Большая Энциклопедия Нефти и Газа. Деаэрированная вода


Деаэрированная вода - Большая Энциклопедия Нефти и Газа, статья, страница 3

Деаэрированная вода

Cтраница 3

Для получения деаэрированной воды с температурой в пределах 75 - 95 С наряду с вакуумными деаэраторами, работающими в режиме малого вакуума - 15 - 60 кн / м2 ( 112 - 450 мм рт - ст.), применимы и атмосферные деаэраторы с последующим охлаждением деаэрированной воды.  [31]

Величина охлаждения деаэрированной воды в установке в основном зависит от количества и температуры воды, поступающей на охладитель выпара.  [32]

Требуемое качество деаэрированной воды поддерживается системой автоматического регулирования работы деаэраторной установки, которая обеспечивает: подачу в деаэратор необходимого количества пара для подогрева воды до температуры насыщения при рабочем давлении в деаэраторе, поддержание постоянного давления, требуемого расхода выпара, равенства весовых расходов подводимых и отводимых потоков.  [33]

При использовании деаэрированной воды в горизонтальной однотрубной системе возможно применение схемы движения воды в приборах сверху-вниз и обвязки приборов с замыкающим участком постоянной длины, включающим диафрагму ( рис. 5.10 5) - так называемой редуцирующей вставкой.  [34]

При использовании деаэрированной воды в горизонтальной однотрубной системе возможно применение схемы движения воды в приборах сверху-вниз и обвязки приборов с замыкающим участком постоянной длины, включающим диафрагму ( рис. IV.21 3), так называемой редуцирующей вставкой.  [36]

При хранении деаэрированной воды в открытых баках она довольно быстро насыщается кислородом и становится непригодной для использования в качестве питательной. Подобную воду, прежде чем подавать в котлы, необходимо вновь подвергать деаэрации. Во избежание этого деаэрированную воду защищают от проникновения в нее газов применением специальных защитных устройств. Баки делают закрытыми и снабжают их паровыми подушками. Для этого в закрытый бак подают пар с избыточным давлением около 0 05 ат, который заполняет свободное от воды пространство бака и в небольшом количестве выходит наружу через открытые воздушники. Ввиду того что внутри бака поддерживается хотя и незначительное, но все же избыточное давление, наружный воздух не может попасть в бак. Воздух, попавший в бак с питательной водой и выделяющийся из нее, так как вода имеет температуру 100 С, выходит через воздушники вместе с паром.  [37]

Колонну орошают деаэрированной водой при 3 - 7 С. Для регенерации еиликагеля используют отбросную фракцию, выводимую из блока разделения ( Р 0 05 МПа, / 5 С) и подогреваемую в паровом подогревателе 3 до 170 С.  [38]

Парогенератор заполняют деаэрированной водой. Для этого проводят предпусковую деаэрацию питательной воды, осуществляя циркуляцию ее по контуру: деаэратор - бустерный насос - линия рециркуляции - деаэратор.  [40]

Паропреобразователи питаются химически очищенной и деаэрированной водой. Деаэрация питательной воды паропреобразователей для упрощения на чертеже не показана.  [41]

Внутри змеевика проходит деаэрированная вода, количество которой регулируется автоматически и таким образом, чтобы температура воды на выходе из змеевика при всех режимах работы котлоагрегата была постоянной. С такими опытными змеевиками были проведены исследования коррозии при сжигании мазута как с нормативными, так и с малыми избытками воздуха, с вводом и без ввода присадок к мазуту. При продольном обтекании газами опытные образцы ввариваются, как правило, в трубы воздухоподогревателей. Для измерения температуры образцов в каждом из них зачеканивается термопара.  [43]

Для предотвращения заражения деаэрированной воды кислородом над уровнем воды в баке-аккумуляторе поддерживается паровая подушка за счет подачи определенного количества пара.  [44]

Контроль за качеством деаэрированной воды должен осуществляться при помощи непрерывно действующего кислородомера, показания которого должны периодически проверяться химическими анализами.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru

Деаэрируемая вода - Большая Энциклопедия Нефти и Газа, статья, страница 4

Деаэрируемая вода

Cтраница 4

В целях улучшения условий выделения газов из воды необходимо максимально приблизить все частицы потока деаэрируемой воды к поверхности раздела фаз, с тем чтобы растворенные газы могли быстро переходить из воды в паровую фазу. Это достигается усилением турбулентности потока воды путам ее распыливания, разбрызгивания или сливания через мелкие отверстия и перегородки для разделения ее на мелкие капли, тонкие струйки или пленки, что значительно увеличивает поверхность воды и облегчает удаление из нее газов. Увеличение поверхности соприкосновения воды с паром может быть достигнуто также путем барботирования через воду греющего пара, подаваемого под давлением через сопло или другие устройства. С ростом скорости греющего пара увеличивается динамическое воздействие парового потока на деаэрируемую воду, что способствует повышению эффективности термической деаэрации. С увеличением средней температуры деаэрируемой воды или температуры исходной воды снижаются вязкость и поверхностное натяжение воды и увеличивается коэффициент диффузии кислорода в ней, вследствие чего повышается значение коэффициента десорбции ( массопередачи) и в конечном итоге уменьшается остаточное содержание кислорода в деаэрированной воде.  [46]

Первый из них относится к удельному выпару меньше 1 5 кг на 1 т деаэрируемой воды. На этом участке кривая протекает довольно круто, вследствие чего с уменьшением выпара ниже 1 5 кг / т концентрация кислорода в деаэрированной воде резко повышается. Оптимальный размер выпара целесообразно устанавливать для каждого деаэратора опытным путем.  [48]

При этом ра и Рб - соответственно начальное и конечное парциальное давление газа в деаэрируемой воде при входе в деаэратор и выходе из него, ат, р и р - соответственно начальное парциальное давление газа в паре, входящем в деаэратор, и конечное в газопаровой смеси при выходе из деаэратора, ат.  [49]

Для ускорения этого процесса, называемого десорбцией, необходимо по возможности иметь наибольшую свободную поверхность деаэрируемой воды. Поэтому в деаэраторах производится разбрызгивание и распыление воды на тончайшие пленки. Несмотря на это, некоторая часть молекул растворенных в воде газов не успевает десорбироваться и попадает в сборный бак деаэратора.  [51]

Когда воронка-противень установлена непосредственно под деаэрационной головкой, практически исключается возможность выпадения в баке-аккумуляторе из деаэрируемой воды окалины и других твердых примесей. Для осаждения последних рекомендуется ставить перед питательным насосом специальный отстойник. Недостатком воронки-противня является и то, что в процессе деаэрации воды не участвует бак-аккумулятор. Это может повлечь за собой при ужесточенных режимах эксплуатации колонки, например при большом начальном содержании кислорода в исходной воде, увеличение содержания его в деаэрированной воде.  [52]

Когда воронка-лрютивень установлена непосредственно под деаэрационной головкой, практически исключается возможность выпадения в баке-аккумуляторе из деаэрируемой воды окалины и других твердых примесей.  [53]

Расчет числа отсеков обычно ведется методом последовательного приближения до достижения требуемого остаточного содержания кислорода в деаэрируемой воде. При расчете струйно-барботажных колонок необходимо иметь в виду, что увеличение недогрева в струйных отсеках ведет к повышению расхода пара, поступающего на барботажное устройство. Обычно недогрев воды до температуры насыщения в струйных отсеках принимается в пределах 5 - 10 С. Тепловой расчет струйных отсеков ведется последовательно для каждого, начиная с верхнего. Из теплового и материального балансов деаэратора известны расход воды, суммарный расход пара, количество сконденсированного в деаэраторе пара и количество теплоты, отводимой с выпаром и деаэрированной водой. Расчет подогрева в отсеках проводится при условии поперечного обтекания струй паром.  [54]

При высокой концентрации кислорода скорость фильтрации составляет 20 - 30 м / ч, продолжительность контакта деаэрируемой воды со стружкой не менее 5 мин.  [56]

Таким образом, дополнительным условием, способствующим полному выделению кислорода из воды, является обеспечение движения деаэрируемой воды и возможно большее увеличение ее поверхности.  [58]

Деаэраторы смешивающего типа снабжаются большей частью охладителями паровоздушной смеси ( выпара), включенными на подводе деаэрируемой воды. В охладителе выпара пар конденсируется и конденсат его возвращается в деаэратор; воздух удаляется в атмосферу непосредственно, если в деаэраторе поддерживается избыточное давление, или через паровоздушный эжектор, если деаэратор вакуумный.  [60]

Страницы:      1    2    3    4    5

www.ngpedia.ru

Термическая деаэрация воды - Журнал АКВА-ТЕРМ

М. Иванов, к. х. н.

В любой жидкости, находящейся в открытом резервуаре, растворено определенное количество газов. Не является исключением и вода. Состав растворенных в ней газов может быть разным, но в основном это азот, кислород и углекислый газ. В наибольшем количестве – от 15 до 40 мг/л – в воде содержится азот. Однако этот газ инертный, и его присутствие особого вреда не приносит, чего нельзя сказать о кислороде и углекислом газе, которые становятся причиной коррозии, особенно при повышенных температурах.

Подписаться на статьи можно на главной странице сайта.

Газы попадают в воду различными путями: при прямом контакте с воздухом атмосферы, после проникновения в системы через некоторые материалы, особенно пластик, и в процессе реализации различных стадий водоподготовки – охлаждения в градирнях, фильтрации и др. Поэтому в течение всего времени использования воды в качестве теплоносителя ее нужно постоянно подвергать дегазации. Когда речь идет об удалении из воды газов, входящих в состав воздуха, применяется термин «деаэрация».

Деаэрация воды может осуществляться термическим, химическим, мембранным и другими методами. Наиболее старая и одновременно распространенная в наши технология – термическая деаэрация воды.

Еще в XVIII в. британский физик Вильям Генри доказал, что количество растворенных газов определяется температурой и давлением жидкости. Растворимость газа в воде уменьшается с ростом температуры и понижением внешнего давления. Однако переусердствовать с нагревом и созданием разряжения также нельзя, поскольку это вызовет интенсивное парообразование, смешивание которого с воздухом сводит на нет все попытки деаэрации воды. Деаэрацию проводят в условиях, когда обеспечивается достаточная скорость процесса, а интенсивное парообразование еще не началось. Это достигается варьированием температуры и давления. Термическая деаэрация может быть осуществлена при повышенной температуре и повышенном, атмосферном и пониженном давлении.

Нагрев деаэрируемой воды до состояния насыщения при деаэрации с повышенным или атмосферным давлением производится с помощью водяного пара, а при осуществлении вакуумной деаэрации обычно используется перегретая вода.

Деаэрация – гетерофазный массообменный процесс, в котором растворенные газы воды переходят в газовую фазу водяного пара. Этот процесс может проходить в тонких слоях воды, но более эффективное его протекание наблюдается в мелкокапельном состоянии. Часто для перевода воды в требуемое состояние используется барботаж водяного пара через тонкий слой обрабатываемой воды.

Технология деаэрации реализуется в аппаратах, основной элемент которых – деаэрационные колонки, где, собственно, и происходит удаление из воды газов. Эти колонки бывают вертикальными и горизонтальными. Наиболее распространенны вертикальные. В них обрабатываемая вода поступает сверху, разбрызгивается с помощью распылительных приспособлений, а водяной пар подается снизу.

В деаэрационных колонках имеются дырчатые переливные тарелки, которые не только увеличивают время контакта деаэрированной воды с паром, но и переводят деаэрируемую воду в капельное состояние. Колонки такой конструкции применяются в аппаратах всех видов. Но при работе под вакуумом или с повышенным давлением к прочности оборудования предъявляются более высокие требования, чем в случае с аппаратами атмосферного типа.

Удаляемые газы переходят в водяной пар и выносятся из аппарата. Отработанный пар (его называют выпаром) удаляется из деаэратора. В некоторых моделях, сконструированных с учетом проблем энергосбережения, производится утилизация тепла выпара.

В аппаратах повышенного давления деаэрация протекает при рабочем давлении выше 1,7 атм. Это позволяет ограничить процесс парообразования при относительно высокой температуре нагрева. Деаэраторы повышенного давления применяются для удаления газов из питательной воды парогенераторов на тепловых и атомных электростанциях, в схемах мощных (до 1200 МВт) энергетических турбоустановок. Такие аппараты обычно состоят из бака, обеспечивающего запас воды для работы питательных насосов, и одной или двух колонок деаэрации. Процесс реализуется за счет отбора части водяного пара от энергетических установок.

Деаэраторы атмосферного давления применяются на тепловых электростанциях и в котельных – для подготовки питательной воды для паровых котлов и подпиточной воды систем теплоснабжения.

Как правило, в комплект такого деаэратора входит колонка, бак для воды, гидрозатвор (предохранительное устройство) и охладитель выпара. Нагрев обрабатываемой воды также производится с помощью пара, отобранного из системы.

Несколько иная картина наблюдается при деаэрации с пониженным давлением. В этом случае нагрев производится подачей горячей воды, которая при разряжении, созданном вакуумными насосами, вскипает, образуя пар. Этот пар контактирует с обрабатываемой водой и производит удаление растворенных газов. В ряде конструкций вакуумных деаэраторов используются деаэрационные колонки, а иногда достичь необходимого для удаления газов парообразования позволяет интенсивная циркуляция деаэрированной воды.

В вакуумных деаэраторах процесс удаления газов из воды осуществляется при давлении, обычно равном 0,2–0,3 атм. Чаще всего такие агрегаты применяются в котельных с водогрейными котлами для систем теплоснабжения и ГВС, во всех случаях при отсутствии пара. Деаэраторы данного типа имеют небольшие габаритные размеры.

Обычно вакуумные деаэраторы состоят из бака и установленной на нем деаэрационной колонки. За счет того, что кипение воды при разряжении достигается при более низкой температуре, чем в обычных условиях, оптимальная температура вакуумной деаэрации составляет 60 °С, а максимальная температура – 90 °С. Последнее связано с тем, что при повышении температуры одновременно с дегазацией будет происходить и испарение воды. Вероятно, этим и обусловлен основной недостаток вакуумных деаэраторов: остаточная концентрация кислорода в воде, прошедшей в них обработку, выше, чем в альтернативных вариантах.

Работа деаэраторов всех перечисленных видов производится в периодическом режиме. Сначала, например, из системы отопления закачивается в бак деаэратора определенное количество воды для обработки. Затем эту воду подвергают деаэрации путем многократного пропускания через колонку деаэратора. Циркуляция обрабатываемой воды в замкнутой системе деаэратора производится до определенного времени, или тех пор, пока не будет достигнуто требуемое остаточное содержание газов. Обработанную воду возвращают в систему, а оттуда отбирают новую порцию теплоносителя. Если деаэрации подвергается подпиточная вода, то в бак деаэратора закачивают воду после водоподготовки, а затем производят ее дегазацию и направляют в систему.

В связи с особенностями описанного режима работы деаэратора, такое распространенное понятие, как производительность, то есть количество воды, обрабатываемой в единицу времени, приобретает несколько иной смысл. В данном случае под производительностью следует понимать способность оборудования пропускать через деаэрационную колонку в процессе дегазации определенное количество воды в единицу времени.

На российском рынке присутствую термические деаэраторы, выпускаемые главным образом отечественными производителями. Они в основном различаются по величине рабочего давления, производительности и габаритным размерам. Среди крупнейших и старейших отечественных производителей следует отметить НПО ЦКТИ (Санкт-Петербург), предлагающее аппараты для небольших котельных и оборудование для тепловых и атомных электростанций (производительность – от 1,0 до 6 000 м3/ч; объем бака – от 0,75 до 400 м3).

В качестве примера отечественных деаэраторов атмосферного давления можно рассмотреть аппараты ООО «Сибпромэнерго» (Бийск, Алтайский край). В их состав входит деаэраторный бак – горизонтальный цилиндрический сосуд с эллиптическими днищами, патрубками подключений и арматурой. Он устанавливается на опорах. Сверху на баке монтируется деаэрационная колонка, которая представляет собой цилиндрическую обечайку с эллиптическим днищем, патрубками для подвода и отвода рабочей среды. Для обеспечения безопасной эксплуатации деаэратора в нем предусмотрено предохранительное устройство в виде гидрозатвора, предотвращающего повышение давления выше допустимого и возрастания уровня воды выше заданного. Производительность аппаратов – от 5 до 50 м3/ч; объем бака – от 2,0 до 15,0 м3. В деаэраторах данного типа применена двухступенчатая схема дегазации: первая ступень – барботажная, вторая – струйная.

Достаточно широкое распространение получили также конструкции деаэраторов, в которых вместо деаэрационной колонки с переливными тарелками используется эжектор или сопло. Один из производителей такого оборудования – НПО «Новые Технологии» (Санкт-Петербург), выпускающее струйные вихревые деаэраторы. Действие этого аппарата основано на создании вращательного движения потока деаэрируемой воды после выхода из сопла специальной конструкции. В центре вращения образуется зона разряжения, что приводит к образованию пузырьков газа. В данном случае также образуется выпар, который удаляется из установки. Струйные деаэраторы имеют производительность от 1 до 300 м3/ч и могут работать как в атмосферном, так и вакуумном режимах. В первом случае перед поступлением в сопло вода нагревается до температуры 102–104, а в вакуумном деаэраторе – до 40–80 °С. Остаточное содержание кислорода в зависимости от температуры и давления обработки воды колеблется от 50 до 18 мкг/л, причем более высокая концентрация соответствует условиям проведения вакуумной деаэрации. Преимуществами такого вида аппаратов являются малые размеры и отсутствие необходимости в подаче водяного пара для барботирования.

Статья опубликована в журнале «Аква-Терм» # 1(41) 2008

Опубликовано: 11 июня 2010 г.

вернуться назад

Читайте так же:

aqua-therm.ru

по назначению, по давлению, вакуумные, атмосферные

Термические деаэраторы паротурбинных установок электростанций делятся:

По назначению на:

  1. деаэраторы питательной воды паровых котлов;
  2. деаэраторы добавочной воды и обратного конденсата внешних потребителей;
  3. деаэраторы подпиточной воды тепловых сетей.

По давлению греющего пара на:

  1. деаэраторы повышенного давления (ДП), работающие при давлении 0,6—0,8 МПа, а на АЭС — до 1,25 МПа и использующиеся в качестве деаэраторов питательной воды ТЭС и АЭС;
  2. атмосферные деаэраторы   (ДА),   работающие при давлении 0,12 МПа;
  3. вакуумные (ДВ), в которых деаэрация происходит при давлении ниже атмосферного: 7,5—50 кПа.

По способу обогрева деаэрируемой воды на:

  1. деаэраторы смешивающего типа со смешением греющего пара и обогреваемой деаэрируемой воды. Этот тип деаэраторов применяется на всех без исключения ТЭС и АЭС;
  2. деаэраторы перегретой воды с внешним предварительным     нагревом  воды  отборным паром.

По конструктивному выполнению (по принципу образования межфазной поверхности) на:

Деаэраторы с поверхностью контакта, образующейся в процессе движения пара и воды:

  • а)  струйно-барботажные;
  • б)  пленочного, типа с неупорядоченной насадкой;
  • в) струйного (тарельчатого) типа;

Деаэраторы с фиксированной поверхностью контакта фаз (пленочного типа с упорядоченной насадкой).

По способу увеличения поверхности контакта воды с греющим паром деаэраторы делятся на

  • капельные
  • струйные
  • пленочные
  • с насадками
  • барботажные
  • комбинированные.

В капельных деаэраторах вода подается в деаэратор в виде капель при помощи форсунок или сопел. Распыление воды на капли обеспечивает высокую эффективность деаэрации воды, однако из-за засорений сопл капельные деаэраторы недостаточно надежны в эксплуатации. Кроме того, применение сопл и форсунок требует значительного расхода электроэнергии на распыление.

В струйных деаэраторах вода, подаваемая в верхнюю часть колонки деаэратора, поступает в водораспределительное устройство, под которым установлено несколько дырчатых тарелок (сит или противней). Сливаясь струями из распределителя и тарелок, вода образует дождевую занесу, которая пересекается потоком греющего пара, подаваемого в нижнюю часть колонки.

В пленочных деаэраторах вода подается через сопло и, ударяясь о розетку, разбрызгивается на расположенные под ней вертикальные (концентрические пли прямоугольные) листы. Тонкие пленки деаэрируемой воды стекают вниз по листам, а греющий пар проходит между листами снизу вверх.

В деаэраторах с насадками вода, подаваемая в верхнюю часть колонки деаэратора, разделяется на отдельные струи, которые стекают на насадку, заполняющую деаэрационную колонку. Назначение насадки — дробление потока на тончайшие струйки и пленки. Греющий пар подается между элементами насадки снизу вверх навстречу воде. В качестве насадки используют деревянные решетки, кольца Рашига, металлические  керамические кольца, элементы специальной формы. Кольца  элементы в определенном порядке или беспорядочно размещаются на поддерживающей их сетке. В результате этого происходит эффективное взаимодействие воды с греющим паром.

В барботажных деаэраторах контакт пара и воды осуществляется благодаря пропуску пара через слой жидкости. Барботаж обеспечивает в несколько раз (от 3 до 10) большую поверхность контакта воды и пара, чем при дроблении воды на струи. Однако использование барботажных деаэраторов затрудняется тем, что тепла пара, поступающего на барботаж, обычно недостаточно для подогрева воды до температуры насыщения.Как правило, барботаж применяют в качестве второй ступени деаэрации в сочетании со струйным или насадочным методом распределения воды. Такие деаэраторы называются двухступенчатыми. В струйно-барботажных деаэраторах нагрев воды до температуры насыщения и первоначальное газоудаление происходят в малогабаритных струйных колонках, а окончательная деаэрация осуществляется при обработке воды паром в барботажном устройстве, размещенном в баке-аккумуляторе.

В комбинированных деаэраторах сочетается несколько способов разделения воды на струи и капли.

По давлению в деаэраторе, при котором происходит процесс деаэрации, термические деаэраторы разделяют на вакуумные, атмосферные, среднего и повышенного давления. В вакуумных деаэраторах удаление газов протекает при давлении ниже атмосферного (<1 кгс/см2). Атмосферные деаэраторы работают при давлении в колонке деаэратора 1,05—1,5 кгс/см2, среднего давления — 3,5 кгс/см2, повышенного давления — до 7 кгс/см2.

В вакуумных деаэраторах вакуум в колонке создается водяными или паровыми эжекторами. Температура воды, при которой идет деаэрация, определяется вакуумом в колонке и колеблется в пределах 25—70° С. Основными достоинствами вакуумных деаэраторов являются простота конструкции и то, что они не нуждаются в специальном источнике греющего пара при наличии потоков конденсата с температурой 70—80° С.

Естественными вакуумными деаэраторами являются конденсаторы турбин, в которых поддерживается глубокий вакуум и образующийся конденсат находится в контакте с поступающим паром. Однако для электростанций высокого давления удаление газов из питательной воды в конденсаторах является недостаточным, так как вследствие «переохлаждения» конденсата содержание в нем кислорода превышает допускаемые концентрации. Для достижения более полного газоудаления конденсатосборники конденсаторов оборудуют барботажным деаэрирующим устройством.

Вакуумные деаэраторы применяют на ТЭС для деаэрации подпиточной воды тепловых сетей.Атмосферные деаэраторы проще вакуумных, работают при низком давлении греющего пара и удобны в эксплуатации. При давлении в колонке деаэратора, близком к атмосферному, в него можно подавать потоки воды любой температуры и давления. Однако атмосферные деаэраторы требуют поддержания в колонке постоянного избыточного давления. При значительных колебаниях нагрузки деаэратора давление в нем может стать ниже допустимого (вплоть до образования вакуума), что повлечет за собой увеличение содержания кислорода и свободной углекислоты в деаэри­рованной воде.

Атмосферные деаэраторы применяют, как правило, на небольших станциях с парогенераторами давлением до 40 кгс/см2 и на станциях высокого давления для предварительной деаэрации химически очищенной воды.Деаэраторы среднего и повышенного давления менее чувствительны к колебаниям нагрузки. Процесс деаэрации в таких деаэраторах протекает при более высокой, чем в атмосферных деаэраторах, температуре, что ведет к улучшению качества деаэрации питательной воды и более полному разложению бикарбонатов. Однако наличие в колонке повышенного давления усложняет конструкцию деаэраторов и делает невозможным введение в нее потоков конденсата с более низким давлением, а также требует более внимательного обслуживания. Деаэраторы повышенного дав­ления широко применяют на ТЭС с давлением пара выше 40 кгс/см2

При небольшой добавке химически очищенной воды, что характерно для конденсационных электростанций, вода вначале направляется в конденсатор турбины, откуда конденсатными насосами через регенеративные подогреватели низкого давления в смеси с конденсатом подается в деаэратор повышенного давления. Расход воды в конденсаторе может достигать 30% от количества поступающего пара. Защита от коррозии трубок конденсатора и трубопроводов химически очищенной воды обеспечивается ее предвари­тельной деаэрацией в вакуумном или атмосферном деаэраторе.

При больших добавках химически очищенной воды, что характерно для ТЭЦ, применяется двухступенчатая деаэрация. В этом случае химически очищенная вода и низкотемпературные конденсаты предварительно дегазируются в атмосферном деаэраторе (I ступень дегазации). Окончательная дегазация осуществляется в деаэраторе повышенного давления (II ступень дегазации), куда подаются также конденсат турбины, прошедший через систему регенеративного подогрева низкого давления, и дренажи подогревателей высокого давления.

Наиболее экономичной для ТЭЦ является схема дегазации, по которой часть добавки химически очищенной воды подается в конденсатор, а остальное количество — в деаэратор атмосферного давления. В него же направляются конденсаты с производства и из сетевых подогревателей. Деаэрированная в атмосферном деаэраторе вода смешивается с основным конденсатом перед вторым подогревателем низкого давления и подается в деаэратор повышенного давления. Для химического связывания остающихся в питательной воде после деаэраторов микроконцентраций кислорода предусматривают ввод на всас питательных насосов гидразина (III ступень дегазации).

Поделитесь материалом с друзьями в социальных сетях

helpinginer.ru


Смотрите также