30  20
Значение рН при 25 С не манее 8,54
Содержание нефтепродуктов,мкг/кг 5 3 2 1 0,3

1 - в числителе указаны значения для котлов, работающих на жидком топливе, в знаменателе - на других видах топлива.

2 - для водотрубных котлов с раб. давл. пара 1,8 МПа (18 кгс/см2) жесткость не должна быть более 15 мкг экв/кг.

3 - в числителе указаны значения для водотрубных, в знаменателе - для газотрубных котлов.

4 - верхнее значение величины рН устанавливается не более 9,5 в зависимости от материалов, применяемых в оборудовании пароконденсатного тракта. 

5). для энерготехнологических котлов и котлов-утилизаторов с рабочим давлением пара 11 МПа (110 кгс/см2) - в таблице: 

 

Показатели   Значение
Общая жесткость, мкг-экв/кг 3
Содержание соединений железа (в пересчете на Fe), мкг/кг 30

Содержание растворенного кислорода, мкг/кг

10
Значение рН при 25С 9,11
Условное солесодержание (в пересчете на NaCl), мкг/кг2 300
 Удельная электрическая проводимость при 25С, мкСм/см2  2,0
Содержание нефтепродуктов, мг/кг 0,3

1 - верхнее значение величины рН устанавливается не более 9,5 в зависимости от материалов, применяемых в оборудовании пароконденсатного тракта. 

2 - Условное солесодержание должно определяться кондуктометрическим солемером с предварительной дегазацией и концентрированием пробы, а удельная электрическая проводимость - кондуктометром с предварительным водород-китионированием пробы, контролируется один из этих показателей.

6). для высоконапорных котлов парогазовых установок - в таблице: 

 

Показатели Рабочее давление, МПа (кгс/см2)
Общая жесткость, мг-экв/л 5 3 2
Содержание соединений железа (в пересчете на Fe), мкг/кг 501 301 201

Содержание растворенного кислорода, мкг/кг

20 10 10
Значение рН при 25 С 9,1 9,1 9,1
Условное солесодержание (в пересчете на NaCl), мкг/кг2 не норми-руется 300 200
Удельная электрическая проводимость при 25С, мкСм/см2 не норми-руется 2,0 1,5
Содержание нефтепродуктов, мкг/кг 1,0 0,3 0,3

1 - допускается превышение норм по содержанию железа на 50% при работе парогенератора на природном газе.

2 - Условное солесодержание должно определяться кондуктометрическим солемером с предварительной дегазацией и концентрированием пробы, а удельная электрическая проводимость - кондуктометром с предварительным водород-китионированием пробы, контролируется один из этих показателей.

7). качество подпиточной и сетевой воды для водогрейных котлов должно удовлетворять требованиям - в таблице: 

 

Показатели Система теплоснабжения
Открытая Закрытая 
Температура сетевой воды, С
125 150 200 115 150 200

Прозрачность по шрифту, см, не менее

40 40 40 30 30 30
Карбонатная жесткость, мкг-экв/кг:
при рН не более 8,5 800/7001 750/6001 375/3001 800/7001 750/6001 375/3001
при рН более 8,5 не допускается по расчету РД 24.031.120-91
Содержание растворенного кислорода, мкг/кг 50 30 20 50 30 20 
Содержание соединений железа (в пересчете на Fe), мкг/кг 300 300/2501 250/2001 600/5001 500/4001 375/3001 
Значение рН при 25 С от 7,0 до 8,5 от 7,0 до 11,02
Содержание нефтепродуктов, мг/кг

1 - в числителе указаны значения для котлов, работающих на твердом топливе, в знаменателе - на жидком и газообразном топливе.

2 - для теплосетей, в которых водогрейные котлы работают параллельно с бойлерами, имеющими латунные трубки, верхнее значение рН сетевой воды не должно превышать 9,5.

www.aquantum.ru

Требования к воде и пару

Требования к воде и пару

Вода, используемая в парогенераторах и водогрейных котлах, в зависимости от участка технологической цепи, на котором она используется, носит различные названия. Вода, поступающая в котельный цех от различных источников водоснабжения, называется исходной или сырой водой. Эта вода, как правило, поступает для предварительной химической подготовки перед использованием ее для питания парогенераторов и водогрейных котлов.

Вода, поступающая для питания парогенераторов и предназначенная для восполнения испарившейся воды, называется питательной водой, а для восполнения потерь или расходов воды в тепловых сетях - подпиточной водой. Котловой водой называют воду в котле, из которой получается пар.

Пар, получаемый в промышленных котлах, направляется в различные теплоиспользующие аппараты, конденсат из которых возвращается не полностью. Кроме того, часть пара и воды при наличии неплотностей теряется. В связи с этим необходимо систематически добавлять некоторое количество воды извне. В водогрейные котлы также приходится добавлять некоторое количество воды из-за ее утечек в системе теплоснабжения или использования потребителями.

Лучшей для питания котлов является вода, получаемая при конденсации пара, так как в ней содержится незначительное количество загрязняющих ее веществ. Вода, получаемая из различных источников водоснабжения, всегда хуже конденсата. Поэтому сырую воду перед использованием для питания котлов или подпитки тепловых сетей предварительно обрабатывают с целью улучшения ее качества.

Качество сырой, питательной, подпиточной и котловой воды характеризуют сухим остатком, общим солесодержанием, жесткостью, щелочностью, содержанием кремниевой кислоты, концентрацией водородных ионов и содержанием коррозионно-активных газов.

Сухим остатком называется содержание растворенных и коллоидных неорганических и органических твердых примесей, выраженное в мг/кг или мкг/кг. Сухой остаток определяется выпариванием воды, профильтрованной плотным бумажным фильтром, с последующей сушкой остатка при температуре 110 °С.

Общее солесодержание характеризует суммарное содержание минеральных веществ, растворенных в данной воде, выраженное в мг/кг или мкг/кг.

Общей жесткостью воды называют суммарное содержание в воде солей магния и кальция. Различают карбонатную жесткость, обусловленную растворенными в воде солями кальция [Са(НС03)2] и магния [Mg(HC03)2], и некарбонатную, обусловленную всеми остальными солями кальция и магния (CaS04, MgS04, СаС12, MgCl2 и др.).

Общая жесткость разделяется на временную и постоянную. Временная жесткость, обусловленная содержанием в воде бикарбонатов кальция и магния Са(НС03)2 и Mg(HC03)2, устраняется при кипении воды. Постоянная жесткость обусловлена содержанием в воде солей магния и кальция, кроме двууглекислых. Жесткость воды выражается концентрацией соответствующих ионов растворенных веществ, выраженной в эквивалентных единицах - микрограмм-эквивалент на килограмм (мкг-экв/кг) или миллиграмм-эквивалент на килограмм (мг-экв/кг). При этом 1 мкг-экв/кг=0,0005 ммоль/кг.

Щелочностью воды называют суммарное содержание в ней гидроксильных, карбонатных, бикарбонатных и других анионов. В зависимости от содержания анионов, характеризующих щелочность, различают: гидратную щелочность, обусловленную концентрацией гидроксильных анионов; карбонатную, обусловленную концентрацией карбонатных анионов; бикарбонатную, обусловленную концентрацией бикарбонатных анионов. Щелочность измеряется в мкг-экв/кг или мг-экв/кг.

Кремнесодержанием называют суммарную концентрацию в воде различных соединений кремния, которые могут находиться как в молекулярной, так и в коллоидной формах. Кремнесодержание условно пересчитывают на Si02 и выражают в мкг/кг или мг/кг.

Весьма важное значение имеет показатель pH, характеризующий концентрацию в воде водородных ионов. В воде происходит непрерывный обратимый процесс диссоциации молекул воды на ионы водорода Н+ и гидроксильные ионы ОН-. Одновременно диссоциирует весьма небольшое число молекул (около десятимиллионной части всех молекул). Однако в результате диссоциации в воде находится определенное равновесное число ионов водорода Н+ и гидроксильных ионов ОН-. В чистой воде концентрация водородных ионов всегда равна концентрации гидроксильных ионов. При наличии в воде растворенных веществ указанное равенство нарушается. Концентрация водородных ионов в химически чистой воде при температуре 22 °С равна 10-7. Концентрацию водородных иолов в воде принято выражать десятичным логарифмом этого числа, взятым с обратным знаком, и обозначать pH. Следовательно, для абсолютно чистой воды pH = 7. При pH, меньшем 7, концентрация ионов водорода увеличивается, что свидетельствует о кислой реакции воды. Для воды, содержащей растворенные щелочи. pH больше 7.

Коррозионно-активными газами, содержащимися в воде, являются кислород и углекислый газ. Содержание их в воде выражается в мкг/кг или мг/кг.

В соответствии с правилами Госгортехнадзора к питательной воде котлов, имеющих естественную циркуляцию при давлении до 4 МПа, и к подпиточной воде водогрейных котлов применяются определенные требования к воде и пару. Нормы качества питательной воды для парогенераторов при докотловой обработке в соответствии с ГОСТ 20995-75 приведены в табл. 6-1.

Нормам качества подпиточной воды для тепловых сетей соответствуют требования к воде и пару СНиП 11-36-73 «Тепловые сети. Нормы проектирования» приведены в табл. 6-2.

Требования к воде и пару предъявляются при питании котельных агрегатов химически очищенной водой малой жесткости когда возможно отложение накипи на поверхностях нагрева. Поэтому применяют коррекционный метод обработки, вводя в котловую воду специальные реагенты, называемые коррекционными веществами. В качестве коррекционных веществ в котловую воду экранированных котлов вводятся фосфаты.

Ввод фосфатов служит также для предупреждения межкристаллитной коррозии. Для паровых котлов давлением более 1,6 МПа рекомендуется солефосфатный режим, при котором в котловой воде допускается наличие определенного избытка щелочей наряду с фосфатами, сульфатами и хлоридами. Эти соединения оказывают положительное воздействие на металлы, так как они, имея ограниченную растворимость при высоких температурах, при упаривании котловой воды выпадают в оса­док и закупоривают неплотности в котле. Избыток фосфатов в котловой воде с одной ступенью испарения должен быть при солефосфатном режиме не менее 10 и не более 20 мг/кг; для котлов со ступенчатым испарением по чистому отсеку не менее 10 и по солевому отсеку - не более 75 мг/кг.

В последнее время наряду с фосфатированием для барабанных паровых котлов предъявляются требования к воде и пару и рекомендуется комплексонный водный режим, разработанный Т. А. Моргуловой. При этом режиме в питательную воду вводится определенная доза этилендиаминтетра - уксусной кислоты (ЭДТА) или ее двухзамещенной натриевой соли, называемой трилоном Б. Эти соединения способны образовывать растворимые в воде комплексы со всеми накипеобразующими катионами, включая железо, при значениях pH воды не выше 9,5. Комплексно должен вводиться в питательную воду перед питательным насосом. Весь тракт дозирования должен быть выполнен из нержавеющей стали. Концентрация дозируемого раствора не должна превышать 15 мг/кг.

Пар, получаемый в котле, должен быть чистым во избежание отложения накипи на внутренней поверхности труб пароперегревателя н теплообменных аппаратов. Качество пара, получаемого в котлах, зависит от его влажности и концентрации загрязняющих котловую воду веществ.

Влажный пар характеризуется влажностью и солесодержанием. Влажностью называют массовую долю влаги, содержащейся в насыщенном паре. Под солесодержанием пара понимают отношение (мг/кг)

Качество насыщенного и перегретого пара в соответствии с ГОСТ 20995-75 должно отвечать нормам, приведенным в табл. 6-3.

Для снижения влажности пара применяются паросепарационные устройства, описанные в § 6-6. Для уменьшения содержания веществ, загрязняющих котловую воду, производится продувка, т. е. удаление части котловой воды и замена ее питательной водой. Содержание загрязняющих веществ в котловой воде тем меньше, чем больше при прочих равных условиях продувка.

Различают продувку непрерывную и периодическую. Непрерывная продувка производится без перерывов в течение всего времени работы котла, а периодическая - кратковременно через большие промежутки времени. В результате периодической продувки из котла вместе с небольшим количеством котловой воды удаляют осевший шлам, который образуется из веществ, кристаллизующихся в объеме котловой воды. Периодическую продувку производят из нижних точек (нижний барабан и нижние коллекторы экранов). Непрерывная продувка обеспечивает равномерное удаление из верхнего барабана растворенных в котловой воде солей. С непрерывной продувкой теряется значительное количество теплоты. При давлении пара 1,0-1,4 МПа каждый процент неиспользуемой продувки увеличивает расход топлива примерно на 0,3%. Использование теплоты непрерывной продувки возможно в системе отопления, в водяных тепловых сетях для подпитки или в специально устанавливаемых сепараторах (расширителях) для получения вторичного пара. Однако использование теплоты продувочной воды не означает, что продувка может быть большой. Следует учитывать, что котловая вода имеет более высокий тепловой потенциал по сравнению с водой, используемой в сепараторе (расширителе) продувки. Поэтому необходимо всемерно снижать продувку.

Одним из наиболее эффективных методов снижения потерь котловой воды с продувкой является ступенчатое испарение. Ступенчатое испарение заключается в том, что в водяном объ­еме котла создают зоны с различным содержанием солей в котловой воде. Это достигается разделением водяного объема барабана котла с его поверхностями нагрева на отдельные отсеки. При этом продувка производится из отсека с наиболее высоким содержанием солей, а отбор основной массы пара, направляемого в пароперегреватель, производят из отсека с наименьшей концентрацией солей в котловой воде.

Простейшим является двухступенчатое испарение, сущность которого заключается в следующем. Водяной объем верхнего барабана разделяется перегородкой с отверстием на два отсека (рис. 6-4): чистый 6 и солевой 2. Питательная вода поступает в чистый отсек, а солевой питается из чистого через отверстие в перегородке 3. В чистом отсеке образуется примерно 80 % пара, а в солевом -20%. Следовательно, из чистого отсека в солевой поступает 20 % воды, которая для чистого отсека является продувочной.

При такой продувке содержание солей в чистом отсеке крайне мало и из него получается пар весьма хорошего качества. В солевом отсеке поддерживается высокое содержание солей за счет малой продувки и, следовательно, получаемый из него пар имеет высокое солесодержание. Однако из пара, выдаваемого солевым отсеком, стремятся удалить капельки котловой воды, пропуская пар через сепарирующие устройства и затем в паровое пространство чистого отсека. При прохождении через это пространство пар солевого отсека дополнительно очищается. В результате качество пара, выдаваемого котлом, определяется содержанием солей в котловой воде чистого отсека. Конструктивно ступенчатое испарение в котлах выполняют с расположением солевых отсеков непосредственно в верхнем барабане или устанавливают выносные циклоны. Чаще всего на вторую ступень испарения включают боковые экраны котла.

Режим продувки и качество котловой воды устанавливаются путем специальных теплохимических испытаний. Предельные значения солесодержания котловой воды, рекомендуемые заводами-изготовителями котлов, приведены в табл. 6-4.

toplivopodacha.ru

Котельная вода — СМОЛЫ

Котельная водаВодоподготовка — это последовательная обработка воды, поступающей из начального водоисточника к конечному потребителю, для приведения её свойств и качества к соответствию производственным или бытовым требованиям. Водоподготовка проводится на сооружениях или в фильтрах водоочистки для нужд жилищно-коммунального хозяйства, энерго- и теплогенерирующих объединений, транспортных предприятий, фабрик и заводов. Конечные свойства и качество очищаемой воды для пищевых / питьевых целей нормируются СанПиН 2.1.4.1074-01.

Для котельной воды первоначальным источником являются природные воды, вода из городского водопровода. Опасностью для котельной воды является то, что в составе природных вод имеются механические примеси минерального или органического происхождения, растворенные химические вещества и газы, поэтому без предварительной очистки природные воды непригодны для питания котлов. На помощь приходят ионообменные смолы: КАТИОНИТ КУ-2-8, анионит и СУЛЬФОУГОЛЬ.

Заказать ионообменные смолы можно на сайте smoly.ru от производителя, например, катионит, цена на него поэтому не высока.

Воду, используемую в паровых и водогрейных котлах, в зависимости от участка технологической цепи, на котором она используется, называют по-разному. Так, вода, поступающая в котельную или ТЭЦ от возможных источников водоснабжения, называется исходной, или сырой, водой. Как правило, эта вода требует предварительной химической подготовки перед использованием ее для питания котлов.

Вода, поступающая для питания котлов, называется питательной. Вода, подаваемая для восполнения потерь пара или расходов воды в тепловых сетях, называется подпиточной. Воду, находящуюся в испарительной системе котла, называют котловой.

Пар, получаемый в промышленных котлах, направляют в различные теплоиспользующие устройства, конденсат из которых возвращается неполностью либо он настолько загрязнен, что не может быть непосредственно использован. Кроме того, часть пара и воды при наличии неплотностей теряется. В связи с этим необходимо систематически добавлять в тепловые сети некоторое количество воды извне. В водогрейные котлы также приходится добавлять воду из-за ее утечек в системе теплоснабжения или использования потребителями. Котельная вода не должна давать отложений шлама и накипи, разъедать внутренние стенки труб поверхностей нагрева, а также вспениваться.

Наличие примесей в котельной воде приводит к явлениям, существенно усложняющим работу котельного агрегата. В первую очередь следует выделить накипеобразование, загрязнение пароперегревателей и турбин, внутреннюю коррозию в трубах. Накипеобразование на внутренней поверхности обогреваемых труб относится к наиболее опасным явлениям. Даже весьма небольшой слой накипи приводит к весьма существенному повышению температуры металла труб и их разрыву из-за потери механической прочности, что считается тяжелой аварией в котлоагрегате.

Жесткость котельной воды

Жесткость котельной водыЖесткость котельной воды обусловлена присутствием в ней солей кальция и магния. Различают общую Жо карбонатную Жк и некарбонатную Жнк жесткость.

Карбонатная жесткость котельной воды - Жк

Карбонатная жесткость котельной воды Жк характеризуется содержанием в растворе гидрокарбонатов кальция и гидрокарбоната магния. Карбонатная жесткость котельной воды удаляется нагреванием воды, поэтому ее называют также временной жесткостью. При нагревании воды гидрокарбонаты постепенно переходят в малорастворимую форму солей — карбонаты СаСО3, и MgC03, выпадающие в виде рыхлых осадков (шлама) и удаляемые при периодической продувке. Уравнения этих реакций следующие:

Ca(HCO3)2= СаСО3 + Н2О + СО2;

Mg(HCO3)2= MgСО3 + Н2О + СО2;

Количественно карбонатная жесткость котельной воды равна концентрации ионов Са2+ и Mg2+, которая соответствует удвоенной концентрации гидрокарбонат-ионов НСО3.

Некарбонатная жесткость котельной воды - Жнк

Некарбонатная жесткость котельной воды вызвана наличием в воде всех остальных, помимо гидрокарбонатов, солей кальция и магния. Некарбонатная жесткость является неустранимой, она сохраняется при нагревании и кипячении, поэтому ее называют постоянной жесткостью. При водоподготовке на заводах соли постоянной жесткости образуют плотные отложения накипи. Количественно некарбонатная жесткость котельной воды равна концентрации ионов Са2+ и Mg2+ за вычетом временной (карбонатной) жесткости. В качестве анионов выбраны (условно) сульфат-ионы SО4, хотя в воде могут также находиться хлориды, нитраты, различные силикаты и фосфаты кальция и магния. Так как некарбонатную жесткость определяют через содержание CaS04 и MgS04, ее называют также сульфатной жесткостью.

Общая жесткость котельной воды

Общая жесткость котельной водыОбщая жесткость котельной воды - Жо

Количественно общую жесткость воды характеризуют через суммарное содержание ионов Са2+ и Mg2+, выраженное в ммоль/кг. По жесткости все природные воды делятся на мягкие (общая жесткость менее 2 ммоль/кг) и жесткие со средней степенью жесткости (2... 10 ммоль/кг) и высокой степенью жесткости (более 10 ммоль/кг). Для перевода количества вещества n, моль, в его массу m, кг, используют формулу nМ = m, где М — молярная масса конкретного вещества, кг/моль. Для рассматриваемых солей жесткость соответствует M/(Са) = 40,08 кг/моль, M/(Mg) = 24,32 кг/моль. Так как в химических процессах вещества реагируют и образуются в эквивалентных количествах, то на практике до сих пор широко используется понятие грамм-эквивалента — количество вещества в граммах, численно равное его химическому эквиваленту. Химический эквивалент — безразмерная величина, численно равная для водных растворов солей молярной концентрации ионов Са2+ и Mg2+, приходящейся на вдвое большую молярную концентрацию НС03. Таким образом, если используют единицу измерения жесткости мг-экв/кг (миллиграмм-эквивалент на 1 кг воды), то она соответствует содержанию в воде 20,04 мг иона Са2+ или 12,16 мг иона Mg2+. Щелочность характеризуется наличием в воде щелочных соединений (NaOH — едкий натр, Na2C03 — кальцинированная сода. NaHC03 — гидрокарбонат натрия, Na3P04 — тринатрийфосфат и др.).

Общая щелочность до проведения водоподготовки Що складывается из суммы Щг, (гидратная щелочность), Щгк (гидрокарбонатная), Щк (карбонатная):

Що=Щг+Щгк+Щк

smoly.ru

ВОДНЫЙ РЕЖИМ ПАРОВЫХ И ВОДОГРЕЙНЫХ КОТЛОВ

Ремонт паровых котлов

Для безаварийной и экономичной работы котельных установок большое значение имеет качество воды, кото­рой питаются котлы. Необработанная вода из различных источников (артезианская, поверхностная) содержит ра­створенные соли, различные механические и органические примеси, а также кислород и углекислый газ. Количест­во и состав примесей зависит от свойства пород, с кото­рыми контактирует вода, а также от количества и соста­ва сбросов, поступающих в водоисточники.

Для питания отопительных котлов иногда использует­ся артезианская вода, в которой почти нет механических примесей (взвешенных веществ) и сравнительно мало ор­ганических примесей. Однако эта вода обычно содержит большое количество растворенных солей.

Основными накипеобразующими примесями необрабо­танной воды являются соли кальция и магния, которые обусловливают жесткость воды, а также соединения же­леза.

Наличие указанных примесей не позволяет применять без предварительной обработки исходную (сырую) воду для питания котлов, так как при нагреве и испарении воды на внутренних поверхностях труб и барабанов кот­ла осаждаются соли, образующие накипь и шлам. По­скольку накипь — плохой проводник теплоты (в 40 раз хуже, чем сталь), в местах ее отложения происходит ме­стный перегрев металла котла, образуются отдулины и трещины. Установлено, что при отсутствии накипи темпе­ратура стенки труб котла при давлении 4,0 МПа (40 кгс/см2) не превышает 280 °С, при толщине накипи в 3 мм температура металла повышается до 580°С.

Водно-химический режим котельной должен вестись таким образом, чтобы была обеспечена работа оборудо­вания без повреждений и снижения экономичности, вы­званных: образованием накипи и отложений на поверх­ностях нагрева; отложениями шлама в котлах и в теп­ловых сетях; коррозией внутренних поверхностей котлов, трубопроводов питательного тракта и тепловых сетей.

Главными показателями качества воды являются: прозрачность, солесодержание, щелочность и жесткость, содержание соединений железа и окисляемость.

Прозрачность воды характеризуется содержа­нием в ней взвешенных примесей (мутностью) и опреде­ляется по высоте слоя воды (в см), через который можно видеть определенных размеров крест или шрифт (про­зрачность по кресту или шрифту).

Солесодержание воды характеризует общее количество растворенных в ней веществ, его определяют путем измерения электрической проводимости или по массе сухого остатка после выпаривания воды при тем­пературе 105—110 °С.

Щелочность выражает количество находящихся в ней щелочных соединений — гидратов, карбонатов и бикарбонатов.

Жесткость воды характеризует общее содержание в ней солей кальция и магния. Общая жесткость (Ж0) делится на постоянную (Жп) (некарбонатную), которая обусловлена содержанием в воде сульфатов (CaSO, f, MgS04) и хлоридов (СаС12, MgCl2) и временную (Ж3) (карбонатную), которая характеризуется содержанием в воде бикарбонатов Ca(HC03)2, Mg(HC03)2.

Общая жесткость воды равняется сумме посто­янной и временной жесткости

Ж0 = Ж„ - ЬЖ„ (3.1)

Кроме солей жесткости в воде присутствуют соли на­трия, кремнекислота и другие соединения.

При нагревании и упаривании в котлах соли карбо­натной жесткости образуют низкотемпературные накипи, состоящие в основном из СаСОз. Эти накипи образуются при нагреве воды уже до 40—50 °С.

При более высоких температурах и больших солесо - держаниях исходной воды возможно образование гипсо­вой накипи CaS04. Соли карбонатной жесткости (вре­менной) при нагревании могут выпадать как в виде на­кипи, так и в виде рыхлого шлама в зависимости от условий кристаллизации.

За единицу измерения жесткости воды принят мил­лиграмм-эквивалент (мг-экв), равный 20 мг кальция или 12 мг магния. Концентрация солей жестко­сти в воде выражается в мг-экв/кг, или в мкг-экв/кг.

По общей жесткости все природные воды условно можно разделить на три группы: мягкие (Жо^

Мг-экв/кг), средней жесткости (Ж0 = 4-^7 мг-экв/кг) и жесткие (Ж0^7 мг-экв/кг).

Щелочность воды выражается в тех же единицах, что и жесткость, и показывает суммарное содержание в ней гидроксильных, карбонатных и бикарбонатных анионов. Возможно раздельное определение гидратной, карбонат­ной и бикарбонатной щелочности. В природных водах щелочность преимущественно бикарбонатная.

Качество котловой воды характеризуется ее солесо - держанием, щелочностью, а также относительной щелоч­ностью, которая для паровых котлов давлением до 3,9 МПа (39 кгс/см2) должна быть не более: 20 % для клепаных котлов; 50 % для котлов со сварными бараба­нами и вальцовочными соединениями труб с барабана­ми, включая вальцованные трубы с уплотнительной об­варкой.

Относительная щелочность для паровых котлов дав­лением до 3,9 МПа (до 39 кгс/см2) со сварными бараба­нами и сварными соединениями труб с барабанами и коллекторами не нормируется.

Относительная щелочность Щотн, %, может быть оп­ределена по формуле

Шотп = 40— КІ100, (3.2)

Ас., о

Где Щк. в — щелочность КОТЛОВОЙ ВОДЫ, мг-экв/кг; Ас. о— сухой остаток котловой воды, мг/кг; 40 — коэффициент для пересчета щелочности на NaOH.

Важное значение имеет показатель концентрации в воде водородных ионов — рН. В зависимости от этого показателя воду считают кислой, щелочной или нейт­ральной. Химически чистая вода имеет нейтральную ре­акцию, при этом часть молекул воды диссоциирована на ионы: HaO^H-jfOH-.

Таблица 3.1. Растворимость в воде кислорода (мг/кг) в зависимости от температуры

Температура, СС

Ный газ

0

5

10

15

'Д)

25

30

10

50

00

80

100

Оа

Мл;

12,8

11,3

10,1

9,1

8,3

7,5

6,5

5,6

4,8

0

Степень этой диссоциации ничтожна: из 10 000 000 мо­лекул воды только одна молекула распадается на ионы. Концентрацию в воде ионов водорода принято выражать отрицательным логарифмом этой величины и обозна­чаемым рН. При нейтральной реакции воды концентра­ции ионов Н+ и ОН~ одинаковы и при 25°С равны 10~7 и рП этой воды равен 7; при рН<7 концентрация ионов водорода увеличивается и реакция воды будет кислой, а при рН>7 — щелочной.

Концентрация гндрокснльного иона соответственно характеризуется рОН.

Косвенным показателем содержания в воде органи­ческих веществ является ее окисляемость, которая пока­зывает расход кислорода (или перманганата калия КМп04) на окисление органических веществ в опреде­ленных условиях и выражается в миллиграммах кисло­рода или перманганата на 1 л воды.

Растворимость в воде газов выражается в мг/кг и за­висит от физических свойств, температуры и парциально­го давления газов (табл. 3.1).

Соединения железа встречаются в природных водах ь виде двухвалентного (закисного) и трехвалентного (окисного) железа. Концентрация соединений железа выражается в мг/кг.

Котлы Е-1/9-1М, работающие на жидком топливе, оборудуются горелочными устройствами АР-90. Для за­щиты котла подача топлива автоматически прекращается при понижении уровня воды в котле ниже допустимого, при повышении давления пара в …

При изготовлении, монтаже и ремонте элементов кот­лов, пароперегревателей и экономайзеров должны при­меняться только стыковые соединения при сварке обе­чаек, труб (патрубков) и приварке выпуклых днищ, а также тавровые и угловые или …

А. Баранов

msd.com.ua


Смотрите также