Распределение воды. Секторальное распределение воды в организме человека

Грамотное распределение воды на участке. Распределение воды


распределение воды - это... Что такое распределение воды?

 распределение воды n

1) geol. Wasserverteilung

2) construct. Verteilung des Wassers

3) polygr. Wasserverreibung

Универсальный русско-немецкий словарь. Академик.ру. 2011.

  • распределение водоизмещения
  • распределение воды в сливочном масле

Смотреть что такое "распределение воды" в других словарях:

  • распределение воды (среди потребителей) — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN water allotment …   Справочник технического переводчика

  • ВОДЫ СТОЧНЫЕ — ВОДЫ СТОЧНЫЕ, или «сточная жидкость», в сан. технике обозначает удаляемую посредством сплавной канализации (см.) воду, загрязненную разного рода отбросами. В гидрологии термин «сточные воды» иногда применяется для… …   Большая медицинская энциклопедия

  • распределение газа, нефти и воды — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN gas water oil distributionoil and water …   Справочник технического переводчика

  • СССР. Внутренние воды —         Распределение воды рек, озёр, болот, водохранилищ, ледников, а также подземных вод по территории и особенности их режима определяются прежде всего климатическими факторами, балансом тепла и влаги. На территории СССР за год в среднем… …   Большая советская энциклопедия

  • СТОЧНЫЕ ВОДЫ — воды, использованные на бытовые или производств. нужды и получившие при этом дополнит. примеси (загрязнения), изменившие их первонач. хим. состав или физ. св ва; сточными наз. также воды, стекающие с территории насел. мест и пром. пр тий в… …   Большой энциклопедический политехнический словарь

  • АРТЕЗИАНСКИЕ ВОДЫ — АРТЕЗИАНСКИЕ ВОДЫ. А. в., в отличие от грунтовых, называются такие глубокие подземные воды, к рые, скопляясь между двумя водонепроницаемыми пластами, находятся под постоянным напором всей массы воды, наполняющей данный водный горизонт. При… …   Большая медицинская энциклопедия

  • Африка. Физико-географический очерк. Внутренние воды — Речной сток. Гидрографическая сеть Африки распределяется чрезвычайно неравномерно. Наиболее густая речная сеть свойственна областям постоянного избыточного увлажнения в западной и центральной частях приэкваториальной Африки, где располагается… …   Энциклопедический справочник «Африка»

  • Минеральные воды —         (a. mineral water; н. Mineralwasser; ф. eaux minerales; и. aguas minerales) подземные (реже поверхностные) воды, характеризующиеся повышенным содержанием биологически активных хим. и органич. компонентов и обладающие специфич. физ. хим.… …   Геологическая энциклопедия

  • гравитационное распределение нефти и воды — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN gravitational oil and water distribution …   Справочник технического переводчика

  • МЕТОДЫ СНИЖЕНИЯ СОПРОТИВЛЕНИЯ ВОДЫ — различные методы воздействия на процессы и структуру обтекания судна с целью уменьшения сопротивления воды движению судов. Подразделяются на методы снижения вязкостного сопротивления (трения и формы) и волнового. Известны следующие методы… …   Морской энциклопедический справочник

  • спектры яркости восходящего от воды излучения — 3.5 спектры яркости восходящего от воды излучения: (далее СВ) непрерывное распределение яркости восходящего от воды излучения по длине волны. Источник: РД 52.24.729 2010: Дистанционная спектрометрическая съемка водных объектов в видимом …   Словарь-справочник терминов нормативно-технической документации

universal_ru_de.academic.ru

Распределение воды на участке: несколько важных правил

Распределение воды на участке

Правильное распределение воды на участке

Распределение воды на участке является ключевым моментом в управлении ливневыми стоками. Влага, которая попадает непосредственно в трубы, переносит ил и его частицы в наши водоёмы. Как следствие, снижается качество воды.

Распространение влаги по поверхности земли, приводит к её контакту с почвой, камнями, растениями, а также с воздухом, естественно очищая его, когда он проникает в грунт. Кроме того, предотвращается эрозия и устраняются концентрированные потоки воды, которые ударяются о землю и разрушают почву.

Правильное распределение воды на участке: грамотный водоотвод

Грамотный водоотвод поможет создать настоящий природный парк

1. Первое правило – определите, как ливневая вода движется во дворе

Если вы часто наблюдаете за своим ландшафтом во время сильного ливня, вы обнаружите пятна, где вода обрушивается на землю. Вероятно, виновниками этому являются водосточные трубы и трубопроводы. Идея состоит в том, чтобы распределить воду из этих концентрированных источников стока, чтобы она могла легче впитаться в землю.

2. Прикройте места, где земля голая

Такие участки, особенно, если они были разрушены или уплотнены большим обилием влаги, могут стать со временем непроницаемыми для воды. Чтобы замедлить и распространить воду, предотвратив эрозию, закройте голый грунт древесной стружкой, камнями, мульчей грубого сорта или грунтовыми покрытиями, подходящими для вашего климата. Поместите камни или древесную грунтовую накладку на пятнах, где водосточная труба обрушивает воду с крыши.

Кроме того, позаботьтесь о том, чтобы установить бочонок для дождя, а потом вылить его в сад.

Правильное распределение воды на участке: лужайка из прикрытого участка

Прикрытые участки могут стать очаровательной лужайкой

3. Для воды можно создать своеобразное искусственное русло

По искусственному руслу вода будет двигаться, распространяя влагу вокруг. Преимуществами такого водоотвода является то что, что поток можно контролировать и направлять в удобное место. Кроме того, этот элемент дизайна очень интересно смотрится на участке.

Правильное распределение воды на участке: дорожка из камней

Для воды с камней выложена дорожка, которая отводит осадки со двора в сад

4. Выращивайте широколиственные деревья

Большие зелёные кроны поглощают влагу через листья, перехватывая дождевую воду, прежде чем она ударяется об асфальт.

Правильное распределение воды на участке: смоковница

Смоковница хоть и не большая, зато отлично справляется со своей задачей

5. Используйте инфильтрационные бассейны и траншеи

Такие зоны позволяют воде собираться и медленно просачиваться в землю.

Правильное распределение воды на участке: лужайка

Аккуратная лужайка помогает улучшить водоотвод

Используете ли вы какие-то из перечисленных способов для контроля распределения осадков?

designerdreamhomes.ru

Распределение - вода - Большая Энциклопедия Нефти и Газа, статья, страница 1

Распределение - вода

Cтраница 1

Распределение воды по высоте происходит в аванкамерах с распределительными лопатками. Рабочий поток движется в ярусе по сходящейся спирали и выходит в центральную часть. Осадок сползает в ярусе и через шламовыводящую щель попадает в коническую часть аппарата, откуда удаляется под действием гидростатического напора. Гидроциклон имеет устройство для удаления всплывающих примесей.  [2]

Распределение воды в объеме геля определено на основании данных по кинетике сушки пластин геля. Общая влага, входящая в состав адсорбционной оболочки, образует с ПАВ насыщенную структуру, соответствующую полной гидратации молекулы ПАВ в ассоциате. Нулевая скорость сушки достигается при образовании в адсорбционном слое структуры насыщенного кристаллогидрата.  [3]

Распределение воды между катионами и анионами в растворах СЧА носит существенно иной характер, чем в силикатах щелочных металлов. Энтальпия гидратации ионов четвертичного аммония заметно меньше, чем ионов щелочных металлов.  [4]

Распределение воды в радиальных отстойниках производится с помощью кольцевого водослива диаметром 2 5 - 3 м со сплошными или дырчатыми кольцевыми струенаправляющими стенками. Диаметр отверстий принимается с учетом характера взвешенных веществ, содержащихся в сточных водах; обычно он равен 50 - 100 мм. Число отверстий принимается с таким расчетом, чтобы скорость движения воды в них была 0 3 - 0 4 м / сек.  [5]

Распределение воды по площади камеры предусмотрено при помощи перфорированных труб1 с отверстиями, направленными горизонтально. В каждой камере размещают две - четыре перфорированные трубы на расстояниях не более 3 м; в данном примере приняты две трубы.  [6]

Распределение воды в отстойнике производится чаще всего при помощи цилиндрических водосливов со сплошными или дырчатыми кольцевыми струенаправ-ляющими стенками.  [7]

Распределение воды в организме неравномерно. Больше всего воды содержат биологические жидкости: моча, слюна, пот, желудочный сок; в них имеется до 95 - 99 % воды. Около 83 % воды находится в крови, около 80 - 83 % в почках, легких и соединительной ткани, 76 - 80 % в сердце, мышцах и других органах.  [8]

Распределение воды в осевшей цементной массе не везде одинаково. В нижней части сосуда, в который налит цементный раствор, количество воды в цементной массе будет меньше, чем в верхней части сосуда. Масса цементного раствора по высоте при этом неоднородна.  [9]

Распределение воды по нагнетательным скважинам осуществляется при помощи водораспределительных батарей, устанавливаемых на каждой кустовой станции. В батареях имеются диафраг-менные счетчики, которые производят замер и учет закачиваемой воды.  [11]

Распределение воды в гидросфере, ее состав, физические и химические свойства, скорость перемещения и водообмена между атмосферой, наземной и подземной гидросферой в значительной степени зависят от местоположения воды в той или иной оболочке Земли, строения и свойств включающих воду природных. Если для атмосферы и поверхностных вод время водообмена между ними может составлять от нескольких часов и суток, а водные массы в атмосфере и реках способны перемещаться на большие расстояния в короткие промежутки времени, то для глубоких водоносных горизонтов высокоминерализованных вод ( рассолов) скорости естественного движения подземных вод обычно характеризуются значениями сантиметров и метров в год, могут иметь разнонаправленный характер, неоднократно изменяющийся в течение геологических эпох. Водообмен подобных водоносных горизонтов с поверхностными или неглубокозалегающими подземными водами практически отсутствует.  [12]

Распределение воды в теле человека, как видно из табл. 26, весьма неравномерно.  [13]

Распределение воды в теле человека, как видно из табл. 28, весьма неравномерно.  [14]

Распределение воды в отстойнике производится чаще всего при помощи цилиндрических водосливов со сплошными - или дырчатыми кольцевыми струенаправ-ляющими стенками.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

распределение воды - это... Что такое распределение воды?

 распределение воды

distribuzione dell'acqua

Dictionnaire technique russo-italien. 2013.

  • распределение вероятностей
  • распределение воздуха

Смотреть что такое "распределение воды" в других словарях:

  • распределение воды (среди потребителей) — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN water allotment …   Справочник технического переводчика

  • ВОДЫ СТОЧНЫЕ — ВОДЫ СТОЧНЫЕ, или «сточная жидкость», в сан. технике обозначает удаляемую посредством сплавной канализации (см.) воду, загрязненную разного рода отбросами. В гидрологии термин «сточные воды» иногда применяется для… …   Большая медицинская энциклопедия

  • распределение газа, нефти и воды — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN gas water oil distributionoil and water …   Справочник технического переводчика

  • СССР. Внутренние воды —         Распределение воды рек, озёр, болот, водохранилищ, ледников, а также подземных вод по территории и особенности их режима определяются прежде всего климатическими факторами, балансом тепла и влаги. На территории СССР за год в среднем… …   Большая советская энциклопедия

  • СТОЧНЫЕ ВОДЫ — воды, использованные на бытовые или производств. нужды и получившие при этом дополнит. примеси (загрязнения), изменившие их первонач. хим. состав или физ. св ва; сточными наз. также воды, стекающие с территории насел. мест и пром. пр тий в… …   Большой энциклопедический политехнический словарь

  • АРТЕЗИАНСКИЕ ВОДЫ — АРТЕЗИАНСКИЕ ВОДЫ. А. в., в отличие от грунтовых, называются такие глубокие подземные воды, к рые, скопляясь между двумя водонепроницаемыми пластами, находятся под постоянным напором всей массы воды, наполняющей данный водный горизонт. При… …   Большая медицинская энциклопедия

  • Африка. Физико-географический очерк. Внутренние воды — Речной сток. Гидрографическая сеть Африки распределяется чрезвычайно неравномерно. Наиболее густая речная сеть свойственна областям постоянного избыточного увлажнения в западной и центральной частях приэкваториальной Африки, где располагается… …   Энциклопедический справочник «Африка»

  • Минеральные воды —         (a. mineral water; н. Mineralwasser; ф. eaux minerales; и. aguas minerales) подземные (реже поверхностные) воды, характеризующиеся повышенным содержанием биологически активных хим. и органич. компонентов и обладающие специфич. физ. хим.… …   Геологическая энциклопедия

  • гравитационное распределение нефти и воды — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN gravitational oil and water distribution …   Справочник технического переводчика

  • МЕТОДЫ СНИЖЕНИЯ СОПРОТИВЛЕНИЯ ВОДЫ — различные методы воздействия на процессы и структуру обтекания судна с целью уменьшения сопротивления воды движению судов. Подразделяются на методы снижения вязкостного сопротивления (трения и формы) и волнового. Известны следующие методы… …   Морской энциклопедический справочник

  • спектры яркости восходящего от воды излучения — 3.5 спектры яркости восходящего от воды излучения: (далее СВ) непрерывное распределение яркости восходящего от воды излучения по длине волны. Источник: РД 52.24.729 2010: Дистанционная спектрометрическая съемка водных объектов в видимом …   Словарь-справочник терминов нормативно-технической документации

polytechnic_ru_it.academic.ru

распределение воды - это... Что такое распределение воды?

 распределение воды

Ecology: water distribution

Универсальный русско-английский словарь. Академик.ру. 2011.

  • распределение водорода в жидких продуктах
  • распределение военных заказов по отраслям промышленности

Смотреть что такое "распределение воды" в других словарях:

  • распределение воды (среди потребителей) — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN water allotment …   Справочник технического переводчика

  • ВОДЫ СТОЧНЫЕ — ВОДЫ СТОЧНЫЕ, или «сточная жидкость», в сан. технике обозначает удаляемую посредством сплавной канализации (см.) воду, загрязненную разного рода отбросами. В гидрологии термин «сточные воды» иногда применяется для… …   Большая медицинская энциклопедия

  • распределение газа, нефти и воды — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN gas water oil distributionoil and water …   Справочник технического переводчика

  • СССР. Внутренние воды —         Распределение воды рек, озёр, болот, водохранилищ, ледников, а также подземных вод по территории и особенности их режима определяются прежде всего климатическими факторами, балансом тепла и влаги. На территории СССР за год в среднем… …   Большая советская энциклопедия

  • СТОЧНЫЕ ВОДЫ — воды, использованные на бытовые или производств. нужды и получившие при этом дополнит. примеси (загрязнения), изменившие их первонач. хим. состав или физ. св ва; сточными наз. также воды, стекающие с территории насел. мест и пром. пр тий в… …   Большой энциклопедический политехнический словарь

  • АРТЕЗИАНСКИЕ ВОДЫ — АРТЕЗИАНСКИЕ ВОДЫ. А. в., в отличие от грунтовых, называются такие глубокие подземные воды, к рые, скопляясь между двумя водонепроницаемыми пластами, находятся под постоянным напором всей массы воды, наполняющей данный водный горизонт. При… …   Большая медицинская энциклопедия

  • Африка. Физико-географический очерк. Внутренние воды — Речной сток. Гидрографическая сеть Африки распределяется чрезвычайно неравномерно. Наиболее густая речная сеть свойственна областям постоянного избыточного увлажнения в западной и центральной частях приэкваториальной Африки, где располагается… …   Энциклопедический справочник «Африка»

  • Минеральные воды —         (a. mineral water; н. Mineralwasser; ф. eaux minerales; и. aguas minerales) подземные (реже поверхностные) воды, характеризующиеся повышенным содержанием биологически активных хим. и органич. компонентов и обладающие специфич. физ. хим.… …   Геологическая энциклопедия

  • гравитационное распределение нефти и воды — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN gravitational oil and water distribution …   Справочник технического переводчика

  • МЕТОДЫ СНИЖЕНИЯ СОПРОТИВЛЕНИЯ ВОДЫ — различные методы воздействия на процессы и структуру обтекания судна с целью уменьшения сопротивления воды движению судов. Подразделяются на методы снижения вязкостного сопротивления (трения и формы) и волнового. Известны следующие методы… …   Морской энциклопедический справочник

  • спектры яркости восходящего от воды излучения — 3.5 спектры яркости восходящего от воды излучения: (далее СВ) непрерывное распределение яркости восходящего от воды излучения по длине волны. Источник: РД 52.24.729 2010: Дистанционная спектрометрическая съемка водных объектов в видимом …   Словарь-справочник терминов нормативно-технической документации

universal_ru_en.academic.ru

Распределение воды в организме

С. С. Михайлов

Спортивная

БИОХИМИЯ

!____________________________ Ju__________________ ^

УДК 577.1 ББК 28.072 М69

Рецензенты:

Розенгарт Е.В. — доктор биологических наук, профессор Санкт- Петербургской государственной академии физи­ческой культуры им. П. Ф. Лесгафта; Волков Н.И. — доктор биологических наук, профессор Российского государственного университета физической культу­ры, спорта и туризма

Михайлов С.С.

М69 Спортивная биохимия: Учебник для вузов и колледжей физичес­кой культуры. - 2-е изд., доп. - М.: Советский спорт, 2004. - 220 е.: ил.

ISBN 5-85009-876-3

Учебник написан в соответствии с Государственным образователь­ным стандартом по биохимии для вузов физической культуры. В первой части учебника описаны строение и свойства главных классов органичес­ких соединений организма, рассмотрены основные метаболические про­цессы, дана биохимическая характеристика крови и мочи. Во второй части учебника всесторонне освещены биохимические аспекты мышеч­ной деятельности, рассмотрены молекулярные основы двигательных ка­честв спортсмена, адаптации организма к физическим нагрузкам и за­тронута проблема питания спортсменов.

Предназначен для студентов дневной и заочной форм обучения высших и средних специальных учебных заведений физической куль­туры.

УДК 577.1 ББК 28.072

ISBN 5-85009-876-3 © Михайлов С.С., 2002

© Михайлов С.С., 2004 © Оформление. ФГУП «Издательство "Советский спорт"», 2004

ВВЕДЕНИЕ

Биохимия изучает в самом общем виде химическую сторону жизни.

Обычно выделяют три главные задачи, стоящие перед этой научной дисциплиной:

1. Изучение химического состава живого организма, строения и свойств молекул, из которых он состоит.

2. Изучение обмена веществ, т. е. химических превращений, кото­рым подвергаются входящие в организм молекулы (раздел биохимии, решающий эти задачи, называется «Общая биохимия»).

3. Изучение особенностей химического состава и обмена веществ отдельных представителей живого мира (например, у микробов, расте­ний, животных), изучение химического состава и обмена веществ при различных заболеваниях и при поступлении в организм экзогенных веществ (ядов, лекарственных средств). К этой задаче также относится изучение влияния на организм разнообразных физических нагрузок, в том числе применяемых в спорте.

В целом раздел биохимии, занимающийся решением третьей задачи, называется «Функциональная, или частная, биохимия».

Направлением функциональной биохимии, исследующим влияние физических упражнений на организм спортсмена, является «Спортив­ная биохимия».

Биохимия как учебная дисциплина играет важную роль в подготов­ке специалистов в области физической культуры. Это положение мож­но обосновать следующим:

• Специалист в области физической культуры обязан в полной ме­ре знать устройство объекта своей профессиональной деятельности, т. е. человека, должен иметь представление о химическом строении ор­ганизма и о химических процессах, лежащих в основе жизнедеятельно­сти.

• Тренер и преподаватель физического воспитания должны знать особенности обмена веществ во время физической работы и отдыха, использовать эти закономерности для рационального построения тре­нировочного процесса, для установления оптимальных сроков восста­новления.

• Используя простейшие биохимические исследования, тренер и преподаватель физвоспитания должны уметь оценить соответствие фи-

Часть 1

ОБЩАЯ БИОХИМИЯ[1]

ГЛАВА 1 ОБЩАЯ ХАРАКТЕРИСТИКА ХИМИЧЕСКОГО СОСТАВА ОРГАНИЗМА"

Организм человека имеет следующий химический состав: вода - 60-65%, органические соединения - 30-32%, минеральные вещест­ва - 4%.

Наибольшее значение для живых организмов имеют органические соединения. Важнейшими классами органических соединений, входя­щих в живые организмы, являются белки, нуклеиновые кислоты, уг­леводы и липиды.

БЕЛКИ

Белки выполняют в организме очень важные функции. К ним в пер­вую очередь следует отнести: структурную, каталитическую, сократи­тельную, транспортную, регуляторную, защитную, а также энергетиче­скую. На долю белков в среднем приходится 1/6 часть от массы тела человека.

По строению белки - это высокомолекулярные азотсодержащие со­единения, состоящие из аминокислот. В состав белковых молекул мо­гут входить десятки, сотни и тысячи остатков аминокислот. Однако все белки, независимо от происхождения, содержат лишь 20 видов амино­кислот Строение 20 разновидностей аминокислот, входящих во все бедаи, можно отразить следующей формулой:

r

........ i

H-C-nh3

У всех аминокислот можно выделить общую, одинаковую часть мо­лекулы, содержащую амино- и карбоксильную группы (выделена пунк­тирной рамкой). Другая же часть молекулы, обозначенная как радикал (R), у каждой из 20 аминокислот имеет специфическое строение, и аминокислоты отличаются друг от друга только радикалами. (Класси­фикация, формулы и некоторые свойства аминокислот приведены в приложении 1.)

Аминокислоты, соединяясь друг с другом пептидной связью, обра­зуют длинные неразветвленные цепи - полипептиды. Пептидная связь возникает при взаимодействии карбоксильной группы одной амино­кислоты и аминогруппы другой аминокислоты с выделением воды:

r1 r2 nh3-ch-cooh +nh3-ch-cooh __ _

-н2о

  ■о н :
nh3 -сн —;с —n —i
Пешидная связь

 

Пептидные связи обладают высокой прочностью, их образуют все аминокислоты.

В состав белковой молекулы входит один или несколько полипептидов.

Кроме пептидных, в белках обнаруживаются еще дисульфидные, водородные, ионные и другие связи.

Эти химические связи могут возникать между остатками аминокис­лот, которые входят в разные участки одного и того же полипептида или же находятся в разных полипептидах, но обязательно пространст­венно сближены. В первом случае благодаря таким связям полипеп­тидная цепь принимает определенную пространственную форму. Во втором случае с помощью непептидных связей полипептиды объеди­няются в белковую молекулу.

В итоге молекула белка является объемным, трехмерным образова­нием, имеющим определенную пространственную форму. Для удобства рассмотрения пространственного строения молекулы белка условно выделяют четыре уровня ее структурной организации.

Первый уровень пространственной организации белковой молекулы называется первичной структурой и представляет собой последова­тельность расположения аминокислот в полипептидных цепях. Фикси­руется эта структура прочными пептидными связями. Другими слова­ми, первичная структура характеризует химическое строение полипеп­тидов, образующих белковую молекулу. Каждый индивидуальный бе­лок имеет уникальную первичную структуру.

Второй уровень пространственной организации - вторичная структура - описывает пространственную форму полипептидных це­пей. Например, у многих белков полипептидные цепи имеют форму спирали. Фиксируется вторичная структура дисульфидными и различ­ными нековалентными связями.

Третий уровень пространственной организации - третичная струк­тура - отражает пространственную форму вторичной структуры. На­пример, вторичная структура в форме спирали, в свою очередь, может укладываться в пространстве в виде глобулы, т. е. имеет шаровидную или яйцевидную форму. Стабилизируется третичная структура слабы­ми нековалентными связами, а также дисульфидными связями и поэто­му является самой неустойчивой структурой.

Пространственная форма всей белковой молекулы получила назва­ние конформация. Поскольку в молекуле белка наряду с прочными ковалентными связями имеются еще менее прочные (нековалентные) связи, то его конформация характеризуется нестабильностью и может легко изменяться. Изменение пространственной формы белка влияет на его биологические функции. Конформация, находясь в которой бе­лок обладает биологической активностью, называется нативной. Лю­бые воздействия на белок, приводящие к нарушению этой конформа- ции, сопровождаются частичной или полной утратой белком его биоло­гических свойств. Изменение конформации в небольших пределах об­ратимо и является одним из механизмов регуляции биологических функций белков в организме.

Четвертичной структурой обладают только некоторые белки. Чет­вертичная структура - это сложное надмолекулярное образование, со­стоящее из нескольких белков, имеющих свою собственную первич­ную, вторичную и третичную структуры. Каждый белок, входящий в состав четвертичной структуры, называется субъединицей. Например, белок крови гемоглобин состоит из четырех субъединиц двух типов (а и Р) и имеет строение а2рг- Ассоциация субъединиц в четвертичную структуру приводит к возникновению нового биологического свойства, отсутствующего у свободных субъединиц. Например, формирование четвертичной структуры в ряде случаев сопровождается появлением каталитической активности, которой нет у отдельных субъединиц.

Объединяются субъединицы в четвертичную структуру за счет сла­бых нековалентных связей, и поэтому четверичная структура неустой­чива и легко диссоциирует на субъединицы. Образование и диссоциа­ция четвертичной структуры является еще одним механизмом регуля­ции биологических функций белков.

Из всех структур белка кодируется только первичная. За счет ин­формации, заключенной в молекуле ДНК, синтезируются полипептид­ные цепи (первичная структура). Высшие структуры (вторичная, тре­тичная, четвертичная) возникают самопроизвольно в соответствии со строением полипептидов.

Классификация белков

Белки делятся на простые (протеины) и сложные (протеиды). Простые белки состоят только из аминокислот. К простым белкам, имеющимся в организме человека, относятся альбумины, глобули­ны, гистоны, белки опорных тканей. В молекуле сложного белка, кроме аминокислот, еще имеется неаминокислотная часть, назы­ваемая простетической группой. В зависимости от строения про- стетической группы выделяют такие сложные белки, как фосфопро- теиды (содержат в качестве простетической группы фосфорную ки­слоту), нуклеопротеиды (содержат нуклеиновую кислоту), глико- протеиды (содержат углевод), липопротеиды (содержат липоид), хромопротеиды (содержат окрашенную простетическую группу) и др.

Возможна и другая классификация белков, вытекающая из их про­странственной формы. В этом случае белки разделяются на два боль­ших класса: глобулярные и фибриллярные.

Молекулы глобулярных белков имеют шарообразную или эллипсо­идную форму. Примером таких белков являются альбумины и глобу­лины плазмы крови.

Фибриллярные белки представляют собою вытянутые молекулы, у которых длина значительно превышает их диаметр. К таким бел­кам прежде всего необходимо отнести коллаген - самый распро­страненный белок у человека и высших животных, на долю которо­го приходится 25-30% от общего количества белков организма. Коллаген обладает высокой прочностью и эластичностью. Этот бе­лок широко распространен в организме, он входит в состав соедини­тельной ткани, и поэтому его можно обнаружить в коже, стенках со­судов, мышцах, сухожилиях, хрящах, костях, во внутренних орга­нах.

НУКЛЕИНОВЫЕ КИСЛОТЫ

По своему строению нуклеиновые кислоты являются полинуклео- тидами, состоящими из очень большого количества мононуклеотидов (нуклеотидов). Любой нуклеотид обязательно включает в себя азоти­стое основание (циклическое соединение, содержащее атомы азота и обладающее щелочными свойствами), углевод и фосфорную кислоту.

Азотистые основания бывают двух типов: пуриновые и пирими- диновые.

Н Н Аденин Гуанин
Пиримидиновыми основаниями являются урацил, тимин и цитозин:
Урацил Тимин Цитозин

К пуриновым основаниям относятся аденин и гуанин, имеющие следующее строение:

Углеводом, входящим в состав нуклеотидов, может быть рибоза или дезоксирибоза, находящиеся в циклической форме:

он/о. сн2он он/о. сн2он

он он н он

Рибоза Дезоксирибоза

Азотистые основания присоединяются к первому углеродному ато­му (С]) углевода. Азотистое основание, связанное с углеводом, называ­ется нуклеозидом.

Нуклеозиды, содержащие аденин и гуанин, называются соответст­венно аденозин и гуанозин, а нуклеозиды с пиримидиновыми основа­ниями получили названия: уридин, тимидин и цитидин.

Если в состав нуклеозида входит дезоксирибоза, то в название нук- леозида входит еще приставка «дезокси-». Например, нуклеозид, со­стоящий из аденина и рибозы, называется «аденозин», а нуклеозид, со­держащий аденин и дезоксирибозу, носит название «дезоксиаденозин», или в сокращенном виде «д-аденозин».

Фосфорная кислота присоединяется эфирной связью к пятому атому углерода рибозы или дезоксирибозы. Поэтому нуклеотиды можно рас­сматривать как нуклеозидфосфаты.

Нуклеотиды, входящие в состав нуклеиновых кислот, имеют один остаток фосфорной кислоты, а свободные нуклеотиды могут содержать от одного до трех фосфатных остатков.

Название нуклеотидов состоит из трех частей: название нуклеозида, входящего в данный нуклеотид; числительное, показывающее количе­ство остатков фосфорной кислоты, и слово «фосфат»:

аденозин - гуанозин ■ •уридин - тимидин - цитидин -
моно- ди - три -

 

Например, нуклеотид, состоящий из аденина, рибозы и фосфорной кислоты, называется аденозинмонофосфат, или сокращенно АМФ, и имеет следующее строение:

----- N ОН

СН20—Р=0

Аденин

\Н W он

он он

Рибоэа

Нуклеотиды, входящие в нуклеиновые кислоты, соединяются друг с другом в длинные полинуклеотидные цепи эфирными связями, идущими от углевода одного нуклеотида к фосфорной кислоте соседнего:

Аз. основание—углевод—фосфат Аз. основание —углевод —фосфат Аз. основание —углевод —фосфат Аз. основание —углевод —фосфат

В результате такого связывания образуется длинная цепь, состоящая из чередующихся остатков углевода и фосфорной кислоты. Азотистые основания непосредственно в эту цепь не входят; они как боковые ве­точки присоединяются к углеводам. Отличаются полинуклеотиды друг от друга длиной (т. е. количеством нуклеотидов) и последовательно­стью расположения азотистых оснований.

Особенности строении и свойства РНК н ДНК

Оказалось, что в одну молекулу нуклеиновых кислот может входить углевод только одного вида - рибоза или дезоксирибоза. На этом осно­вании все нуклеиновые кислоты делятся на два типа: рибонуклеино­вые - РНК (содержат рибозу) и дезоксирибонуклеиновые - ДНК (со­держат дезоксирибозу). Особенности строения и биологические функ­ции РЖ и ДНК отражены в табл. 1.

Таблица 1
№ п/п Особенности строении, свойства, биологнческаи роль РНК ДНК
1. Химический состав: а)углевод б) азотистые основания а) Рибоза б) Аденин, гуанин, урацил, цитозин (нет тимина) а) Дезоксирибоза б) Аденин, гуанин, тимин, цитозин (нет урацила)
2. Количество нуклеотидов Десятки, сотни и тысячи Десятки и сотни тысяч
3. Молекулярная масса От 25 тыс. Да до 1 млн Да Десятки млн Да
4. Количество полинуклео- тидных цепей в молекуле Одна Две
5. Пространственная конфигурация Спираль, конфигурация «клеверного листа», клу­бок Двойная спираль ли­нейной или кольчатой формы
6. Локализация в клетке Цитоплазма. Рибосомы. Ядро (мало) Ядро. Митохондрии (мало)
7. Биологическая роль Передача и реализация генетической информа­ции, участие в синтезе белков Хранение генетической информации
8. Главные представители Информационная РНК (иРНК), рибосомная РНК (рРНК), транспорт­ная РНК (тРНК) Хроматин (комплекс ДНК и белков, входя­щий в хромосомы)

 

*

1 Да (дальтон, атомная, или углеродная, единица) = 1,66-КГ24 г.

Как видно из таблицы, ДНК имеет более сложное строение. Состоит молекула ДНК из двух полинуклеотидных цепей, закрученных в спираль вокруг общей оси и образующих двойную спираль (рис. 1).

Один виток каждой спирали содержит 10 нуклеотидов, диаметр двойной спирали около 2 нм . Азотистые основания обеих цепей находятся внутри двойной спирали и соединены друг с другом водородными связями. Связывание (спаривание) азоти­стых оснований осуществляется строго определенным образом. Аденин всегда соединяется с тимином, а гуанин - с ци- тозином, причем все без исключения ос­нования одной цепи спарены с основа­ниями второй. Вследствие этого обе нук- леотидные цепи, образующие молекулу ДНК, имеют одинаковую длину и про­странственно соответствуют друг другу. Если в каком-то месте одной цепи нахо­дится аденин, то обязательно напротив него в другой цепи присутствует тимин, а напротив гуанина всегда располагается цитозин.

Рис. 1. Схема строения ДНК

Такое пространственное соответствие двух полинуклеотидных це­пей ДНК получило название комплементарность.

Принцип комплементарности лежит в основе таких важнейших про­цессов, как репликация (удвоение молекулы ДНК в процессе клеточно­го деления), транскрипция (передача генетической информации с моле­кулы ДНК информационной РНК в процессе синтеза белков) и трансля­ция (сборка из аминокислот белковой молекулы на рибосомах).

УГЛЕВОДЫ

Углеводы - это альдегидоспирты или кетоспирты и их производ­ные. В природе углеводы содержатся главным образом в растениях. В организме человека углеводов около 1%.

Основным природным углеводом является глюкоза, которая может находиться как в свободном виде (моносахарид), так и в составе олиго-сахаридов (сахароза, лактоза и др.) и полисахаридов (клетчатка, крах­мал, гликоген).

Эмпирическая формула глюкозы СбН1206. Однако, как известно, глюкоза может иметь различные пространственные формы (ацикличе­скую и циклические). В организме человека почти вся глюкоза (сво­бодная и входящая в олиго- и полисахариды) находится в циклической а-пиранозной форме:

 

Свободная глюкоза в организме человека в основном находится в крови, где ее содержание довольно постоянно и колеблется в узком диапазоне от 3,9 до 6,1 ммоль/л (70-110 мг%).

Другим углеводом, типичным для человека и высших животных, является гликоген. Состоит гликоген из сильно разветвленных моле­кул большого размера, содержащих десятки тысяч остатков глюкозы. Эмпирическая формула гликогена - (С6Н10О5)п (С6Н10О5 - остаток глю­козы).

Гликоген является запасной, резервной формой глюкозы. Основные запасы гликогена сосредоточены в печени (до 5-6% от массы печени) и в мышцах (до 2-3% от их массы).

Глюкоза и гликоген в организме выполняют энергетическую функцию, являясь главными источниками энергии для всех клеток организма.

ЛИПИДЫ

Молекула жира состоит из остатка спирта - глицерина и трех ос­татков жирных кислот, соединенных сложноэфирной связью

О

II

сн2 — о — с — r,

I О

1 II

сн — о — с — r2

I О

1 II

СН2 —о — С —R3

Жирные кислоты, входящие в состав жиров, делятся на предельные, или насыщенные, (не имеют двойных связей) и непредельные, или не­насыщенные, (содержат одну или несколько двойных связей). Наибо­лее часто в состав природных жиров входят жирные кислоты, содер­жащие 16 или 18 атомов углерода (насыщенные: пальмитиновая, стеа­риновая; ненасыщенные: олеиновая, линолевая).

Отличаются друг от друга жиры разного происхождения набором жирных кислот.

Подобно углеводам жиры также являются важными источниками энергии для организма. 1 г жира при полном окислении дает около 9 ккал энергии, в то время как при полном окислении 1 г углеводов или белков выделяется только около 4 ккал. Однако жиры по сравнению с углеводами труднее окисляются и поэтому используются организмом для получения энергии во вторую очередь.

Липоиды являются обязательными компонентами всех биологиче­ских мембран. В организме человека имеются три класса липоидов: фосфолипиды, гликолипиды и стероиды.

ГЛАВА 2 ОБЩАЯ ХАРАКТЕРИСТИКА ОБМЕНА ВЕЩЕСТВ

Обязательным условием жизни является обмен веществ между жи­вым организмом и окружающей средой. Из внешней среды в организм поступают источники энергии, строительный материал для различных синтезов, витамины, минеральные вещества, вода и кислород. Из орга­низма вовне удаляются конечные продукты химических процессов, протекающих в организме: углекислый газ, вода и аммиак (в форме мо­чевины).

Обменные процессы, протекающие в организме, можно условно разделить на два этапа: пищеварение и метаболизм.

В процессе пищеварения пищевые вещества, как правило, высо­комолекулярные и для организма чужеродные, под действием пище­варительных ферментов расщепляются и превращаются в конечном счете в простые соединения - универсальные для всех живых орга­низмов. Так, например, любые пищевые белки распадаются на амино­кислоты 20 видов, точно такие же, как и аминокислоты самого орга­низма. Из углеводов пищи образуется универсальный моносахарид - глюкоза. Поэтому конечные продукты пищеварения могут вводиться во внутреннюю среду организма и использоваться клетками для раз­нообразных целей.

Метаболизм - это совокупность химических реакций, протекаю­щих во внутренней среде организма, т. е. в его клетках. В настоящее время известны десятки тысяч химических реакций, составляющих ме­таболизм.

В свою очередь, метаболизм делится на катаболизм и анаболизм.

Под катаболизмом понимаются химические реакции, за счет кото­рых крупные молекулы подвергаются расщеплению и превращаются в молекулы меньшего размера. Конечными продуктами катаболизма яв­ляются такие простейшие вещества, как С02, Н20 и Nh4.

Для катаболизма характерны следующие закономерности:

• В процессе катаболизма преобладают реакции окисления.

• Катаболизм протекает с потреблением кислорода.

• В процессе катаболизма освобождается энергия, примерно поло­вина которой аккумулируется в форме химической энергии аденозин- трифосфата (АТФ). Другая часть энергии выделяется в виде тепла.

Анаболизм включает разнообразные реакции синтеза.

Анаболизм характеризуется следующими особенностями:

• Для анаболизма типичны реакции восстановления.

• В процессе анаболизма происходит потребление водорода. Обычно используются атомы водорода, отщепляемые от глюкозы и пе­реносимые коферментом НАДФ (в форме НАДФН2) (см. главу 5 «Об­мен углеводов»).

• Анаболизм протекает с потреблением энергии, источником ко­торой является АТФ.

ОСНОВНОЕ НАЗНАЧЕНИЕ МЕТАБОЛИЗМА

• В случае преобладания анаболизма над катаболизмом происхо­дит накопление химических веществ в организме, в первую очередь белков. Накопление белков в организме - обязательное условие его роста и развития.

• Обеспечение энергией (в форме молекул АТФ) всех потребно­стей организма.

СТРОЕНИЕ И БИОЛОГИЧЕСКАЯ РОЛЬ АТФ___________________________

Аденозинтрифосфат (АТФ) является нуклеотидом. В состав моле­кулы АТФ входят азотистое основание - аденин, углевод - рибоза и три остатка фосфорной кислоты (аденин, связанный с рибозой, назы­вается аденозином).

Особенностью молекулы АТФ является то, что второй и третий ос­татки фосфорной кислоты присоединяются связью, богатой энергией. Такая связь называется высокоэнергетической, или макроэргичес- кой, и обозначается знаком Соединения, имеющие макроэргические связи, обозначаются термином «макроэрги».

Структурная формула АТФ имеет следующий вид:

NH,

 

ОН ОН

Рибоза

В упрощенном виде строение АТФ можно отразить схемой: Аденин — рибоза.— Ф.К. ~ Ф.К. ~ Ф.К.

Y

аденозин

При использовании АТФ в качестве источника энергии обычно происходит отщепление путем гидролиза последнего остатка фосфор­ной кислоты:

АТФ + Н20 -> АДФ + Н3Р04 + Q (энергия)

В физиологических условиях, т. е. при тех условиях, которые име­ются в живой клетке (температура, рН, осмотическое давление, кон­центрация реагирующих веществ и пр.), расщепление моля АТФ (506 г) сопровождается выделением 12 ккал, или 50 кДж* энергии.

Главными потребителями энергии АТФ в организме являются:

• реакции синтеза;

• мышечная деятельность;

• транспорт молекул и ионов через мембраны (например., всасыва­ние веществ из кишечника, образование мочи в почках, формирование и передача нервного импульса и др.).

Таким образом, биологическая роль АТФ заключается в том, что это вещество является универсальным аккумулятором энергии, своего рода энергетической «валютой» клетки.

Основным поставщиком АТФ является тканевое дыхание - завер­шающий этап катаболизма, протекающий в митохондриях всех клеток, кроме красных клеток крови (эритроцитов).

Полезная информация

В сутки взрослый человек, не выполняющий физической работы, вды­хает и выдыхает 8-10 м3 воздуха, из которого в легких извлекается и ис­пользуется организмом в обмене веществ 400-500 л кислорода.

В этих же условиях в сутки в процессе обмена веществ образуется и выделяется из организма 350-450 л углекислого газа.

Выполнение физических нагрузок приводит к значительному увеличе­нию потребления кислорода и выделению углекислого газа.

ГЛАВА 3 ФЕРМЕНТАТИВНЫЙ КАТАЛИЗ

Ферменты, или энзимы, - это особые белки, выполняющие роль катализаторов химических реакций. Практически все химические реак­ции в организме протекают с огромными скоростями благодаря уча­стию ферментов.

СТРОЕНИЕ ФЕРМЕНТОВ____________________________________________

Участок молекулы фермента, на котором происходит катализ, полу­чил название «активный центр». Если фермент по строению является Простым белком, то его активный центр формируется только остатками

1 ккал = 4,18 кДж.

аминокислот, которые обычно находятся в разных участках одной и той же полипептидной цепи или же в разных полипептидах, но про­странственно сближены. Другими словами активный центр образуется на уровне третичной структуры белка-фермента. У ферментов - слож­ных белков в состав активного центра часто входит их простетическая группа.

Образование активного центра из функциональных групп, довольно далеко отстоящих друг от друга в полипептидных цепях, но совмещен­ных пространственно в активном центре (т. е. на уровне третичной структуры белка), позволяет ферменту за счет конформационных изме­нений обеспечивать необходимое соответствие между активным цен­тром и молекулами реагирующих веществ (их обычно называют суб­стратами). Благодаря изменению конформации фермента происходит как бы «приспособление», «подгонка» активного центра к структуре молекул, превращение которых ускоряется данным ферментом.

Изменение конформации молекулы фермента является также одним из механизмов регуляции скорости ферментативных реакций (см. ни­же).

В активном центре обычно выделяют два участка - адсорбционный и каталитический.

Адсорбционный участок (центр связывания) по своему строению соответствует структуре реагирующих соединений, и поэтому к нему легко присоединяются молекулы субстрата.

Каталитический участок активного центра непосредственно осуще­ствляет ферментативную реакцию.

Большинство ферментов содержат в своей молекуле только один активный центр. У некоторых ферментов может иметься несколько ак­тивных центров.

МЕХАНИЗМ ДЕЙСТВИЯ ФЕРМЕНТОВ

В любом катализе, осуществляемом ферментами, можно обнару­жить три обязательные стадии.

На первой стадии молекулы реагирующих веществ (субстрата) при­соединяются к адсорбционному участку активного центра фермента за счет слабых связей. Образуется фермент-субстратный комплекс, кото­рый может легко распадаться снова на фермент и субстрат, т. е. первая стадия ферментативного катализа полностью обратима. На этой стадии с помощью активного центра возникает благоприятная ориентация реа­гирующих молекул, что способствует их дальнейшему взаимодейст­вию.

На второй стадии с участием каталитического участка активного центра и молекул субстрата происходят различные реакции, характери­зующиеся низкой величиной энергии активации и поэтому протекаю­щие с большой скоростью. В результате этих реакций в конечном счете образуется либо продукт реакции, либо почти готовый продукт.

На третьей стадии происходит отделение продукта реакции от ак­тивного центра с образованием свободного фермента, способного при­соединять к себе новые молекулы субстрата. Если на второй стадии был получен почти готовый продукт, то он предварительно превраща­ется в продукт, который затем отделяется от фермента.

Схематично стадии ферментативного катализа можно представить следующим образом:

I стадия 11 стаДия

1 .------------ а----

Е + S ES ^ГГ ES' Е + Р

Фермент Субстрат Фермент- Химически Продукт

субстратный преобразованный комплекс фермент-субстратный

комплекс (S' - продукт или почти готовый продукт)

В клетках ферменты, катализирующие многостадийные химические процессы, часто объединяются в комплексы, называемые мультифер- ментными системами. Эти комплексы структурно связаны с органои­дами клеток или же встроены в биомембраны. Объединение отдельных ферментов в единый комплекс позволяет одновременно ускорять все последовательные стадии превращения какого-либо субстрата.

В некоторых случаях в катализе наряду с белком-ферментом еще участвует низкомолекулярное (небелковое) соединение, называемое коферментом. Большинство коферментов в своем составе содержат витамины. Строение и механизм действия коферментов будут рас­смотрены при описании химических реакций, в которых они принима­ют участие.

СПЕЦИФИЧНОСТЬ ФЕРМЕНТОВ

Различают два вида специфичности ферментов: специфичность дей­ствия и субстратную специфичность.

Специфичность действия - это способность фермента катализиро­вать только строго определенный тип химической реакции. Если суб­страт может вступать в разные реакции, то для каждой реакции нужен свой фермент. Например, широко распространенный в клетках глюко-зо-6-фосфат (производное глюкозы) подвергается различным превра-

щениям:

Глюкоза + фосфорная кислота

Гпюкозо-6-фосфат-------- Гпюкозо-1 -фосфат

Фруктозо-6-фосфат

Отщепление от этого субстрата фосфорной кислоты происходит под действием фермента фосфатазы. При этом фосфатаза катализирует только реакцию отщепления фосфорной кислоты, никакие другие пре­вращения глюкозо-6-фосфата этот фермент не ускоряет. Другое воз­можное превращение глюкозо-6-фосфата осуществляется с участием фермента мутазы. В этом случае глюкозо-6-фосфат переходит в глю- козо-1-фосфат. Еще один фермент - изомераза - вызывает превраще­ние глюкозо-6-фосфата во фруктозо-6-фосфат.

Таким образом, каждый фермент катализирует только одну из всех возможных реакций, в которые может вступать субстрат. Специфич­ность действия определяется в основном особенностями строения ката­литического участка активного центра фермента.

Субстратная специфичность - способность фермента действовать только на определенные субстраты.

Различают две разновидности субстратной специфичности: абсо­лютную и относительную.

Фермент, обладающий абсолютной субстратной специфичностью, катализирует превращения только одного субстрата. На другие вещест­ва, даже очень близкие по строению к этому субстрату, фермент не действует. Примером фермента с абсолютной субстратной специфич­ностью является аргиназа - фермент, отщепляющий от аминокислоты аргинина мочевину. Аргинин - единственный субстрат аргиназы.

Относительная (групповая) субстратная специфичность - это спо­собность фермента катализировать превращения нескольких похожих по строению веществ. Обычно эти вещества обладают одним и тем же типом химической связи и одинаковой структурой одной из химиче­ских группировок, соединенных этой связью. Например, фермент пеп­син расщепляет пептидные связи в белках любого строения.

Субстратная специфичность обусловлена главным образом структу­рой адсорбционного участка активного центра фермента.

ИЗОФЕРМЕНТЫ

Изоферменты (изоэнзимы) - различные молекулярные формы фермента, катализирующие одну и ту же химическую реакцию. Обыч­но между изоферментами одного и того же фермента имеются различия в первичной структуре, т. е. у изофермеитов может быть различный на­бор и последовательность аминокислот в полипептидной цепи. Но эти различия, как правило, не затрагивают структуру каталитического уча­стка активного центра, и поэтому изоферменты одного и того же фер­мента ускоряют одну и ту же химическую реакцию. Различия в амино­кислотном составе молекул изофермеитов вне каталитического участка приводят к изменениям их физико-химических свойств и субстратной специфичности.

КИНЕТИКА ФЕРМЕНТАТИВНОГО КАТАЛИЗА

Скорость ферментативных реакций существенно зависит от многих факторов. К ним относятся концентрации участников ферментативного катализа (фермента и субстрата) и условия среды, в которой протекает ферментативная реакция (температура, рН, присутствие ингибиторов и активаторов).

Зависимость скорости ферментативной реакции от концентрации фермента

Для большинства ферментов зависимость скорости реакции от кон­центрации фермента (при постоянной концентрации субстрата) носит прямолинейный характер (рис. 2).

Рис. 2. Зависимость скорости ферментативной реакции от концентрации фермента

 

Такой характер зависимости скорости от концентрации фермента объясняется тем, что концентрация любого фермента на несколько по­рядков ниже концентрации субстрата. Поэтому практически при любом Увеличении количества фермента субстрата всегда будет достаточно Для взаимодействия с ферментом.

Зависимость скорости ферментативной реакции от концентрации субстрата

Пропорциональная зависимость скорости реакции от концентрации субстрата наблюдается лишь при его низких концентрациях, затем по­степенно прирост скорости реакции начинает отставать от роста кон­центрации субстрата, и в конце концов увеличение концентрации суб­страта перестает вызывать возрастание скорости реакции. Скорость ферментативных реакций при высоких концентрациях субстрата при­ближается к определенному пределу, который называется максималь­ной скоростью - Vmax (рис. 3).

Рис. 3. Зависимость скорости ферментативной реакции от концентрации субстрата

 

stydopedia.ru

Секторальное распределение воды в организме человека

Процент от массы тела

Водные секторы

Сокращение

у мужчин

у женщин

Общая жидкость тела

ОбщЖ

60

54

Внутриклеточная жидкость

ВнуКЖ

40

36

Внеклеточная жидкость

ВнеКЖ

20

18

Интерстициальная жидкость

ИнЖ

15

14

Плазматическая жидкость

ПЖ

4-5

3,5-4

Объем циркулирующей крови

ОЦК

7

6,5

Примечание. ВнуКЖ = ОбщЖ - ВнеКЖ; ИнЖ = ВнеКЖ - ПЖ.

Внеклеточное водное пространство. Внеклеточное пространство — это жидкость, окружающая клетки, объем и состав кото­рой поддерживается с помощью регулирующих механизмов. Основным ка­тионом внеклеточной жидкости является натрий, основным анионом — хлор. Натрию и хлору принадлежит главная роль в поддержании осмоти­ческого давления и объема жидкости этого пространства. Через внеклеточ­ное пространство обеспечивается транспорт кислорода, питательных ве­ществ и ионов к клеткам и доставка шлаков к органам выделения. Внекле­точная среда негомогенна (кровеносные и лимфатические сосуды, межтка­невая жидкость, жидкость в плотных соединительных тканях) и имеет зоны разной интенсивности обмена. В связи с этим определение внекле­точного объема в известной степени условно, хотя и имеет большое прак­тическое значение. Принято считать, что внеклеточная жидкость составля­ет примерно 20—22 % массы тела. На самом же деле общий объем внекле­точной жидкости превышает эту величину.

Внеклеточное пространство включает в себя следующие водные секторы.

Внутрисосудистый водный сектор — плазма, имеющая постоянный катионно-анионный состав и содержащая белки, удерживаю­щие жидкость в сосудистом русле. Объем плазмы у взрослого человека со­ставляет 4—5 % массы тела.

Интерстициальный сектор (межтканевая жидкость) — это среда, в которой расположены и активно функционируют клетки и кото­рая является своего рода буфером между внутрисосудистым и клеточным секторами.

Интерстициальная жидкость отличается от плазмы значительно меньшим содержанием белка. Мембраны сосудов легко проницаемы для электролитов и менее проницаемы для белков плазмы (эффект Доннана). Тем не менее между белками плазмы и межтканевой жидкостью происхо­дит постоянный обмен. В двух секторах — внутрисосудистом и интерстициальном — создается изотоничность жидкости, то же наблюдается и в клеточном секторе. Через интерстициальный сектор осуществляется транзит ионов, кислорода, питательных веществ в клетку и обратное движение шлаков в сосуды, по которым они доставляются к органам выделения.

Интерстициальный сектор является значительной «емкостью», содержащей 1/4 всей жидкости организма (15 % от массы тела). Эта «емкость» как вместилище воды может значительно увеличиваться (при гипергидратации) или уменьшаться (при дегидратации). За счет жидкости интерстициального сектора происходит компенсация объема плазмы при острой крово- и плазмопотере. Переливание значительного количества кристаллоидных раство­ров не сопровождается значительным увеличением ОЦК вследствие их про­никновения через сосудистые мембраны в межтканевую жидкость.

Трансцеллюлярный сектор (межклеточная жидкость) представляет собой жидкость, которая располагается в полостях организ­ма, в том числе в пищеварительном тракте. Общее количество трансцеллюлярной жидкости, по данным разных авторов, составляет 1—2,3 % от массы тела, хотя интенсивность выделения и реабсорбции жидкости из желудочно-кишечного тракта очень велика — 8—10 л/сут. Значительное уве­личение трансцеллюлярного сектора происходит при нарушениях реаб­сорбции и депонировании жидкости в желудочно-кишечном тракте (пери­тонит, кишечная непроходимость).

Внутриклеточное водное пространство. Вода в клетках окружает внутриклеточные структуры (ядро и органеллы), обеспе­чивает их жизнедеятельность и фактически является составной частью протоплазмы клеток. В отличие от внеклеточной жидкости во внутрикле­точной более высокий уровень белка и калия и небольшое количество на­трия. Основным клеточным катионом является калий, основными аниона­ми — фосфат и белки. Калий составляет примерно 2/3 активных клеточных катионов, около 1/3 приходится на долю магния. Концентрация калия в мышечных клетках равна 160 ммоль/л, в эритроцитах — 87 ммоль/л, в плазме только 4,5 ммоль/л. Калий в клетках или находится в свободном состоянии, или связан с ионом хлора или двумя фосфатными буферными ионами (КзНРO4 и КНзРO4). Ион хлора в здоровых клетках отсутствует либо содержится в очень небольшом количестве. Содержание хлора в клет­ках увеличивается только при патологических состояниях. Концентрация калия в эритроцитах не полностью отражает его баланс в клеточном пространстве, так как изменения в содержании калия в эритроцитах происхо­дят медленнее, чем в других клетках.

Таким образом, концентрация калия и натрия в клеточной жидкости значительно отличается от концентрации этих ионов во внеклеточном водном пространстве. Это различие обусловлено функционированием натриево-калиевого насоса, локализующегося в клеточной мембране. В связи с разностью концентраций образуется биоэлектрический потенци­ал, необходимый для возбудимости нервно-мышечных структур. Вслед­ствие реполяризации клеточной мембраны ионы К+ и Na+ свободно про­никают в клетку, однако Na+ сразу же изгоняется из клетки. Натриево-калиевый насос как бы постоянно перекачивает натрий из клеток в интерстиций, а калий, наоборот, — в клетки. Для осуществления этого процесса необходима энергия, которая образуется путем гидролиза аденозинтрифосфата (АТФ) при усвоении жиров, углеводов и витаминов, при отсутствии же энергетического материала расходуются тканевые белки.

Изменения концентрации калия и магния в сыворотке крови не полностью соответствуют изменениям концентрации этих ионов в клеточной жид­кости. Снижение концентрации калия в плазме при ацидемии означает дефи­цит калия не только в плазме, но и в клетках. Нормальный уровень калия в плазме не всегда соответствует его нормальному содержанию в клетках.

studfiles.net


Смотрите также