Сложное вещество вода: «Вода как сложное вещество» (7 класс)

Содержание

Простые и сложные вещества

Простые вещества: молекулы состоят из атомов одного вида (атомов одного элемента).

Пример: h3, O2,Cl2, P4, Na, Cu, Au.

Сложные вещества (или химические соединения): молекулы состоят из атомов разного вида (атомов различных химических элементов).

Пример: h3O, Nh4, OF2, h3SO4, MgCl2, K2SO4.

Аллотропия — способность одного химического элемента образовывать несколько простых веществ, различающихся по строению и свойствам.

Пример:

  • С — алмаз, графит, карбин, фуллерен.
  • O — кислород, озон.
  • S — ромбическая, моноклинная, пластическая.
  • P — белый, красный, чёрный.

Явление аллотропии вызывается двумя причинами:

  • Различным числом атомов в молекуле, например кислород O2 и озон O3.
  • Образованием различных кристаллических форм, например алмаз, графит, карбин и фуллерен (смотри рисунок выше).

Основные классы неорганических веществ

Бинарные соединения

Вещества, состоящие из двух химических элементов называются бинарными (от лат. би – два) или двухэлементными.

Названия бинарных соединений образуют из двух слов – названий входящих в их состав химических элементов.     

Первое слово обозначает электроотрицательную часть соединения – неметалл, его латинское название с суффиксом –ид стоит всегда в именительном падеже.

Второе слово обозначает электроположительную часть – металл или менее электроотрицательный элемент, его название стоит в родительном падеже, затем указывается степень окисления (только в том случае, если она переменная):

Запомни!

Bh4 — боран

B2H6 — диборан

Ch5 — метан

Sih5 — силан

Nh4 — аммиак

Ph4 — фосфин

Ash4 — арсин

Оксиды

Оксиды — сложные вещества, состоящие из двух химических элементов, один из которых кислород в степени окисления -2.

Общая формула оксидов: ЭхОу

Основные оксиды

Основные оксиды — оксиды, которым соответствуют основания.

Основные оксиды образованы металлом со степенью окисления +1, +2.

Пример

Соответствие основных оксидов и оснований

  • Na2O — Na2(+1)O(-2) — NaOH
  • MgO — Mg(+2)O(-2) — Mg(OH)2
  • FeO — Fe(+2)O(-2) — Fe(OH)2
  • MnO — Mn(+2)O(-2) — Mn(OH)2

Амфотерные оксиды

Амфотерные оксиды — оксиды, которые в зависимости от условий проявляют либо основные, либо кислотные свойства.

Амфотерные оксиды образованы металлом со степенью окисления +3, +4, а также некоторыми металлами (Zn, Be) со степенью окисления +2.

Пример

Al2(+3)O3(-2), Fe2(+3)O3(-2), Mn(+4)O2(-2), Zn(+2)O(-2), Be(+2)O(-2)

Кислотные оксиды

Кислотные оксиды — оксиды, которым соответствуют кислоты.

Кислотные оксиды образованы неметаллом, а также металлом со степенью окисления +5, +6, +7.

Пример

Соответствие кислотных оксидов и кислот

  • SO3 — S(+6)O3(-2) — h3SO4
  • N2O5 — N2(+5)O5(-2) — HNO3
  • CrO3 — Cr(+6)O3(-2) — h3CrO4
  • Mn2O7 — Mn2(+7)O7(-2) — HMnO4

Гидроксиды

Гидроксиды — сложные вещества, состоящие из трех элементов, два из которых водород со степенью окисления +1 и кислород со степенью окисления -2.

Общая формула гидроксидов: ЭхОуНz

Основания

Основания — сложные вещества, состоящие из ионов металла и одной или нескольких гидроксо-групп (ОН-).

В основаниях металл имеет степень окисления +1, +2 или вместо металла стоит ион аммония Nh5+

Пример

NaOH, Nh5OH, Ca(OH)2

Амфотерные гидроксиды

Амфотерные гидроксиды — сложные вещества, которые в зависимости от условий проявляют свойства оснований или кислот.

Амфотерные гидроксиды имеют металл со степенью окисления +3, +4, а также некоторые металлы (Zn, Be) со степенью окисления +2.

Пример

Zn(OH)2, Be(OH)2, Al(OH)3, Cr(OH)3

Кислоты

Кислоты — сложные вещества, состоящие из атомов водорода и кислотных остатков.

В состав кислот входит неметалл или металл со степенью окисления +5, +6, +7.

Пример

h3SO4, HNO3, h3Cr2O7, HMnO4

Соли

Соли- соединения, состоящие из катионов металлов (или Nh5+) и кислотных остатков.

Общая формула солей: MexAcy

  • Me — металл
  • Ac — кислотный остаток
Пример

KNO3 — нитрат калия

(Nh5)2SO4 — сульфат аммония

Mg(NO3)2 — нитрат магния

Названия кислот и кислотных остатков

КислотаКислотный остаток
НазваниеФормулаНазваниеФормула
Соляная
(хлороводородная)
HClХлоридCl(-)
Плавиковая
(фтороводородная)
HFФторидF(-)
БромоводороднаяHBrБромидBr(-)
ИодоводороднаяHIИодидI(-)
АзотистаяHNO2НитритNO2(-)
АзотнаяHNO3НитратNO3(-)
Сероводороднаяh3S Сульфид
Гидросульфид
S(2-)
HS(-)
Сернистаяh3SO3 Сульфит
Гидросульфит
SO3(2-)
HSO3(-)
Сернаяh3SO4 Сульфат
Гидросульфат
SO4(2-)
HSO4(-)
Угольнаяh3CO3 Карбонат
Гидрокарбонат
СО3(2-)
НСО3(-)
Кремниеваяh3SiO3СиликатSiO3(2-)
Ортофосфорнаяh4PO4 Ортофосфат
Гидроортофосфат
Дигидроортофосфат
РО4(3-)
НРО4(2-)
Н2РО4(-)
МуравьинаяНСООНФормиатНСОО(-)
УксуснаяСН3СООНАцетатСН3СОО(-)

Полезные ссылки

Источник материала

Классификация неорганических веществ (видео)

Классификация неорганических веществ. Сложные вопросы (видео)

Кислотные оксиды (видео)

Основные оксиды (видео)

Основания (видео)

Характеристика солей (видео)

Дополнительные материалы

Классификация и номенклатура неорганических веществ (видео)

Классификация соединений (видео)

Аллотропные формы углерода (видео)

Урок 4. Сложные вещества – HIMI4KA

Архив уроков › Химия 8 класс

В уроке 4 «Сложные вещества» из курса «Химия для чайников» дадим определение химическим соединениям, рассмотрим различия органических и неорганических соединений, а также выясним, что означает качественный и количественный состав. Напоминаю, что в прошлом уроке «Молекулы и простые вещества» мы рассмотрели, что такое молекулы, простые вещества, а также металлы и неметаллы.

Химические элементы существуют не только в виде свободных атомов и простых веществ. Они также могут входить в состав самых различных химических соединений.

Вещества, состоящие из атомов разных химических элементов, называются сложными веществами или химическими соединениями.

Содержание

  • Органические и неорганические вещества
    • Органические вещества
    • Неорганические вещества
  • Качественный и количественный состав веществ
  • Отличия между сложными веществами и смесями веществ

Органические и неорганические вещества

Подавляющее большинство химических веществ — это сложные вещества. Вы уже знаете некоторые из них. Вода, метан, сахар, поваренная соль — сложные вещества. Сложные вещества делятся на две группы — неорганические и органические.

Органические вещества

Все органические вещества объединяет главный признак: в их состав обязательно входят атомы углерода. Кроме углерода, в состав органических веществ чаще всего входят атомы водорода, кислорода, а также азота, фосфора, серы. Почти все органические вещества горючи и легко разлагаются при нагревании. Практически все они имеют молекулярное строение (рис. 41).

Простейшим органическим веществом является природный газ метан. Но вам, наверное, знакомы и такие органические вещества, как сахар (сахароза), уксусная и лимонная кислоты, спирт, крахмал, белки, жиры, пластмассы и т. д. Органических веществ миллионы. Они содержатся во всех животных и растительных организмах (откуда и произошло их название), входят в состав пищи, топлива, лекарств, красителей, самых разнообразных материалов.

Неорганические вещества

Неорганические вещества являются соединениями всех остальных элементов. К неорганическим традиционно относят также несколько веществ, содержащих углерод: углекислый и угарный газы, мел, соду и некоторые другие. Неорганических веществ около 700 тыс., но их общая масса многократно превышает массу органических веществ. Почти все они — твердые вещества немолекулярного строения (рис. 42), входят в состав минералов, почв, горных пород.

Качественный и количественный состав веществ

Каждое вещество характеризуется определенным качественным и количественным составом.

Качественный состав вещества показывает, из атомов каких элементов оно состоит. Например, вода состоит из атомов водорода и кислорода, а метан— из атомов углерода и водорода. Число атомов каждого элемента в составе мельчайшей частицы вещества характеризует его количественный состав. Например, молекула воды состоит из двух атомов водорода и одного атома кислорода, а молекула метана — из одного атома углерода и четырех атомов водорода.

Сложное вещество можно с помощью различных химических методов разложить на несколько новых веществ, и так до тех пор, пока не получатся вещества, каждое из которых будет являться простым. Например, сахар при нагревании разлагается на воду и уголь (углерод):

а воду можно разложить с помощью электрического тока на водород и кислород:

Свойства простых веществ, которые при этом получаются (углерода, кислорода и водорода), совершенно не похожи на свойства сложных веществ — сахара и воды. Это разные вещества с разными свойствами. Свойства сложного вещества не являются суммой свойств простых веществ, которые образуются при его разложении.

Сложные вещества, как и простые, имеют либо молекулярное, либо немолекулярное строение. При этом вещества молекулярного строения могут существовать при обычных условиях в различных агрегатных состояниях. Например, метан — газ, вода — жидкость, сахар — твердое вещество.

Вещества немолекулярного строения при обычных условиях — твердые кристаллы, например поваренная соль, мел. Конечно, при нагревании (иногда до нескольких тысяч градусов) такие вещества плавятся, а затем переходят и в парообразное состояние.

Отличия между сложными веществами и смесями веществ

Необходимо различать сложные вещества и смеси веществ:

Сложное вещество (химическое соединение)Смесь веществ
Образуется в результате соединения атомов различных элементов между собой (химический процесс)Образуется в результате смешивания различных веществ (физический процесс)
Свойства сложного вещества отличаются от свойств простых веществ, из которых оно полученоСвойства веществ, из которых составлена смесь, не изменяются
Имеет определенный качественный и количественный составСостав произвольный
Разлагается на составные части только в результате химических процессовРазделяется на составные части с помощью различных физических методов

Краткие выводы урока:

  1. Сложными называются вещества, состоящие из атомов разных химических элементов.
  2. Каждое чистое вещество имеет определенный качественный и количественный состав.
  3. Свойства сложного вещества отличаются от свойств простых веществ, из которых оно получено.
  4. Сложные вещества имеют молекулярное или немолекулярное строение.
  5. Все сложные вещества делятся на органические и неорганические.

Надеюсь урок 4 «Сложные вещества» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Урок 5. Химическая формула →

← Урок 3. Молекулы и простые вещества

Британика

  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Этот день в истории
  • Викторины
  • Подкасты
  • Словарь
  • Биографии
  • Резюме
  • Популярные вопросы
  • Обзор недели
  • Инфографика
  • Демистификация
  • Списки
  • #WTFact
  • Товарищи
  • Галереи изображений
  • Прожектор
  • Форум
  • Один хороший факт
  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Britannica Classics
    Посмотрите эти ретро-видео из архивов Encyclopedia Britannica.
  • Demystified Videos
    В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы.
  • #WTFact Видео
    В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти.
  • На этот раз в истории
    В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
  • Britannica объясняет
    В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы.
  • Студенческий портал
    Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д.
  • Портал COVID-19
    Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня.
  • 100 женщин
    Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.
  • Britannica Beyond
    Мы создали новое место, где вопросы находятся в центре обучения. Вперед, продолжать. Просить. Мы не будем возражать.
  • Спасение Земли
    Британника представляет список дел Земли на 21 век. Узнайте об основных экологических проблемах, стоящих перед нашей планетой, и о том, что с ними можно сделать!
  • SpaceNext50
    Britannica представляет SpaceNext50. От полёта на Луну до управления космосом — мы исследуем широкий спектр тем, которые подпитывают наше любопытство к космосу!

Страница не найдена

Приносим свои извинения! Этот контент недоступен. Посетите домашнюю страницу Britannica или воспользуйтесь полем поиска ниже.

Поиск в Британике

Растения: от милых до плотоядных

5 странных фактов о Венере

Почему кинза на вкус как мыло для некоторых людей?

2.

4: Вода — жизненно важное соединение

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    74483
    • OpenStax
    • OpenStax

    Вы когда-нибудь задумывались, почему ученые тратят время на поиски воды на других планетах? Это потому, что вода необходима для жизни; даже мельчайшие следы его на другой планете могут указывать на то, что жизнь могла существовать или существовала на этой планете. Вода — одна из наиболее распространенных молекул в живых клетках и наиболее важная для жизни, какой мы ее знаем. Примерно 60–70 процентов вашего тела состоит из воды. Без него жизни просто не было бы.

    Вода полярна

    Атомы водорода и кислорода в молекулах воды образуют полярные ковалентные связи. Общие электроны проводят больше времени, связанного с атомом кислорода, чем с атомами водорода. У молекулы воды нет общего заряда, но есть небольшой положительный заряд на каждом атоме водорода и небольшой отрицательный заряд на атоме кислорода. Из-за этих зарядов слегка положительные атомы водорода отталкиваются друг от друга и образуют уникальную форму, показанную на рис. 2.1.6. Каждая молекула воды притягивает другие молекулы воды из-за положительных и отрицательных зарядов в разных частях молекулы. Вода также притягивает другие полярные молекулы (например, сахара), образуя водородные связи. Когда вещество легко образует водородные связи с водой, оно может растворяться в воде и называется гидрофильным («водолюбивым»). Водородные связи нелегко образуются с неполярными веществами, такими как масла и жиры (рис. \(\PageIndex{1}\)). Эти неполярные соединения являются гидрофобными («водобоязненными») и не растворяются в воде.

    Рисунок \(\PageIndex{1}\): Как показано на этом макроскопическом изображении нефти и воды, нефть является неполярным соединением и, следовательно, не растворяется в воде. Масло и вода не смешиваются. (кредит: Гаутам Догра)

    Вода стабилизирует температуру

    Водородные связи в воде позволяют ей поглощать и выделять тепловую энергию медленнее, чем многие другие вещества. Температура является мерой движения (кинетической энергии) молекул. Чем больше движение, тем выше энергия и, следовательно, выше температура. Вода поглощает большое количество энергии, прежде чем ее температура повысится. Повышенная энергия разрушает водородные связи между молекулами воды. Поскольку эти связи могут создаваться и разрушаться быстро, вода поглощает увеличение энергии и изменения температуры лишь в минимальной степени. Это означает, что вода смягчает изменения температуры внутри организмов и в окружающей их среде. По мере поступления энергии баланс между образованием и разрушением водородных связей смещается в сторону разрушения. Больше связей разрывается, чем образуется. Этот процесс приводит к высвобождению отдельных молекул воды на поверхность жидкости (например, водоема, листьев растения или кожи организма) в процессе, называемом испарением. Испарение пота, что составляет 90 процентов воды, позволяет охлаждать организм, потому что разрыв водородных связей требует затрат энергии и отбирает тепло у тела.

    И наоборот, по мере уменьшения молекулярного движения и снижения температуры выделяется меньше энергии для разрыва водородных связей между молекулами воды. Эти связи остаются неповрежденными и начинают формировать жесткую решетчатую структуру (например, лед) (рис. \(\PageIndex{2}\) a ). В замороженном виде лед менее плотный, чем жидкая вода (молекулы находятся дальше друг от друга). Это означает, что лед плавает на поверхности водоема (Рисунок \(\PageIndex{2}\) б ). В озерах, прудах и океанах лед образуется на поверхности воды, создавая изолирующий барьер, защищающий животных и растения от замерзания в воде. Если бы этого не произошло, растения и животные, живущие в воде, замерзли бы в глыбе льда и не могли бы свободно передвигаться, что сделало бы жизнь при низких температурах затруднительной или невозможной.

    Рисунок \(\PageIndex{2}\): (a) Решетчатая структура льда делает его менее плотным, чем свободно текущие молекулы жидкой воды. Меньшая плотность льда позволяет ему (б) плавать на воде. (кредит а: модификация работы Джейн Уитни; кредит б: модификация работы Карлоса Понте)

    КОНЦЕПЦИИ В ДЕЙСТВИИ

    Нажмите здесь, чтобы увидеть трехмерную анимацию структуры ледяной решетки. (кредит: изображение, созданное Джейн Уитни с использованием программного обеспечения Visual Molecular Dynamics (VMD) 1 )

    Вода — превосходный растворитель

    Поскольку вода полярна, имеет небольшие положительные и отрицательные заряды, ионные соединения и полярные молекулы легко могут раствориться в нем. Таким образом, вода — это то, что называют растворителем — вещество, способное растворять другое вещество. Заряженные частицы будут образовывать водородные связи с окружающим слоем молекул воды. Это называется сферой гидратации и служит для разделения или диспергирования частиц в воде. В случае поваренной соли (NaCl), смешанной с водой (рис. \(\PageIndex{3}\)), ионы натрия и хлорида разделяются или диссоциируют в воде, и вокруг ионов образуются сферы гидратации. Положительно заряженный ион натрия окружен частично отрицательно заряженными атомами кислорода в молекулах воды. Отрицательно заряженный ион хлора окружен частично положительными зарядами атомов водорода в молекулах воды. Эти сферы гидратации также называют гидратными оболочками. Полярность молекулы воды делает ее эффективным растворителем и играет важную роль в ее многочисленных ролях в живых системах.

    Рисунок \(\PageIndex{3}\): Когда поваренная соль (NaCl) смешивается с водой, вокруг ионов образуются сферы гидратации.

    Water Is Cohesive

    Вы когда-нибудь наполняли стакан водой до самого верха, а затем медленно добавляли еще несколько капель? Прежде чем перелиться через край, вода на самом деле образует куполообразную форму над краем стакана. Эта вода может оставаться над стеклом благодаря свойству когезии. При когезии молекулы воды притягиваются друг к другу (из-за водородных связей), удерживая молекулы вместе на границе раздела жидкость-воздух (газ), хотя в стекле больше нет места. Сплоченность порождает поверхностное натяжение, способность вещества выдерживать разрыв при растяжении или напряжении. Когда вы бросаете небольшой клочок бумаги на каплю воды, бумага плавает поверх капли воды, хотя объект плотнее (тяжелее), чем вода. Это происходит из-за поверхностного натяжения, создаваемого молекулами воды. Когезия и поверхностное натяжение удерживают молекулы воды неповрежденными, а предмет плавает на поверхности. Можно даже «плавать» стальной иглой поверх стакана с водой, если поместить ее осторожно, не нарушая поверхностного натяжения (рис. \(\PageIndex{4}\)).

    Рисунок \(\PageIndex{4}\): Вес иглы на поверхности воды снижает поверхностное натяжение; в то же время поверхностное натяжение воды тянет ее вверх, удерживая иглу на поверхности воды и удерживая ее от погружения. Обратите внимание на углубление в воде вокруг иглы. (кредит: Кори Занкер)

    Эти силы сцепления также связаны со свойством воды прилипать или притяжением между молекулами воды и другими молекулами. Это наблюдается, когда вода «поднимается» по соломинке, помещенной в стакан с водой. Вы заметите, что вода кажется выше по бокам соломинки, чем в середине. Это происходит потому, что молекулы воды притягиваются к соломинке и поэтому прилипают к ней.

    Силы сцепления и сцепления важны для поддержания жизни. Например, из-за этих сил вода может течь от корней к верхушкам растений, чтобы питать растение.

    КОНЦЕПЦИЯ В ДЕЙСТВИИ

    Чтобы узнать больше о воде, посетите Геологическую службу США «Наука о воде для школ: все о воде»! Веб-сайт.

    Буферы, pH, кислоты и основания

    pH раствора является мерой его кислотности или щелочности. Вы, вероятно, использовали лакмусовую бумагу, бумагу, обработанную натуральным водорастворимым красителем, чтобы ее можно было использовать в качестве индикатора pH, чтобы проверить, сколько кислоты или основания (щелочность) существует в растворе. Возможно, вы даже использовали его, чтобы убедиться, что вода в открытом бассейне правильно очищена. В обоих случаях этот тест pH измеряет количество ионов водорода, присутствующих в данном растворе. Высокие концентрации ионов водорода приводят к низкому pH, тогда как низкие уровни ионов водорода приводят к высокому pH. Общая концентрация ионов водорода обратно пропорциональна его рН и может быть измерена по шкале рН (рис. \(\PageIndex{5}\)). Следовательно, чем больше ионов водорода, тем ниже pH; и наоборот, чем меньше ионов водорода, тем выше рН.

    Шкала рН колеблется от 0 до 14. Изменение на одну единицу по шкале рН соответствует изменению концентрации ионов водорода в 10 раз, изменение на две единицы соответствует изменению концентрации ионов водорода в 10 раз. в 100 раз. Таким образом, небольшие изменения pH представляют собой большие изменения концентрации ионов водорода. Чистая вода нейтральна. Он не является ни кислым, ни основным, и имеет рН 7,0. Все, что ниже 7,0 (от 0,0 до 6,9), является кислотным, а все, что выше 7,0 (от 7,1 до 14,0), является щелочным. Кровь в ваших венах слабощелочная (pH = 7,4). Среда в желудке очень кислая (pH = 1–2). Апельсиновый сок слабокислый (pH = примерно 3,5), тогда как пищевая сода имеет щелочную реакцию (pH = 9)..0).

    Рисунок \(\PageIndex{5}\): Шкала pH измеряет количество ионов водорода (H + ) в веществе. (кредит: модификация работы Эдварда Стивенса)

    Кислоты — это вещества, которые обеспечивают ионы водорода (H + ) и снижают pH, тогда как основания обеспечивают ионы гидроксида (OH ) и повышают pH. Чем сильнее кислота, тем легче она отдает H + . Например, соляная кислота и лимонный сок очень кислые и легко выделяют H 9019.7 + при добавлении в воду. И наоборот, основания — это те вещества, которые легко отдают ОН . Ионы OH объединяются с H + с образованием воды, которая повышает pH вещества. Гидроксид натрия и многие бытовые чистящие средства очень щелочные и быстро выделяют OH при попадании в воду, тем самым повышая pH.

    Большинство клеток в нашем организме функционируют в очень узком интервале шкалы рН, обычно в диапазоне от 7,2 до 7,6. Если pH тела выходит за пределы этого диапазона, дыхательная система работает со сбоями, как и другие органы тела. Клетки больше не функционируют должным образом, а белки разрушаются. Отклонение за пределы диапазона pH может вызвать кому или даже смерть.

    Так как же мы можем глотать или вдыхать кислотные или щелочные вещества и не умирать? Буферы — это ключ. Буферы легко поглощают излишки H + или OH , тщательно поддерживая pH тела в вышеупомянутом узком диапазоне. Углекислый газ является частью важной буферной системы в организме человека; он поддерживает pH в нужном диапазоне. Эта буферная система включает угольную кислоту (H 2 CO 3 ) и бикарбонат (HCO 3 – 9).0199 ) анион. Если в организм попадает слишком много H + , бикарбонат соединяется с H + , образуя угольную кислоту и ограничивая снижение pH. Аналогичным образом, если в систему ввести слишком много ОН , угольная кислота быстро диссоциирует на бикарбонат и ионы Н + . Ионы H + могут соединяться с ионами OH , ограничивая увеличение pH. Хотя угольная кислота является важным продуктом этой реакции, ее присутствие мимолетно, потому что угольная кислота высвобождается из организма в виде углекислого газа каждый раз, когда мы дышим. Без этой буферной системы рН в нашем организме будет слишком сильно колебаться, и мы не сможем выжить.

    Резюме

    Вода обладает многими свойствами, которые имеют решающее значение для поддержания жизни. Он полярен, что позволяет образовывать водородные связи, которые позволяют ионам и другим полярным молекулам растворяться в воде. Таким образом, вода является отличным растворителем. Водородные связи между молекулами воды придают воде способность удерживать тепло лучше, чем многие другие вещества. По мере повышения температуры водородные связи между водой постоянно разрываются и восстанавливаются, что позволяет общей температуре оставаться стабильной, хотя в систему добавляется повышенная энергия. Силы сцепления воды учитывают свойство поверхностного натяжения. Все эти уникальные свойства воды важны в химии живых организмов.

    рН раствора является мерой концентрации ионов водорода в растворе. Раствор с большим количеством ионов водорода является кислым и имеет низкое значение рН. Раствор с большим количеством гидроксид-ионов является основным и имеет высокое значение рН. Шкала рН колеблется от 0 до 14, при этом рН 7 является нейтральным. Буферы представляют собой растворы, которые смягчают изменения pH при добавлении в буферную систему кислоты или основания. Буферы важны в биологических системах из-за их способности поддерживать постоянный уровень рН.

    Footnotes

    1. 1 Humphrey, W., Dalke, A. and Schulten, K., «VMD—Visual Molecular Dynamics», J. Molec. Графика , 1996, вып. 14, стр. 33-38. http://www.ks.uiuc.edu/Research/vmd/

    Глоссарий

    кислота
    вещество, которое отдает ионы водорода и поэтому снижает рН
    адгезия
    притяжение между молекулами воды и молекулами другого вещества
    база
    вещество, которое поглощает ионы водорода и поэтому повышает рН
    буфер
    раствор, устойчивый к изменению pH за счет поглощения или выделения ионов водорода или гидроксида
    сцепление
    межмолекулярные силы между молекулами воды, вызванные полярной природой воды; создает поверхностное натяжение
    испарение
    выделение молекул воды из жидкой воды с образованием водяного пара
    гидрофильный
    описывает вещество, которое растворяется в воде; водолюбивый
    гидрофобный
    описывает вещество, которое не растворяется в воде; боящийся воды
    лакмусовая бумага
    фильтровальная бумага, обработанная натуральным водорастворимым красителем, поэтому ее можно использовать в качестве индикатора pH
    Шкала рН
    шкала от 0 до 14, которая измеряет приблизительную концентрацию ионов водорода в веществе
    растворитель
    вещество, способное растворять другое вещество
    поверхностное натяжение
    Сила сцепления на поверхности тела жидкости, препятствующая разделению молекул
    температура
    мера молекулярного движения

    Авторы и ссылки

    • Саманта Фаулер (Клейтонский государственный университет), Ребекка Руш (Общественный колледж Сэндхиллс), Джеймс Уайз (Хэмптонский университет).