Как эффективно и быстро убрать пленку с поверхности воды в колодце. Удаление нефтепродуктов из питьевой воды


Очистка воды от нефтепродуктов – главные методики

Нефтепродукты на сегодняшний день занимают одно из лидирующих мест среди самых распространенных источников, загрязняющих не только землю, но и воду. Согласно статистическим данным ЮНЕСКО, все химические соединения, которые получаются из нефти или нефтяных газов, относятся к категории самых опасных загрязнителей для окружающей среды, существующих на планете. Поэтому очистка воды от нефтепродуктов просто необходима современному обществу.

На данный момент существует достаточно много различных способов, предназначенных для очистки воды от нефтепродуктов, и при этом каждый из них имеет ряд своих как преимуществ перед другими, так и недостатков.

Чтобы выбрать наиболее подходящее оборудование, предназначенное для водоочистки от химических веществ, получаемых из нефти, необходимо ориентироваться на то, какой степенью или типом загрязнения обладает сточная вода. Среди существующих в настоящее время способов очистки загрязненной нефтепродуктами воды самыми эффективными являются следующие: механический, химический и биологический способ.

Сущность технологии механической очистки воды от нефтепродуктов заключается в том, что сточная вода проходит через несколько этапов фильтрации. При этом она подвергается неоднократному процессу отстаивания в специальном оборудовании. К такому типу специализированного оборудования относят сепараторы нефтепродуктов. Сегодня они нашли довольно широкое применение на многих заправочных станциях, в мастерских технического обслуживания автомобилей, а также автомойках и паркингах. В таких очистительных системах механического типа действия применяются особые материалы, обладающие пористой структурой. Эти материалы используются в качестве фильтров водоочистки. В данном случае принцип действия системы основан на прохождении загрязненной нефтепродуктами воды через поры фильтров, сквозь которые небольшие молекулы воды проходят дальше, а большие молекулы нефти, мазута или керосина остаются в фильтре. Механическая очистка воды способна очистить воду только около от 60% химических веществ, содержащих нефть, поэтому в большинстве случаев этот метод считают подготовительным для проведения последующего очистительного процесса.

Суть химического метода очистки воды от нефтепродуктов заключается в добавлении в загрязненную воду специальных химических препаратов. В процессе взаимодействия с загрязненной водой молекулы этих реагентов контактируют с нефтепродуктами, в результате чего образуется химическая реакция. В итоге нефтепродукты выпадают в осадок в виде веществ, не поддающихся растворению. В большинстве случаев в качестве таких химических препаратов или другими словами реагентов используются поверхностно-активные вещества, а также различные водонефтяные эмульсии. Кроме того достаточно эффективными являются и специальные адсорбенты, среди которых широкое применение нашел оксид алюминия. Благодаря химическому методу очистки воды можно достичь достаточно высокой степени удаления продуктов нефти, показатель которой может приблизиться к отметке 98%.

В современном мире наиболее передовым методом очистки воды является биологический способ. В основу такого способа фильтрации воды от нефтепродуктов (а также очистки воды для дома) входит применение специальных микроорганизмов, которые используют нефтепродукты как основной источник питания. Среди таких микроорганизмов можно выделить сотни различных видов, к примеру, бактерии, грибы или дрожжи. Именно они обладают способностью перерабатывать самые сложные углеводородные соединения, которые и входят в состав всех нефтепродуктов. В процессе химической очистки воды от нефтепродуктов происходит реакция окисления углеводородов нефти, в результате чего в воде остаются только вещества, легко поддающиеся процессу разложения, и нетоксичные продукты, образовавшиеся по причине разложения нефти. Благодаря химическому методу достигается максимальная степень очистки сточных вод, что и делает его на данный момент самым эффективным способом.

В итоге можно сделать вывод, с целью избегания лишних затрат, при выборе очистительного оборудования, в первую очередь, следует опираться на степень загрязнения воды.

Смотрите также:

www.bwt.ru

Очистка воды от нефтепродуктов, реальные методы

Очистка воды от нефтепродуктов

 

Мир сегодня достаточно глобализирован. И если даже страна не добывает нефть, то проблему очистки воды от нефтепродуктов ей решать приходится. Через территорию страны могут проходить трейлеры с нефтью. Возможно, разлив нефтепродуктов случился, катастрофа какая-нибудь. В странах же добывающих и экспортирующих нефть, это естественный процесс. Ведь нефть могут добывать из под земли, которая находится на территории моря или болот. И чтобы такую воду пустить дальше, придется постараться.

 

Регламенты и вариации нефтепродуктов

 

Разбираясь с процессами очищения воды нужно четко понимать, что такое нефтепродукты, как они выглядят, в чем их особенность при контакте с водой. Во многом само поведение нефтепродукта в воде и определяет способ их устранения. Давайте разберемся с регламентом нефтепродуктов и их вариациями.

В таблице представлены наиболее часто встречающиеся нефтепродукты, от которых приходится избавлять воду на территории Российской Федерации.

 

Вид примеси в воде

Виды нефтепродуктов

Нефтепродукты

Горюче-смазочные материалы

Топливо

Растворители

Электроизоляты

Нефтехимическое сырье

 

Каждая группа методов имеет много примесей. Топливо – это бензин, дизельное топливо, горючесмазочные материалы – это мазут, нефтехимическое сырье – это сырая нефть, которую экспортируют. Любая подобная примесь обладает маслянистой структурой разной степени растворимости. Нефть более жидкая, мазут более плотный и похож на крем. Ни то ни другое не растворяется в воде. Нефть разливается по поверхности и в состоянии убить все живое. Очень часто показывают по телевизору, когда из больших пароходов после штормов происходит вытечка нефти. Такие большие нефтяные пятна приводят к мини экологическим катастрофам. Особенно страдают животные – рыбы, птицы. С испорченными крыльями, они не могут летать, экологические службы помогают, как могут, но процент спасенных животных очень мал. Потому и при данном методе водоподготовки возникает достаточно большое количество трудностей. Тем более, что очистка воды от нефтепродуктов – это скорее область получения при добыче нефти. Там очень много отходов и сбрасывать на столько загрязненную воду в атмосферу категорически нельзя.

 

Полезное видео, как очистить воду от нефтепродуктов в домашних условиях

 

Для России борьба с некачественными стоковыми водами началась в 2013 году, когда приняли законы и нормативы по чистке подобных отходов. С этого момента законы определяют не только количество, но и размер стоков на предприятии. Стоковыми потоками стали называться теперь и дождевые, и поливомоечные и даже дренажные воды. Новое законодательство с 2013 года заставляет предприятия оплачивать не только за вред от таких стоков, но еще и возмещать вредное влияние стоков на систему отвода воды. Более жестко производится подсчет поданной на предприятие воды и спущенной в атмосферу. Нормативный показатель сброса грязных стоков в атмосферу стал еще меньше.

 

Да и штрафы за сброс в атмосферу отравленных вод резко возрасли. Но как показывают реалии, далеко не все в состоянии сразу обеспечить выполнение всех нормативов. Для того, чтобы предприятие стало более эффективным в этом вопросе системы очищения нужно не просто наобум купить. Их следует проанализировать, сопоставить со своими возможностями, выбрать установить и запустить. К тому же все эти процедуры отнюдь недешевые. И как результат их регламента – сбросы в атмосферу массы отравляющих некачественно или мало очищенных вод. А предприятия платят штрафы, не думая о том, что установив один раз систему очистки воды от нефтепродуктов, сэкономит намного больше.

 

При этом система очищения состоит из нескольких этапов, которые при желании и необходимости можно будет сменить. На необходимость замены оказывают влияние следующие факторы:

  • Законодательные нормы снижения количества стоков;
  • Количество вредных примесей в воде и их постоянное снижение, согласно нормативов;
  • Вероятность отделения полезных примесей для дальнейшего применения;
  • Возможность использования вторично дочищенных стоков.

Из всех видов нефтепродуктов водные ресурсы наиболее часто загрязнены обычной нефтью, мазутом, маслами, керосином. Формы проявления – пятна на поверхности, плавающий слой или растворение в воде. Любой нефтепродукт согласно классификации ЮНЕСКО является отравляющим веществом. Потому устранять их необходимо в обязательном порядке. И если хозяева предприятий подсчитают, во сколько им обходятся выплаты по штрафам, то системы очищения воды уже не покажутся такими дорогими и неподьемными. Существует много вариаций нефтепродуктов. Главное хорошенько все продумать и просчитать. И тогда очистка будет только на пользу и на плюс к бюджету предприятия.

 

Фильтры для очистки воды от нефтепродуктов и нефтяных остатков

 

Что же представляет собой сегодня фильтры для очистки воды от нефтепродуктов? Из каких этапов она может состоять? И какие способы очистки применяют? Ведь убрать подобные примеси крайне сложно. Но, тем не менее, человеческий пытливый ум, новые технологии и обратный осмос помогли совершить прорыв.

 

Первая группа представляет механическое очищение. Вторая группа подразумевает физико-химическое воздействие. И замыкает тройку биологическое воздействие. В качестве примера каждого способа можно привести следующие приборы. Мазутоуловители, песколовки, отстойники являются представителями механического очищения без применения каких-либо химикатов и физического воздействия. Любые фильтры с применением химикатов, коагуляционная установка – все это представители физико-химических очистных процессов. Биофильтр, аэротенк – это уже биологические очистители. Не брезгуют при очистке воды от нефтепродуктов и исключительно реагентными методами. То есть ионный обмен, осаждение после флотации или коагуляции, все это тоже массово применяется.

 

К сожалению, российские предприятия данной сферы все еще работают с промышленными фильтрами для очистки воды, смонтированными еще при СССР, хотя все это постепенно меняется. Потому и степень очищения стоковых вод до сих пор неудовлетворительная. Очистное оборудование старого образца не справляется с новыми примесями. Но причины не только в моральном износе.

 

За последние годы, в связи с постоянным прогрессом стало появляться очень много новых методов. Перечень используемых нефтепродуктов растет, они новые примеси и образуют. Старое оборудование уже достаточно потрудилось на благо предприятий, и многие установки уже не только морально, но и физически устарели. Пришло время полного обновления.

Чтобы правильно выбрать метод очистки от нефтепродуктов нужно ориентироваться на несколько основополагающих факторов. Первое – количество производимых стоков, количество попадаемых в воду примесей нефтехимического происхождения, требования по качеству сливаемых стоков. На эти показатели оказывает свое влияние и метод транспортировки сточных вод, место установки очистных сооружений.

 

Сорбент

 

Сорбент С-ВерандВ качестве фильтров для механической очистки воды могут использовать гравитационные установки. В основу любых уловителей ставят фильтрующие установки или сорбенты. Но из-за природы нефтепродуктов они очень быстро забиваются, и такие фильтрующие поверхности приходится очень часто менять. Такие сорбенты убирают из воды основную часть нефтепродуктов. Поскольку нужно использовать только комплексно все улавливающие механические установки, то те же песколовки монтируют между решетками и первичными отстойными фильтрами. Песколовки бывают горизонтальные и вертикальные сорбенты. Выбор сорбента очистки воды от нефтепродуктов зависит от движения воды. Применяют их при расходе воды больше ста кубов в час. Если поток воды меньше, то можно воспользоваться менее эффективными щелевыми песколовками. Применение одних только сорбентов помогает убрать до 20 процентов примесей из воды. Нефтянные ловушки работают более эффективно. Они в состоянии убрать из воды до 90 процентов нефтепродуктов. Нефтеловушки тоже могут быть и горизонтальными и вертикальными, есть еще специальные радиальные с дополнительными устройствами. Вот эти последние хорошо убирают не только осадок, но и пятна с поверхности воды. На нефтяных базах более всего применяют горизонтальные варианты приборов. Там степень очистки доходит до 70 процентов. Здесь происходит тонкослойное отстаивание, с применением пластин, расположенных под углом в 45 градусов в отстойной зоне. При применении большего количества сорбентов и эффективность устранения нефтепродуктов повышается. В гидроциклонах воду закручивает в вихревой поток, который помогает выбросить более тяжелые частицы сразу на нижний слой.

 

В общем же стоит сказать, что очистка воды от нефтепродуктов должна быть комплексной. Использовать только один отстойник не получится. Применение механики устраняет всего лишь грубодисперсные примеси. А есть еще и тонкий осадок и вот там применение химикатов и биологических фильтров будет крайне уместным.

ochistka-vody.com

Лучшие способы очистки сточных вод от нефтепродуктов

Содержание   

Различные соединения, содержащие нефть и нефтепродукты, являются следствием многих технологических процессов.

Вода, сильно загрязненная нефтепродуктами

Вода, сильно загрязненная нефтепродуктами

Ту или иную степень отравления воды такими веществами может создать как небольшое предприятие (даже СТО или заправка, на которых они могут храниться), так и большие технологические комплексы современных заводов.

Наибольшая угроза отравления воды нефтепродуктами исходит от нефтедобывающих и нефтеперерабатывающих предприятий, от металлургических промышленных предприятий и комплексов химической промышленности.

Не меньше угрозой отравления нефтесодержащими веществами воды и почв будет и недостаточно эффективная работа коммунальных предприятий, которые занимаются очисткой сточных вод.

Вред нефтепродуктов попадающих в воду

В случае попадания нефтепродуктов в водоёмы в результате работы заводов или нефтеперерабатывающих предприятий — происходит постепенное угнетение местной экосистемы, что в перспективе приводит в вымиранию местной флоры и фауны. Это очень опасный процесс, который нельзя допускать вообще.

Те же виды, которые переживают новое состояние водоёма – обычно теряют способность размножаться. И это в лучшем случае. В худшем же попадание нефти в окружающую среду приводит к очень тяжелым последствиям.

Например, при попадании в открытый источник типа моря или озера, нефть равномерно растекается по его поверхности. Она накрывает плотной пленкой огромную толщу озера, тем самым, блокируя нормальный доступ кислорода и солнечных лучей к подводным обитателям.

Совершенно очевидно, что без солнца и воздуха ни водоросли, ни морские жители долго не протянут. Это приведет к их вынужденной миграции. Если же убегать некуда, например нефть разлилась из-за завода, что находится возле озера, то гибель их почти неминуема.

Попадание нефтепродуктов, в случае сброса недостаточно очищенных стоков от промышленных предприятий в почву, также со временем нарушает её плодородную функцию, разрушая баланс содержания азота. Не менее опасна нефть, и попавшая в грунтовые воды, поскольку будет изменяться их минеральный состав.

Стационарные системы очистки сточных вод от нефтепродуктов

Стационарные системы очистки сточных вод от нефтепродуктов

При этом вывести ее из почвы будет чрезвычайно сложно, так как работы эти нерентабельны и очень трудоемки. Даже после полной очистки плодородность земли существенно снизится. Восстановить ее можно только современными методами удобрения и химического насыщения грунта. А они довольно дорогостоящие.

Попадание нефтепродуктов в воду, которую в дальнейшем употребляет внутрь человек также оказывает на него отравляющее воздействие, часто – канцерогенное, увеличивая риск раковых заболеваний. Впрочем, пить такую воду вы вряд ли согласитесь, так как она имеет характерный привкус и запах.

Сточные воды в современном многомиллионном городе нуждаются в многоэтапной очистке от нефтепродуктов. Особенно это касается сточных вод от частных районов, где в общую массу стоков попадает больший процент бензина и масел, что утекают из гаражей и других подобных строений.

Несмотря на различные методы, в том числе применяемые на нефтеперерабатывающих предприятиях и в оборудовании различных заводов – сама продукция автомобильно-промышленных мощностей предполагает частое использование и хранение нефтепродуктов, а также их перевозку.

От аварий же сейчас никто не застрахован, поэтому случаи разлива нефти достаточно часты. Как видно из вышеописанных фактов и суждений, нефть в открытом виде может серьезно навредить человеку и его окружению. А потому вопросам очистки жидкостей от нефтепродуктов следует уделять особое внимание.к меню ↑

Методы очистки сточных вод от нефтепродуктов

Все используемые способы очистки сточных вод от нефти и нефтепродуктов (в том числе те, которые используются на нефтеперерабатывающих предприятиях и в очистных сооружениях заводов) делятся на два типа:

  • Механическая очистка нефтесодержащих сточных вод;
  • Биологическая очистка нефтесодержащих сточных вод.
Схема стандартного нефтеуловителя или нефтяной ловушки

Схема стандартного нефтеуловителя или нефтяной ловушки

Соответственно, первичным этапом будет механический (он же – подготовительный к биологическому). На этом этапе удаляются от 70 до 95 процентов загрязнений (в случае использования только жироловок или отстойников для нефтепродуктов — эффективность очистки не превышает 50 процентов).

Механическая очистка нефтесодержащих сточных вод (в том числе — промышленных) может производится различным оборудованием и предполагает механическое удаление нефтепродуктов с поверхности воды.

Сточные воды проходят различную очистку фильтрами для удаления механических примесей, на этом же этапе используются так называемые «жироловки» или «бензо жироуловители» (нефтеловушки).

Также, как на начальной, так и на конечной стадии очистки могут применяться сорбирующие боны, которые собирают из толщи воды соединения углерода.

Нужно здесь уточнить, что такие нефтеловушки, как правило, применяются для удаления плотной нефтяной плёнки, что может быть более характерно при разливе больших объёмов нефти на нефтеперерабатывающих концернах или при транспортировке.

В данном случае, как элемент механической очистки сточных вод, применяется и мембранный метод очистки, но это не настолько распространено на территории бывшего СНГ, хотя и является эффективным способом очистки.

В очистных сооружения заводов и предприятий часто используется устаревшее оборудование и достаточно простые нефтеловушки.

Биологические методы очистки нефтесодержащих сточных вод включают обработку биологически-активной средой – то есть вода поступает в резервуар с микроорганизмами, которые поглощают или ускоряют распад определённых соединений и нефтепродуктов.

Сборные резервуары для очистки сточных вод заводов от нефтепродуктов

Сборные резервуары для очистки сточных вод заводов от нефтепродуктов

Кроме отстойников с микроорганизмами (вроде биологически-активного ила или бактерий-деструкторов нефти) также применяются и различные биофильтры-улавливатели. Они позволяют исключить из жидкости остатки элементов, что не были выловлены до этого.

На последующих стадиях доочистки и обеззараживания не ставится задача удаления нефтепродуктов из состава сточных вод, хотя может быть реализована мембранная очистка.

На специализированных нефтеперерабатывающих предприятиях или в очистных системах заводов, может применяться и установка электрической или электрохимической очистки сточных вод (в дополнение к механической).

Там же вода, прошедшая механическую очистку, может снова быть пущена в работу, поэтому метод применяется иногда и как основной. Если же вода подлежит сбросу, то на нефтеперерабатывающих предприятиях она проходит все стадии очистки, включая биологическую и механическую.

Основными вариантами электрической очистки нефтесодержащих сточных вод является электрокоагуляция и электрофлоатация загрязнённых сточных вод.

Данные процессы включают в себя электролиз воды в определённых условиях, благодаря чему происходит связывание вредных веществ и выпадение таковых в осадок, более тяжёлый, чем вода (в основном, таким образом происходит очистка от взвешенных частиц и гидро-оксидных групп).

Также, на нефтеперерабатывающих предприятиях могут использовать оба данных процесса одновременно в составе одного прибора. Таким образом, людям удается повысить эффективность очистки жидкости, хотя и затраты на выполнение этих процессов тоже увеличиваются пропорционально.к меню ↑

Оборудование для очистки

Бензомалосуловители или нефтеуловители (нефтеловушки) — это оборудование, что применяется чаще всего. Также, данное оборудование обобщённо называют сепараторами нефтепродуктов.

Нефтеуловители в процессе монтажа, монтируются под землю

Нефтеуловители в процессе монтажа, монтируются под землю

Установка нефтеловушки предполагают подачу поверхностных сточных вод (самотёком). Представляют собой они баки разнообразной конструкции – от достаточно компактных (обслуживающих АЗС), и до масштабных очистных сооружений на нефтеперерабатывающих предприятиях, в очистных системах заводов или канализационных коллекторах.

Как правило, такое системы предполагают подземный тип установки (в этом случае изготавливаются из железобетона). Компактные разновидности могут ставится и на пол, и быть изготовлены из нержавеющей стали или полиэтилена.

Принцип работы нефтеловушки предполагает, что после подачи воды самотёком, жидкость поступает в первый фильтр, где и происходит первичное оседание более плотных частиц нефтепродуктов.

Составляющим элементом нефтеловушки может быть и первичный песчаный фильтр, через который и производится слив жидкости. Второй фильтр нефтеловушки заставляет укрупняющиеся частицы всплывать на поверхность.

Есть нефтезборщики другой конструкции. К примеру, «скиммер» представляет собой устройство, удаляющее нефтепродукты следующим образом. В резервуар опущена лента, которая при вращении прибора, подаёт в устройство коллекторную ленту с нефтепродуктами (тонким слоем на ленте).

После прохождения нефтеуловителя – лента подаётся обратно в резервуар. Установка снимает загрязнение с поверхности нефтесодержащих сточных вод, для функционирования требуется электричество. Такой тип устройства может применяться как отдельно, так и вместе с стационарным подземным сепаратором.

Оборудование, работающее на принципе электрофлоации, можно рассмотреть на примере компактного варианта, который может применяться на АЗС для очистки нефтесодержащих сточных вод.

Установка представляет собой пластиковый корпус, электродный блок и компрессор для подачи питания, а также – систему сбора нефтешлама (осадка). Обычно данный блок комбинируется с сорбционным фильтром или фильтром с ультра-мембраной (куда затем подаётся вода после обработки электрофлоататором).

Аэротенки для биологической очистки сточных вод от нефтепродуктов предполагают подачу воды в резервуар (обычно прямоугольный) в котором биологически-активный ил и бактерии производят интенсивное окисление веществ, содержащихся в воде. Работает система аэрации, которая подаёт в резервуар кислород, и в результате способствует нужной реакции.

Аэротенки требуют постоянного контроля за температурным/кислородным режимом. Обычно являются составной частью комплексной системы био-очистки и могут применяться на нефтеперерабатывающих предприятиях, как очистные сооружения больших заводов или для очистки канализационных сточных вод.

Данная разновидность биологической очистки называется аэробной, но процесс окисления может протекать и анаэробно. В многоступенчатых системах очистки нефтесодержащих сточных вод обычно комбинируются оба метода.к меню ↑

Схема устройства и принцип работы нефтеуловителей (видео)

 Главная страница » Очистка воды

byreniepro.ru

Очистка сточных вод от нефтепродуктов основные методы

Соединения, в состав которых входит нефть и нефтепродукты, появляются в результате целого ряда технологических процессов. Их создают как крупные технологические заводские комплексы, так и небольшие специализированные предприятия вроде СТО. О том, какие методики могут использоваться для очистка сточных вод от нефтепродуктов, удаления нефти и нефтепродуктов из воды, мы расскажем в данном обзоре.

Очистка сточных вод от нефтепродуктов

Вред нефтепродуктов, попадающих в воду

Нефтепродукты, попадая в водоемы, постепенно угнетают местную экосистему, что в итоге приводит к вымиранию фауны и флоры. Это опасный процесс, начала которого не следует допускать. Те виды флоры и фауны, которые переживают новое состояние водоема, как правило, оказываются не в состоянии размножаться. Также нефть может создавать на поверхности воды плотную пленку, которая препятствует нормальной подачи кислорода водным обитателям.

Попадание нефтепродуктов в почву вызывает нарушение ее плодородной функции с течением времени, не меньшую опасность несет и нефть, попавшая в грунтовые воды – она начинает разрушать их нормальный состав, изменяя соотношение минеральных компонентов. Попадание нефтепродуктов в питьевую воду – главный фактор риска в области возникновения раковых заболеваний. То есть нефть способна сильно навредить и самому человеку, и окружающей среде, поэтому к делу ее очистки следует подходить предельно тщательно.

Характеристика загрязненности воды нефтью

ЮНЕСКО называет нефтепродукты наиболее опасными загрязнителями стоков. Они растворяются в некоторых жидкостях и образуют поверхностный нерастворимый слой.

При защите природы, по мнению ЮНЕСКО, мы должны руководствоваться такими принципами:

  • использовать такое количество природных ресурсов, которые сами не восстанавливаются, которое позволит избежать полного их исчерпания;
  • выбрасываемые нефтепромышленные отходы не должны превышать безопасные для живой природы и человека нормы.

Нефть – это невосстанавливаемый природный ресурс, добыча, переработка и транспортировка которого наносит непоправимый вред окружающей среде. Вопрос должен решаться разносторонне – с политической, правовой и экономической точки зрения. Технически проблему можно решить путем постановки индивидуальных задач для предпринимателей, имеющих непосредственное отношение к нефти.

Очистка воды от нефтепродуктов: реальные методы

Метод очистки сточных вод на предприятии должен определяться с учетом типа нефтехимических примесей. Компании, которые осуществляют транспортировку нефти, должны соответствующим образом очищать отработанные сточные воды, отправляя нефтепримеси на переработку. Главные принципы очистки:

  • максимальное снижение содержания нефтепродуктов в сточных водах;
  • полное извлечение тех примесей, которые в дальнейшем будут перерабатываться и использоваться;
  • по возможности повторное использование очищенных стоков.

Что бы определить максимально эффективный способ очистки, нужно рассмотреть несколько способов, учесть объемы примесей разных видов и оптимальное качество воды после очистки. При окончательном выборе учитывается экономическая целесообразность используемых для очистки водных масс. Типы очистных станций – локальные, общие и городские.

Методы очистки сточных вод от нефтепродуктов

Все применяемые сегодня способы очистки сточных вод от нефти и нефтепродуктов делятся на две категории – механические и биологические. Они могут применяться также в комбинации с другими методиками и имеют свои особенности – подробнее далее.

Какими способами чаще всего выполняют очистку сточных вод от нефтепродуктов?

Первичный этап очистки – механический, он является подготовкой к биологическому. На данной стадии удаляется до 95% загрязнителей, но если вы используете только отстойники и жироловки – то не более 50%. Механическая очистка нефтесодержащих продуктов проводится с применением различного оборудования и предполагает механическое удаление загрязнений с водной поверхности. Дополнительно могут использоваться сорбирующие боны – они собирают из водной толщи соединения углерода.

Установка нефтеловушек – главный способ борьбы с нефтяной пленкой, которая образовывается на поверхности точных вод. В очистных заводских сооружениях по-прежнему часто используется устаревшее оборудование и нефтеловушки простой конструкции.

Физико-химические методы очистки

Кроме отстойников, заполненных микроорганизмами (вроде бактерий-деструкторов или биологически активного ила) применяются так называемые биофильтры-улавливатели. Они позволяют исключать из жидкости все остатки загрязняющих элементов, которые не были выловлены ранее.

Основные методы физико-химической очистки воды – сорбция, флотация и коагуляция. Коагуляция предполагает ускоренное превращение тонкодисперсных и эмульгированных примесей в более крупные образования, которые затем выпадают в осадок. Данный процесс происходит под воздействием коагулянтов – химических реагентов. Они образуют хлопьевидные продукты, которые имеют слабоположительный электростатический заряд.

В ходе флотации на поверхности воды появляется устойчивая пена, которая сначала захватывает, а затем удерживает в течение продолжительного времени примеси нефтепродуктов. Спустя некоторое время пенный слой удаляют. Основа для создания пены – устойчивый комплекс пузырьков воздуха и газа. В зависимости от способа, используемого для образования пузырей, флотация делится на вакуумную, электрическую и механическую. При механической флотации образование пены происходит за счет дробления капель воды в воздушном потоке. Вакуумная основана на создании разряжения во флотационной камере. При электрофлотации постоянный ток пропускается через грязную воду.

Флотатор

Сорбция дает максимальную эффективность очистки. Под данным процессом подразумевается поглощение твердым сорбентом примесей, которые содержатся в водной среде – включая нефтепродукты. В качестве сорбентов используются пористые материалы вроде силикагеля, активной глины, кокса, торфа, золы. Самым эффективным сорбентом принято счета активированный уголь.

Сорбция

В ходе обеззараживания и доочистки удалять нефтепродукты из сточных вод не требуется, но возможна дополнительная реализация мембранной очистки. В заводских очистных системах и на нефтеперерабатывающих предприятиях часто устанавливаются системы электрической, электрохимической очистки сточных вод.

Биологический метод очистки сточных вод

Биологические методы очистки предполагают обработку сточных вод биологически-активной средой – то есть вода поступает в резервуар, заселенный микроорганизмами, которые ускоряют распад токсичных соединений или поглощают их. Как правило, после биоочистки производится доочистка.

Био очистка от нефтепродуктов

Специалисты считают биологические методики одними из самых перспективных. В результате их применения все нефтесодержащие примеси превращаются в продукты окисления, которые являются совершенно безвредными. Биологическая очистка чаще всего осуществляется в биофильтрах и аэротенках.

Эффективная очистка от нефтепродуктов: доочистка сточных вод

Для достижения максимальной эффективности очистки стоков от нефтепродуктов может проводиться их доочистка. Для этого, как мы уже писали выше, используются соответствующие мембранные системы, а также комплексные станции электрической и электрохимической очистки.

Качественную очистку сточных вод от нефти для рыбхозяйственных водоемов обеспечивает шунгитовая порода, неплохой эффект дает также угольная сорбция. Учтите, что активные виды угля имеют достаточно высокую цену.

Очистка воды от нефтепродуктов – главные методики и оборудование

Итак, мы выяснили, что основные способы удаления нефтепродуктов из сточных вод – это:

  • биологические;
  • химические;
  • физико-химические;
  • механические.

Теперь рассмотрим основное оборудование, применяемое для удаления примесей.

Первая категория – это бензомаслоуловители или нефтеуловители, которые еще называют сепараторами нефтепродуктов. Устанавливаются они под землю и подают самотеком поверхностные сточные воды. Конструктивно бензомаслоуловители представляют собой баки, имеющие различную конструкцию и размеры – от компактных АЗС до масштабных очистных сооружений. Принцип работы нефтеловушки прост – после подачи воды самотеком она поступает в первый фильтр, где плотные частички оседают. Второй фильтр заставляет более крупные включения всплывать на поверхность воды. Реже, но тоже используются агрегаты типа «скиммер», которые могут устанавливаться как самостоятельно, так и совместно с подземным стационарным сепаратором.

Нефтеуловитель

Вторая категория оборудования – аэротенки биологической очистки. Они подают загрязненные стоки в резервуар (чаще он имеет прямоугольную форму), где биологически активный ил и бактерии окисляют содержащиеся в воде загрязнители. Работает также система аэрации, которая подает кислород в резервуар и тем самым вызывает наступление необходимых для очистки реакций. За работой аэротенков нужен постоянный контроль. Данный тип биологической очистки называется аэробным, но может процесс окисления протекать и анаэробно. В сложных многоступенчатых системах обычно используют оба метода.

Важные составляющие очистных систем – песколовки, отстойники (динамические, статистические, тонкослойные), гидроциклоны, фильтры (микро, каркасные, эластичные).

Эко проект по очистке поверхности воды от нефтепродуктов

До 7% объема нефти на сегодняшний день уходит в загрязнения, причем безвозвратно. Для промывки контейнеров из-под нефти и оборудования используется обработка горячей водой или паром, могут использоваться чистящие вещества. Предприятия собирают и утилизируют данную воду, некоторые просто сливают ее в водоемы. В результате страдают и люди, и окружающая среда – поэтому составление эко проекта по очистке поверхности вод от нефтепродуктов является важнейшей задачей современности.

global-aqua.ru

Как эффективно и быстро убрать пленку с поверхности воды в колодце

Если вода из колодца покрывается пленкой, переливающейся всеми цветами радуги и обладающей специфическим запахом, не исключено, что в шахту попали бензиновые либо масляные стоки. Приятного в этой ситуации мало: вряд ли на территории вашего участка забил нефтяной фонтан, сулящий небывалую прибыль. А вот вероятность того, что вода стала непригодной для питья, очень высока. Чтобы не рисковать здоровьем своих близких, необходимо вовремя выявить причины загрязнения и устранить их.

белая пленка

Белая пленка – тревожный звоночек, говорящий о загрязнении колодца

Иногда белая пленка на поверхности воды в колодце образуется из-за нерегулярного использования источника. В результате застоя жидкости в шахте начинают активно размножаться болезнетворные бактерии (гнойные палочки), которые могут стать настоящей биологической бомбой. Чтобы избежать неприятных сюрпризов, обязательно сдавайте пробы в СЭС перед началом эксплуатации колодца (особенно это важно после длительного перерыва).

Но чаще всего разноцветные переливы однозначно говорят о том, что в воду «просочились» нефтепродукты. Источники могут быть самыми разными:

  • Разгерметизация насоса. Некоторые модели оборудованы масляными камерами, которые охлаждают механизм и защищают его от «сухого хода». При протекании резервуара в шахте может очутиться до 200 мл липкой жидкости.
  • Случайное или намеренное загрязнение (иногда «доброжелатели» портят не только настроение, но и питьевую воду).
  • Инфильтрация водоносного горизонта нефтепродуктами с поверхности. Если неподалеку от вашего дома есть заправка, авторемонтная мастерская либо производственные цеха, в грунт может проникнуть машинное масло, солярка и другие продукты нефтепереработки. Рано или поздно «добавки» попадут в грунтовые воды вместе с паводками либо атмосферными осадками. Такая пленка на воде в колодце считается самым сложным случаем, ведь очистки требует не только шахта, но и весь водоносный пласт.
бетонные кольца

Промышленные бетонные кольца могут быть обработаны технической смазкой

  • Использование некачественных материалов. Промышленные бетонные кольца не подходят для обустройства колодцев. По технологии производства их кромка обрабатывается смазочными материалами. После наполнения шахты водой солярка смывается с торцов и тонким слоем распределяется по поверхности.

Важно! Не экономьте на строительстве колодца. Приобретая бетонные кольца, уточните их назначение. В спецификации должно быть указано, что они могут быть использованы в источниках питьевой воды.

В колодце появилась масляная пленка: что делать

Экстренные меры ↑

Радужная или белая пленка на воде в колодце – ясный сигнал о том, что жидкость нельзя использовать для полива растений и питья. Как только вы обнаружили маслянистые пятна на поверхности, необходимо принять следующие меры:

  • Постараться определить источник загрязнения и, по возможности, устранить его. Если причиной неприятности стала протечка погружного насоса, извлеките его из скважины. Если в шахту упала емкость с маслом, постарайтесь достать и ее.
  • Ограничьте либо полностью прекратите забор воды. Нефтепродукты расплываются на поверхности тончайшей пленкой, попадают в систему водоснабжения дома, оседают на стенках колодца. Чем активнее движение жидкости, тем сложнее будет потом очистить источник.
  • Как можно быстрее проведите комплексную очистку (собственными силами либо с привлечением профессионалов).
  • Несколько раз прокачайте водой всю водопроводную систему, чтобы удалить остатки загрязнения с фильтров, накопительных баков, бойлеров и смесителей.
очистка колодца

При очистке колодца обязательно проверьте герметичность швов бетонных колец

Важно! Если вы не смогли определить причину загрязнения, лучше обратиться в СЭС для анализа воды из вашего колодца и близлежащих источников.

Вредные советы ↑

Как убрать пленку с воды в колодце? Первое, что приходит на ум, – вылить в шахту пару бутылочек жидкости для мытья посуды. Казалось бы, все логично: моющее средство растворит жир и сделает воду чистой. Вот только стиральные порошки содержат поверхностно-активные вещества, которые усугубят ситуацию. Избавиться от химического загрязнения станет еще сложнее.

Вторая распространенная ошибка – полная откачка воды. При опустошении колодца нефтепродукты просто осядут на стенках – оттереть впитавшееся в бетон масло непросто.

Важно! Ни в коем случае не пользуйтесь «явными» методами избавления от масляной пленки. Бытовая химия и откачка не решат, а только усложнят проблему.

Народные способы ↑

Избавиться от пленки в колодце можно собственными силами:

  • Соберите масло с поверхности при помощи абсорбента (опилки, бумага, вата) либо небольшого насоса.
  • Тщательно вымойте стены под высоким давлением (при постоянной откачке жидкости).
  • Проведите очистку дна и смените донный фильтр.
  • Проверьте швы в бетонных кольцах, при необходимости проведите герметизацию.

Важно! Ни в коем случае не чистите колодец в одиночку. Работу должны выполнять как минимум трое: один находится в шахте, двое страхуют его на поверхности.

оборудование

При профессиональной очистке воды от нефтепродуктов используют специальное оборудование

«Домашний» способ подходит, если вы уверены в источнике загрязнения. Если же и после очистки вода из колодца покрывается пленкой, необходимо срочно обратиться к профессионалам.

Профессиональная ликвидация загрязнений ↑

Профессиональная очистка от нефтепродуктов проходит комплексно. Она включает в себя те же этапы, что и кустарный метод, но при этом используется специальное оборудование и мощные сорбенты. Очищающие вещества полностью вымываются аппаратом высокого давления и не загрязняют воду. Тяжелые фракции, выпавшие в осадок, устраняют при обработке дна.

Эффективность процедуры зависит не только от оборудования, но и от состава и объема нефтепродуктов, попавших в водозаборник. Как правило, при разгерметизации насоса либо случайном загрязнении происходит полное очищение воды. В случае с заражением грунтовых вод полностью избавиться от масла не получится – вам придется либо устанавливать мощную систему очистки, либо искать альтернативные источники водоснабжения.

Не забывайте, что от качества воды зависит самочувствие ваших близких. Даже если вы используете колодезную воду только для технических нужд, не пренебрегайте мерами безопасности. После очистки колодца вода может стать прозрачной и приятной на вкус, но это не значит, что она безвредна. Точные данные о составе может дать только развернутый анализ – не забудьте провести лабораторные тесты после ликвидации загрязнения. Будьте здоровы!

aqua-guru.ru

Методы очистки воды от различных загрязнений.

Предлагаю таблицу применяемости методов водоочистки для всех известных видов загрязнений. Методики рассматриваются исключительно для бытовой водоочистки, не учитывая промышленные циклы, очистку стоков, всякую рекуперацию и прочие промышленные методы очистки сред. Мы говорим исключительно о бытовой водоочистки — о том, что Вы сможете собрать у себя дома для решения вопроса с водичкой в собственном доме. Итак… смотрим таблицу. Условные обозначения под таблицей подписаны.

* — метод очистки может быть применен В НЕКОТОРЫХ ВАРИАНТАХ (иногда)

** — данный метод очистки широко применяется, но не является оптимальным

*** — метод очистки идеально подходит для этого вида загрязнений

Х — данный метод применять нельзя.

пробел — метод очистки для данных загрязнений не применяется

Тяжелые металлы

Под удалением тяжелых металлов подразумевается удаление солей тяжелых металлов (никеля, кадмия, ртути, цинка, кобальта), а еще точнее — ионов этих солей. Соли тяжелых металлов образуют стойкие соединения, трудно поддающиеся удалению. Проблема еще и в том, что различные соли тяжелых металлов имеют различную структуру и требуют разных подходов в очистке. Но не нужно беспокоиться об этом заранее. Обычно с удалением тяжелых металлов сталкиваются те, кто занимаются очисткой сточных вод. Но и в водоподготовке хозяйственно-бытовой воды иногда случается столкнуться с удалением тяжелых металлов. Обычно это загрязнение антропогенного характера. Крайне редко приходится сталкиваться с превышением ПДК по солям тяжелых металлов в воде скважин. Поэтому анализ на этот вид загрязнения делают только при подозрении на присутствие в воде подобных солей. Однако, в настоящее время нет четкого определения что такое тяжелые нет. Кто-то причисляет к тяжелым металлам особо токсичные соединения, кто-то металлы с атомной массой более 50, к которым относится и железо, кстати. Так что вопрос с тяжелыми металлами довольно не простой.

Удаление ионов солей тяжелых металлов:

  • Первый вариант удаления солей тяжелых металлов заключается в повышении pH до критического (для этих солей) уровня 8-9, при котором они выпадают в осадок, не без добавления коагулянтов и флокулянтов, конечно. Осадок удаляют отстаиванием, гравитационным методом — центрифугой, фильтрацией.
  • Второй способ — обратный осмос. В бытовых условиях годится обычная мембрана, в промке используются специальные мембраны устойчивые к специфическим агрессивным веществам.

Аммиак (Nh4) и Аммоний-ион (Nh5+)

Аммиак — это газ с характерным запахом, органическое соединение, чаще всего присутствует в стоковых водах животноводческих, садовых организаций и всяких пром. предприятий. Всем известный «нашатырь» (нашатырный спирт) и есть водный раствор гидроксида аммония. Все прекрасно знают этот запах — ближайшая ассоциация — общественный туалет. Аммиак широко используют в быту и промышленности, еще его используют для длительного обеззараживания воды на очистных и при нарушении схемы дозации он может незначительно (или значительно 🙂 ) превышать ПДК городской воды на ряду с остаточным хлором.

Аммиак относится к малоопасным веществам, но в соединениях может создавать токсичные вещества. Плотность этого газа в два раза меньше, чем у воздуха, молекула обладает высокой полярностью, потому он очень хорошо растворим в воде.

В воде он присутствует в двух формах: аммиак и аммоний. Их сумма составляет общий аммонийный азот.

Для эффективного удаления аммиака сначала определяют pH и жесткость воды.

Содержание аммиака а аммоний-йонов зависит от показателя жесткости воды. Аммиак присутствует в воде только при высоких показателях pH — больше 8, в обычных условиях (pH <преобладает аммоний. Удаляется в целом довольно легко и разнообразными путями, поэтому удаление аммония и аммиака отдельного процесса в бытовой водоочистке не требует.

Основные методы очистки воды от аммиака в бытовых системах водоподготовки:

  • дозирование гипохлорта натрия,
  • аэрация с последующей фильтрацией на сорбентах
  • ионообменным путем на цеолите,
  • ионообменным путем на сильнокислотном катионите (аммоний имеет положительный заряд)
  • обратный осмос

в очистке сточных вод и на городских ВЗУ используют и биологический метод.

Короче, бояться превышения ПДК по аммиаку в анализе не стоит. Если запах и привкус воды не беспокоит — значит и нет у Вас в воде никаких аммиачных загрязнений. А если есть — они убираются любым из методов водоочистки, который Вам предстоит применить.

Нефтепродукты

Если в Вашей воде нашли нефтепродукты: Поздравляю! Вы без пяти минут обладатель собственной нефтяной трубы! 🙂 И очень хочется надеяться, что когда-нибудь нефть будет бить фонтаном в моем доме, но, к сожалению, правда жизни в том, что преимущественно нефтепродукты в воде — это антропогенный фактор, влияющий на воды верхних водоносных слоев — верховодку и грунтовые воды, загрязненные пром.преприятиями. Хотя, бывает, в местностях с нефтяными залежами нефтепродукты попадают в воду скважин.

Впрочем, это большая редкость. В Московском регионе это будет 100% антропогенным загрязнением. При обнаружении превышения нефтепродуктами ПДК подземного источника водоснабжения нужно сделать расширенный анализ воды для исключения попадания в воду тяжелых металлов и других опасных соединений, которые обычно в воде не обнаруживают.

Удаляются нефтепродукты:

  • в больших концентрациях отстаиванием, специфическими механическими методами очистки, как, например, бензомаслоуловителями (иначе их называют жироуловителями — уловить… и на продажу :)) шутка, обычно сжигают)
  • в малых концентрациях химическими методами с использованием реактивов: эмульгаторы эмульсий,
  • (ПАВ) Поверхностно-активными веществами.
  • Сорбентом МС (простой и действенный способ)
  • специальным волокном
  • биологическим путем (нефть — это органика)
  • угольной сорбцией (наиболее пригодный метод для бытовой водоочистки после сорбента МС).
  • пенополиуретановыми нефтесорбентами, алюмосиликатом, специальным песком

Нитраты (NO3) и Нитриты (NO2)

Нитраты — соль азотной кислоты. Нас постоянно пугают нитратами в овощах, поэтому обнаружение нитратов в воде вызывает тихий ужас, но не все так страшно. Нитраты сами по себе безобиды, но в организме они могут преобразовываться в нитриты и нитрозамины, которые уже являются сильно токсичными веществами! При отравлении ими человек буквально испытывает дефицит кислорода! Выводятся нитриты из организма долго. Особенно опасны нитриты детям и чем мельче детеныш, тем опаснее для него нитриты. Поэтому будьте бдительны! Нитраты и нитриты в питьевой воде — опасны для Вашей семьи! При превышении нитратов в воде следует принять меры по очистке такой воды. Пугаться не стоит, они могут коварно проявиться только при длительном употреблении в пищу, для хозяйственно-бытовых нужд нитриты и нитраты в воде опасности не представляют, но Вы же знаете своих детей — они пьют воду из всех кранов дома.

Нитраты являются антропогенным загрязнением воды, попадают в верхние слои (верховодку и грунтовую воду) с сельхоз.полей и сточных вод. Практически не встречаются в артезианских и глубоких скважинах на песок.

Очистка воды от нитратов и нитритов:

  • Ионообменным путем с помощью специальной нитрат-селективной смолы. Lewatit MonoPlus SR7, либо Purolite А-520Е, либо Resinex NR-1 Эти смолы намного дороже обычного катионита и удаляют из воды только нитраты и нитриты. Еще предположительно АВ-17-8с смола подходит для удаления нитратов.
  • обратным осмосом для получения чистой питьевой воды.

Определить наличие нитратов в воде можно с помощью специального экспресс-теста ВИДЕО

Сероводород (h3S)

Сероводород — это газ, имеющий характерный запах, который мы все прекрасно знаем — запах тухлых яиц. Это я не сам придумал, так в Википедии написано. Формула его химичская — h3S, а это значит, что сероводород, диссоциируясь является восстановителем и помимо вонизма создает еще ряд неприятностей в процессах водоочистки — замедляя и затрудняя процесс окисления металлов. Кроме того, сероводород не поддается удалению ионообменными смолами и тем самым связывает руки всяким ГЕЙзерам и ЭГОдарам для продвижения их чудо-смесей для удаления всего и вся на основе ионообменных смол, иначе рынок был бы завален нафиг этими неадекватно дорогими продуктами.

Сероводород редко отражают в анализе воды «благодаря» его летучести. Без специального консерванта довезти воду до лаборатории, в которой все еще остался сероводород для количественной его оценки весьма затруднительно. Тем более, что концентрации его микроскопичны — ПДК 0,003мг/л, ну и 0,006 уже считается большим количеством.

Сероводород не является опасным газом. Да, он ядовит в больших концентрациях, но это черезвычайно большие концентрации, в бытовых условиях с которыми нам столкнуться не светит. В тех концентрациях, с которыми мы имеем дело сероводород является лечебным вонючим ветерком. Но присутствие его в системе водоснабжения неприятно. Это двойная вонь. Сама по себе холодная вода пахнет, а в боилере этот запах усиливается многократно + сероводород является питанием для бактерий, которые для нас совершенно нежелательны.

Сероводород удаляется несколькими способами:

  • номер один — дозация гипохлорита натрия. Сероводород распадается на серу и воду. Сера в виде сульфатов задерживается в загрузке обезжелезивателя (5 мг АХ на 1мг h3S)
  • номер два (наиболее широко используется) — аэрация. Открытая или напорная. Про такой способ говорят: «отдуть сероводород». Т.к. он труднорастворим в воде, то охотно замещается воздухом
  • озонирование (0,5мг озона на 1 мг h3S) рискованно образование серной кислоты при передозивке озона
  • пиролюзит, некоторые сорбенты удаляют сероводород
  • цеолиты удаляют небольшое количество сероводорода
  • угольная сорбция
  • обратный осмос

Сульфаты (SO42-)

Сульфат-ионы являются смежным «продуктом» сероводорода. Иногда их в анализе ставят в один ряд, что не верно. Сульфаты не несут никакого вреда человеку, их концентрация по ПДК в питьевой воде 500мг/л — это в 166 тысяч раз больше, чем концентрация сероводорода и в 5000 раз больше, чем концентрация марганца. Сульфат магния, сульфат натрия, используются в медицине, в качестве лекарственных средств. Тем не менее, большое количество сульфатов, наравне с хлоридами может придавать воде горький вкус. Кроме того, сульфат кальция может откладывать на теплообменниках, как и карбонат кальция.

Удаление сульфатов делает:

  • Ионообменным путем — сильноосновными анионитами (может быть добавкой к катиониту в умягчителе)
  • обратным осмосом

Хлориды (HCl)

Хлориды — это соединения хлора с различными металлами и минералами, а иначе говоря — хлорные соли. Они вредны для здоровья в превышении ПДК 350мг/л, к тому же придают повышают коррозийные свойства воды. Кроме того, вода, насыщенная хлоридами, при попадании в организм человека, раздражает кожу, дыхательные пути, глаза, слизистые оболочки.  И поэтому в водоочистке их надо удалять еще маленькими.

Удаляют хлориды:

  • угольной сорбцией
  • обратным осмосом

Фториды (Фтор, F)

Фториды — это соли фтора. Являются высокотоксичными веществами, фториды делают людей безинициативными и безвольными существами ВИДЕО_1, ВИДЕО_2, ВИДЕО_3 поэтому в пищу не используются. Фтор играет важную роль в образовании и регенерации костей, зубов и превышение его концентраций может вызывать нарушение минерализации костных тканей животных и людей (флюороз). При превышении ПДК в 6 раз может быть серьезное токсическое отравление с поражением костного мозга.

В природной воде (чаще в артезианской) редко обнаруживается превышение ПДК фтора и фторидов, поэтому реальное его превышение как правило говорит об антропогенной природе (загрязнение окружающей среды плохими дядями и тетями) и заподозрить превышение фтора можно по органолептическому анализу — ощущению химического запаха и привкуса воды.

Удаляются фториды следующими методами:

  • сорбцией угольной (углями марок СКТ, БАУ, КАД)
  • ионным обменом сильноосновными анионитами
  • сорбцией на специфическом материале — гидроокись аллюминия
  • обратным осмосом
  • электрокоагуляцией

Бактерии, Вирусы (Общее микробное число)

  • хлорирование
  • озонирование
  • ультразвуковое обеззараживание
  • ионы серебра
  • ионообменным путем на китаоните Purolite C-100Ag, С-150Ag
  • угольная сорбция
  • обратный осмос
  • УФ-облучениенах

Запах и привкус воды

Вода — h3O не обладает ни вкусом ни запахом. Но такая вода в природе не существует. Мы всегда имеем дело с водными растворами, но говорим «вода» для простоты. Запах и вкус воды обусловлены растворенными газами, органическими и неорганическими веществами, нефтепродуктами и прочими загрязнениями и часто мы можем органолептически сказать чем загрязнена вода — железом, сероводородом, аммиаком, либо органикой. Если присутствует запах воды, значит есть что-то в этой воде «дающее» этот запах. Следует очистить эту воду и запах и вкус воды исчезнут.

Методы улучшения органолептических свойств воды:

  • весь спектр методов очистки воды от обнаруженных загрязнений
  • угольная сорбция
  • обратный осмос

Мутность, Цветность

Мутность и цветность воды обусловлены так же как и вкус с запахом наличием в воде загрязняющих веществ. Похоже, что эти слова не несут в себе никакой информации, потому что каждому и так понятно, что вода по своей природе не имеет ни цвета ни мутности, она совершенно прозрачна, как и воздух, который может быть сегодня кристально чистым и видно за 30 км вдаль, а завтра пришел циклон и видимость снизилась до соседнего дома. Тоже самое и с водой. Часто мы имеем дело с мутной водой, с водой, окрашенной в рыжий, коричневый, желтый цвета. Сама по себе цветность и мутность воды не говорит о характере загрязнений, но какие-то загрязнения точно есть. Цветность определяется в лаборатории после фильтрации воды через бумажный фильтр, что говорит о более мелких частицах, которые придают цвет воде.

Удаляются цветность и мутность по существу всеми доступными механическими способами, как то:

  • осветлением. Это пропускание воды через осветляющую загрузку (сорбент) засыпного фильтра.
  • фильтрацией с помощью разнообразных картриджей и мембранн, в том числе и обратным осомосом
  • коагуляцией, флокуляцией, затем отстоем воды

Железо, Марганец

Обезжелезивание и деманганация воды — наиболее насущные процессы в современной водоочистке (по средней полосе РФ сужу). Читайте статью на эту тему. Железо присутствует в воде во множестве форм и все эти формы нарушают органолептические свойства воды и снижают ее пригодность для хоз-бытовых и питьевых нужд вплоть до полной непригодности воды. Основные формы нахождения железа в воде, с которыми сталкивается человек, задавшийся целью очистить воду в своем доме — это двухвалентное растворенное состояние, трехвалентное нерастворенное коллоидное и в виде более крупных частиц, а так же органика — железобактерии. Тоже самое касается марганца, который окисляется труднее и медленнее, но и его, как правило, значительно меньше в воде, чем железа.

Методы удаления железа и марганца из воды не хватит пальцев на руках и ногах, чтобы перечислить все, основные бытовые:

  • трехвалентное железо удаляется осветлением воды
  • окислением дозацией гипохлорита, либо аэрацией напорной и безнапорной и последующая фильтрация на загрузке обезжелезивателя, которая может быть каталитической или инертной.
  • окисление и фильтрация с помощью автокаталитических загрузок, проявляющих окисляющие свойства без внешних окислителей (без кислорода и активного хлора).
  • двухвалентное железо удаляется ионообменным путем с помощью сильнокислотного катионита
  • сорбцией угольной удаляются небольшие концентрации железа
  • обратным осмосом
  • картриджи обезжелезивания с успехом применяются при незначительных превышениях железа и малых расходах воды

Водородный показатель pH

pH — водородный показатель. Это степень диссоциации молекул воды на Н+ катион и ОН- гидроксид анион в 10 минус (1-14) степени. Для простоты отображается, как pH от 1 до 14, где 7 — нейтральная вода, меньше 7 кислотная реакция, больше — щелочная. Чтобы разобраться в этой крайне непростой теме мне понадобилось пара лет, но Вы сможете сразу понять о чем идет речь, если загляните на страницу по ссылке водородный показатель — там есть пара неплохих учебных видео, которые прекрасно — быстро и просто объясняют это явление.

Степень диссоциации воды — pH, водородный показатель оказывает критическое влияние на процессы окисления растворенных металлов. Так, например, большинство загрузок обезжелезивателя полностью утрачивают свои каталитические свойства в отношении железа при pH ниже 6, а ниже 5.5 не работает ни одна каталитическая загрузка. Марганец удаляется при pH от 7, тяжелые металлы от 8-9.

Поэтому pH — крайне важен для процессов очистки воды, но так же pH сильно влияет и на здоровье человека. Мы все слышали словосочетание «кислотно-щелочной баланс» выдуманный маркетологами! Дай Бог здоровья маркетологам… а для здоровья человека питьевая вода должна иметь pH 7.5-7.9, что не верно отображено СанПиНом в их ПДК 6-9, потому что нельзя постоянно пить воду с pH ниже 7, но это долгая тема… мы говорим о методах водоочистки.

Процессы водоочистки связаны с окислением тех или иных веществ, я ни разу не слышал о том, чтобы приходилось применять методы восстановления. Поэтому pH нужен чем выше, тем лучше. Обычно исходная вода имеет pH от 6.8 до 7.5 — это нормальный показатель и как-то его корректировать для успешной очистки воды не требуется. Эта же вода годится и для питьевых нужд. Но если pH ниже 6.8, то его нужно повышать.

Методы повышения pH и водоочистка с низким pH:

  • с помощью pH — коррекции. Пропускание воды через загрузку Кальцит.
  • с применением фильтрующих сред, повышающих pH, например Сорбент МС
  • реагентным методом — дозация гидроксида натрия
  • применение для очистки воды с низким pH ионообменных процессов на сильнокислотных и сильноосновных смолах.
  • Коррекция pH с помощью картриджа после водоочистки

Окисляемость перманганатная

Перманганатная окисляемость характеризует общее количество растворенных в воде органических и минеральных веществ, окисляемых при помощи перманганата калия, выражается в мг О2 на литр. (мгО2/л) Буквально означает: «Сколько кислорода затрачено на полное окисление всех органических веществ, растворенных в анализируемой воде».

Этот обобщающий параметр характеризует общую степень загрязнения воды органическими веществами, т.к. их природа крайне разнообразна (природные, техногенные) и чтобы выявить каждый вид и его количество нужно сделать десяток дорогостоящих сложных анализов. А здесь мы быстро получаем результат всего лишь добавив пару капель реагента в воду.

Итак, высокая перманганатная окисляемость — это органические вещества — гуминовые и фульвокислоты, загрязнения антропогенного характера (загрязнения с полей, ферм, пром.предприятий). Норма ПДК СанПиН — не более 5мгО2/л

Методы удаления органических веществ по сути делятся на два направления извлечение и разрушение:

  • Окисление дозацией гипохлорита, аэрацией или озонирование с последующей фильтрацией на сорбентах или Greendsand
  • Ионообменные смолы-органопоглотители, так называемыми «скавенжеры» (слабоосновные аниониты с пористой структурой)
  • Разрушение жестоким ультрафиолетом (эффективно только в замкнутых циклах, например бассейны)
  • Сорбция угольная (метод извлечения)
  • Обратный осмос (фильтрация через мембрану и смыв в канализацию)
  • Коагуляция и отстой (открытые емкости)

Хлор остаточный

Остаточный хлор наблюдается в воде из городского водопровода. Вода хлорируется для удаления органических веществ и препятствия заражению воды во время перемещения ее от очистных сооружений к потребителю внутри трубопровода.

Остаточный хлор так же имеет место быть в системах очистки воды с применением дозации гипохлорита. Помимо органолептического обнаружения (вонизма) хлор плохо влияет на здоровье человека, не рекомендуется пить хлорированную воду и тем более кипятить ее с целью удаления хлора.

Методы удаления остаточного хлора:

  • Угольная сорбция
  • Выветривание в открытой емкости

Общая минерализация (Сухой остаток)

Сухой остаток определяется в лаборатории (в мг), как вес остатка после полного испарения отфильтрованной бумажным фильтром воды.

Характеризует (частично) общую минерализацию, иначе говоря общую солевую насыщенность воды, а еще проще говоря — общее количество растворенных в воде веществ. Сухой остаток и общая минерализация немного различны, т.к. при испарении из воды уносятся многие летучие вещества, входящие в состав минерализации, но для наших целей бытовой водоочистки эти понятия очень схожи и разграничивать их просто незачем. Сухой остаток характеризует количество именно растворенных веществ, потому что взвеси — мутность, цветность не являются частью раствора, а как бы «плавают» в воде — прежде, чем определять сухой остаток их удаляют бумажным фильтром. Газы улетучиваются во время выпаривания воды.

В жесткой воде общая минерализация может превышать 1000мг/л — это очень много, а хорошей питьевой воде минерализация не превышает 100-150мг/л, вода очищенная обратным осмосом имеет общую минерализацию 15-30 мг/л

Методы снижения минерализации:

  • известково — содовый реагентный метод.
  • обратный осмос
  • дистиляция

Жесткость общая

удаляется умягчением

Рассказать друзьям

ochistkavodi.ru

Способ очистки вод от нефтепродуктов

Изобретение относится к способам очистки пресной и морской воды, загрязненной, в том числе эмульгированными, нефтепродуктами, минеральными и пищевыми маслами, и может быть использовано для тонкой очистки сточных вод различных предприятий, а также пластовых и промысловых вод. Способ очистки вод включает введение в очищаемую воду катионного флокулянта и последующую фильтрацию, причем очистку осуществляют в непрерывном режиме при рН от 7,0 до 10,5, а в качестве катионного флокулянта используют раствор хитозана в количестве 1-300 мг на литр очищаемой воды. Предпочтительно очистку вести при рН очищаемой воды 8,0-10,5 и при температуре очищаемой воды от 0 до 75°С. Фильтрацию проводят с использованием гидрофильного и/или гидрофобного сорбента, причем в качестве гидрофильного сорбента используют песок, или кварцевый песок, или керамзит, или цеолит, а в качестве гидрофобного сорбента используют активированный уголь или гидрофобизированные алюмосиликатные материалы. В качестве гидрофобного сорбента используют фильтрующую засыпку, состоящую из 2-х слоев гидрофобизированного алюмосиликатного материала, при этом первый слой состоит из материала с размером частиц 5-25 мм, а второй 0,1-3,0 мм. Способ обеспечивает непрерывный режим и интенсификацию процесса очистки за счет увеличения образования флоккул. 8 з.п. ф-лы, 4 табл., 2 ил.

 

Изобретение относится к очистке пресной и морской вод, загрязненных нефтепродуктами, минеральными и пищевыми маслами, и может быть использовано для тонкой очистки сточных вод различных предприятий, а также пластовых и промысловых вод.

Комплексное решение задачи очистки вод от масел и нефтепродуктов (НП) требует разработки эффективных методов удаления не только НП, находящихся в свободном состоянии (плавающая пленка, слой, крупные капли), но и тонкодисперсных (эмульгированных) и растворенных НП. Наличие в водах устойчивых микро- и наноэмульсий, часто дополнительно стабилизированных поверхностно-активными веществами (ПАВ), существенно снижает эффективность известных механических, флотационных, коалесцентных и мембранных (ультрафильтрация) технологий, а также не позволяет достигать высоких степеней очистки адсорбционными методами как ввиду плохой кинетики сорбции НП в эмульгированном состоянии, так и в результате блокирования микро- и мезопор гидрофобных материалов, приводящего к резкому снижению адсорбционной емкости сорбентов и, следовательно, уменьшению срока их службы и увеличению стоимости водоочистки.

В связи с этим эффективное разрушение стабильных эмульсий "масло-в-воде" является необходимым условием как для обеспечения максимально возможной степени извлечения НП в процессах механической очистки, так и для предварительной подготовки к стадии глубокой очистки до уровня ПДК с применением адсорбционных технологий.

Одним из наиболее эффективных и экономически приемлемых методов удаления эмульгированных нефтепродуктов является метод флокуляции/коагуляции, направленный на нейтрализацию стабилизирующего эмульсию заряда и укрупнение диспергированных частиц в быстро оседающие или собирающиеся на поверхности агрегаты. Процесс очистки осуществляется путем добавления в воду, содержащую НП, неорганических коагулянтов (обычно солей железа и алюминия) и/или синтетических полимерных флокулянтов, как катионного, так и неионного характера. Отделение осадка может осуществляться как отстаиванием, так и с применением флотации, фильтрации и других механических методов очистки.

Для достижения эффективного удаления эмульгированных НП при использовании неорганических коагулянтов требуется значительный расход реагентов, что приводит к образованию больших объемов труднофильтрующихся осадков. Упрощает процесс переработки загрязненных вод применение полимерных флокулянтов, позволяющих за счет снижения требуемой дозы реагентов сократить объем образующихся осадков при сохранении эффективности очистки. В ряде случаев наилучший результат достигается при совместном использовании коагулянта и флокулянта. На первой стадии добавление коагулянта в количестве, недостаточном для полной нейтрализации заряда, приводит к образованию мелких трудноосаждаемых флокул, которые связываются в большие агломераты путем добавления полимеров с высокой молекулярной массой на второй стадии.

В то же время известно, что даже среди катионных полиэлектролитов далеко не все полимеры обладают достаточно хорошими деэмульгирующими свойствами, кроме того, для образования флокул часто требуется довольно продолжительное время (до нескольких часов), что не позволяет проводить очистку в потоке и требует дополнительных резервуаров для созревания флокул.

Известно применение в качестве деэмульгаторов эмульсий "масло-в-воде" гидрофобно-модифицированных сополимеров аллилметакрилатов и диаллилдиметил аммония хлорида (патент США №5635112, опубл. 03.06.1997). Однако процесс образования флокул с их использованием происходит довольно медленно, а рабочие концентрации используемого флокулянта достаточно высоки - до 3000 мг на литр очищаемой воды в 5% эмульсии.

Преимущество всех органических деэмульгаторов (полиамины, полиакрилаты и их замещенные сополимеры) заключается в значительно меньшем вводимом количестве в очищаемую воду и значительно меньшем количестве образующихся при этом шламов, однако их существенными недостатками являются токсичность, канцерогенность и бионеразлагаемость.

Известен способ очистки сточных вод от нефти и нефтепродуктов, используемый для тонкой очистки пластовых и промысловых вод (патент РФ №2179953, опубл. 27.02.2002). Способ включает пропускание воды с заданными скоростями сначала через слой гидрофобного сорбента, в качестве которого используют горелую породу с определенным размером частиц, затем гидрофильного - хлопкосодержащего. Очистку ведут до получения определенного соотношения между массой сорбируемой нефти и массой используемого сорбента. Способ обеспечивает высокую степень очистки, но неприемлем для вод с повышенным содержанием нефтепродуктов (выше 100 мг/л) и чрезвычайно длителен.

Известен способ очистки природных и сточных вод от нефтепродуктов в две стадии, на первой из которых очищаемую воду пропускают через двухслойный фильтр, состоящий из слоев угля и песка, а на второй - через однослойный угольный фильтр. Способ обеспечивает степень очистки до 0,1-0,2 мг/л, но при невысоком первоначальном содержании нефтепродуктов в очищаемой воде - 3-7 мг/л (а.с. СССР №1632463, опубл. 07.03.1991).

Известен способ очистки вод, в том числе и от нефтяных загрязнений, в котором коагуляция, сорбция и флотация совмещаются, при этом интенсификация очистки сточных вод достигается за счет применения флотации с использованием сорбента, что позволяет исключить предварительную очистку исходной воды от "взвешенных" примесей перед применением сорбента. Дополнительно для интенсификации флотации и гидрофобизации образовавшихся флокул и сорбента используют активированную водную дисперсию воздуха, представляющую собой смесь воды, воздуха и ПАВ, что значительно увеличивает скорость флотации и степень очистки обрабатываемой воды (патент РФ №2174961, опубл. 10.20.2001.).

Способ позволяет создавать модульные установки и очищать воду до содержаний нефтепродукта ниже 0,05 мг/л, но он неэффективен для удаления "взвешенных" примесей, загрязняет воду ПАВ, что резко ограничивает область применения воды, очищенной этим способом. Кроме того, перед флотацией требуется стадия отстаивания для созревания флокул, что не позволяет использовать известный способ в непрерывном режиме и в целом увеличивает время очистки.

Известен способ очистки сточных вод и вод хозяйственно-питьевого и промышленного назначения от нефтепродуктов, коллоидных частиц, органических соединений и поверхностно-активных веществ (ПАВ), при котором воду обрабатывают в непрерывном режиме смесью коагулянта с флокулянтом и активирующей добавки в виде газообразного реагента (воздуха, кислорода или озона) или жидкого реагента (катионный полиэлектролит, растворы неорганических солей или ПАВ или высокомолекулярные соединения или их смеси) и дополнительно воздействуют упругими колебаниями с последующим флотационным или фильтрационным удалением образовавшегося осадка (патент РФ №2214972, опубл. 27.10.2003).

Способ требует специального оборудования, при этом энергозатратен, длителен, применим для вод со средней степенью загрязнения (по нефти до 200 мг/л) и недостаточно эффективен. После обработки содержание взвешенных частиц и нефтепродуктов составляет от 2 до 0,4 мг/л.

Известен способ очистки промышленных вод в потоке от эмульгированных масел путем добавления в очищаемую воду 0,5-500 мг/л катионного производного полиакриламида, полученного полимеризацией в присутствии солей полиосновных кислот, с последующим разделением фаз любым традиционным способом (патент США №6036868, опубл. 17.03.2000).

Использование данного флокулянта не требует введения вспомогательных реагентов, в том числе коагулянтов и ПАВ, и позволяет эффективно разрушать эмульсии при чрезвычайно низких концентрациях полимера. Вместе с тем, применение деэмульгаторов данного типа требует точной дозировки вследствие высокой плотности положительного заряда на полимере, приводящей к рестабилизации эмульсии при превышении оптимальной дозы.

Известен способ очистки вод от эмульгированных примесей при добавлении 0,5-1000 мг/л катионного полиэлектролита, полученного путем сополимеризации эпигалогидринов с полиаминами (патент США №4059515, опубл. 22.11.1997). Однако данный полимерный флокулянт рекомендуют применять совместно с солями алюминия в качестве коагулянта или же с анионными производными полиакриламида в качестве второго флокулянта, т.к. использование одного предлагаемого флокулянта не эффективно. При этом проведение процесса в присутствии солей алюминия требует контроля рН раствора, что предполагает введение кислоты, как правило серной, наличие специального устройства для поддерживания рН в нужных пределах, а также использование коррозионно-устойчивого оборудования. Кроме того, присутствие солей алюминия, как и любых других коагулянтов, приводит к образованию большего объема осадков, что затрудняет очистку и создает проблемы утилизации образуемого шлама.

Известен двухстадийный способ очистки от эмульгированных примесей сточных вод птице-, рыбо-животноводческих ферм, включающий на первой стадии обработку сточных вод катионным полиэлектролитом, нейтрализующим заряд коллоидных частиц, а на второй стадии анионным или неионным флокулянтом с высоким молекулярным весом. Первым может быть природный катионный полимер - хитозан, а вторым - синтетический полимер, преимущественно полиакриламид или его производные с высоким молекулярным весом. При этом в зависимости от типа очищаемой сточной воды изменяются как используемые природные флокулянты, так и порядок их добавления: для эффективной очистки вод птицефабрик после прибавления раствора хитозана вводят ксантогенированную смолу, для очистки вод рыбохозяйств требуется введение в качестве природного флокулянта совместно с хитозаном бентонита и последующее введение альгината, а для очистки вод свиноводческих ферм существенным являются свойства воды, и в зависимости от этого добавление альгината осуществляют как до, так и после введения хитозана, при этом при амфотерности вод дополнительно вводят еще и бентонит. Кроме того, из-за кинетики процесса образования флокул во всех перечисленных водах способ предполагает точное выдерживание технологических параметров процесса, а именно на первой стадии для создания условий образования частиц в диаметре не больше 2 мм требуется высокоинтенсивное перемешивание, а на второй стадии - перемешивание средней интенсивности для создания условий образования больших прочных флокул. Кроме того, существенным и необходимым моментом этого процесса является нейтрализация потока вод для получения флокул соответствующего размера на каждой из стадий (патент США №5433865, опубл. 18.07.1995).

Наиболее близким к заявляемому способу является способ очистки воды от нефтесодержащих загрязнений по патенту США №5730882, опубл. 24.03.1998. Способ включает обработку вод растворимым катионным полимером на основе полиакриламида с молекулярным весом выше 1 млн при постоянном перемешивании, последующее отстаивание очищаемого раствора для формирования и осаждения образовавшихся флокул, а затем при необходимости глубокой очистки - удаление из отстоянной воды растворимых углеводородов путем пропускания ее через адсорбенты, в качестве которых могут быть использованы гидрофобные сорбенты типа гранулированного или порошкообразного углерода, смолы и микропористые полимеры.

Способ позволяет при содержании углеводородов в очищаемой воде 10-250 мг/л получить после стадии отстаивания концентрацию нерастворимых углеводородов в воде от 40 до 5 мг/л.

Однако из-за невысокой скорости образования флокул способ не дает возможности проводить процесс очистки в непрерывном режиме, так как требуется время для созревания флокул, обеспечиваемое стадией отстаивания воды. Кроме того, применение в качестве флокулянта полиакриламидного полимера с высокой плотностью заряда предъявляет особые требования к его дозировке, при превышении которой происходит рестабилизация эмульсии и, как следствие, нулевая эффективность очистки. Необходимо также принимать во внимание токсичность полиакриламидных флокулянтов, загрязняющих очищенную воду, и их недостаточную эффективность для очистки вод, содержащих стабилизированные нефтяные эмульсии.

Задача изобретения - повышение степени очистки вод, в том числе морской воды, от эмульгированных нефтесодержащих примесей в непрерывном режиме и интенсификация процесса очистки, достигаемые за счет увеличения скорости образования флокул.

Поставленная задача решается способом очистки вод от эмульгированных нефтепродуктов в непрерывном режиме путем введения в поток исходной воды при рН от 7 до 10,5 раствора хитозана в количестве 1-300 мг на литр очищаемой воды и последующей фильтрации.

Способ осуществляют следующим образом.

Рабочий раствор хитозана, приготовленный стандартным способом путем растворения навески хитозана в растворе соляной кислоты, дозируют в поток очищаемой воды в необходимом количестве и смесь немедленно направляют на стадию фильтрации, пропуская поток воды через соответствующий фильтр.

Дозу необходимого количества флокулянта-хитозана для данного типа очищаемой воды определяют предварительно известными способами, например, путем добавления при перемешивании аликвотных порций используемого рабочего раствора хитозана к известному объему загрязненной воды, с последующим визуальным или фотометрическим определением области концентраций полимера, соответствующей максимальному падению мутности (Овчаренко С.В., Головко А.В. Флокулянты и качество питьевой воды. - X.: Основа, 2001. - 200 с.).

Экспериментально определено, что выход за пределы заявленного концентрационного интервала хитозана приводит к ухудшению показателей очистки.

Способ применим для очистки вод, содержащих до 1000 мг/л эмульгированных НП в температурном интервале от 0 до 75°С как в пресных водах, так и в морской воде.

Для повышения степени очистки вод фильтрацию очищаемой воды проводят в две стадии: сначала через слой гидрофильного сорбента, а затем для удаления растворенных НП через слой гидрофобного сорбента.

В качестве фильтрующих материалов в способе могут быть использованы любые известные эффективные засыпки, например, песок, кварцевый песок, керамзит, цеолит в качестве гидрофильных сорбентов, а активированный уголь, гидрофобно-модифицированные керамзит и вермикулит в качестве гидрофобных.

Предлагаемый в качестве флокулянта для эмульгированных нефтесодержащих вод хитозан является промышленно выпускаемым деацетилированным производным хитина и производится из отходов, образующихся при промышленной переработке панцирей членистоногих. Его использование в заявляемом способе в качестве флокулянта для нефтесодержащих вод обеспечивает интенсификацию процесса очистки, экологическую безопасность, не требует жесткого контроля за вводимой дозой, позволяет работать на пресных и морских водах в непрерывном режиме очистки и широком интервале рН от 7,0 до 10,5, предпочтительно 8,5-10,5, с высокой эффективностью очистки.

Предварительно проведенные заявителем исследования кинетики изменения размера частиц в эмульсионном растворе при добавлении раствора хитозана показали, что в заявленном интервале рН в течение первых 30 секунд происходит скачкообразное уменьшение количества частиц в растворе, соответствующее кооперативному эффекту связывания частиц эмульсии и молекул хитозана в макрочастицы-флокулы с размером частиц 1-3 мм, по данным микроскопии.

Вероятно, высокая скорость образования флокул "НП-хитозан" связана не только с высокой плотностью положительного заряда на полимерной цепи хитозана, обеспечивающей эффективную нейтрализацию отрицательного заряда эмульсии, но и с его способностью образовывать мостики между дисперсионными частицами эмульгированных НП, вызывая укрупнение флокул, что приводит к увеличению степени очистки и ее интенсификации.

Динамический режим отделения флокул хитозан-НП в слое фильтрующего материала по заявляемому способу был изучен на лабораторной установке, схема которой приведена на фиг.1.

Установка состоит из емкости (1) с очищаемой водой, погружного насоса (2), дозатора (3) и системы фильтров (4) и (5).

Концентрацию НП на выходе, а также после каждого из фильтров (4 и 5) определяли методами ИК-спектроскопии или флуориметрии после экстракции четыреххлористым углеродом и гексаном соответственно.

Проведенные эксперименты с различными фильтрующими материалами (кварцевый песок, цеолит, керамзит, гидрофобно-модифицированные керамзит и вермикулит, активированный уголь) показали, что на эффективность и скорость флокуляции в системе "эмульсия НП-хитозан" оказывает заметное влияние также и поверхность сорбента, используемого при фильтрации. Кроме того, эффективность и интенсификация процесса очистки в заявляемом способе достигается не только за счет флокуляционных свойств примененного флокулянта - хитозана, который, как показали наши исследования, из-за сродства к гидрофобным веществам позволяет также частично удалять из очищаемой воды и растворимые углеводороды, повышая тем самым степень очистки, но и за счет используемых типов сорбентов, которые, в свою очередь, дополнительно интенсифицируют разрушение микро- и наноэмульсий на стадиях фильтрации, обеспечивая совместно с используемым флокулянтом-хитозаном максимальную глубину очистки в заявляемом способе.

Таким образом, в зависимости от степени загрязнения исходной воды и требуемой степени очистки вод стадия фильтрации может быть одно- или двухступенчатой, включая фильтрацию через гидрофильный сорбент для удаления взвешенных примесей и флокул или последовательно сначала через гидрофильный сорбент, а затем гидрофобный сорбент для удаления растворимых НП.

При реализации способа остаточная концентрация НП после фильтрации через слой гидрофильной засыпки составляет не более 5 мг/л при исходной концентрации эмульгированных НП в очищаемой воде 1000 мг/л, а в морской воде и при температуре 40-75°С достигает 0,5-2 мг/л, что позволяет в ряде случаев проводить сброс воды в водоемы без стадии фильтрации через гидрофобный сорбент.

Обнаружено, что максимально глубокая степень очистки до 0,05-0,1 мг/л достигается при использовании в качестве фильтрующего материала на первой стадии гидрофильного сорбента типа цеолита или кварцевого песка, а в качестве гидрофобного сорбента на второй стадии - активированного угля или фильтрующей засыпки, состоящей из 2-х слоев гидрофобизированного алюмосиликата, отличающихся размером фракций: первый слой - с размером частиц 5-25 мм, а второй слой из более мелкого сорбента - с размером частиц 0,1-3,0 мм, при этом в качестве алюмосиликата может быть выбран керамзит и/или вермикулит.

Заявляемое изобретение иллюстрируется следующими примерами

Пример 1.

Готовят модельную эмульсию НП диспергированием путем интенсивного встряхивания в течение 10 мин 0,5 мл дизельного топлива в 1 л горячей воды, с последующим регулированием рН (рН 6,0; 8,0; 8,5; 9,5; 11,0) добавлением раствора NaOH. Для оценки эффективности флокулянта к 100 мл эмульсии при постоянном перемешивании с помощью магнитной мешалки добавляли аликвотные порции 0,5% раствора хитозана в соляной кислоте и пропускали обработанную воду через колонку, заполненную керамзитом (фракция 0,1-0,3 мм), со скоростью 2 см/мин. Остаточную концентрацию НП на выходе определяли флуориметрическим методом по калибровочной кривой, предварительно полученной для используемого дизельного топлива. Результаты проведенных экспериментов представлены в таблице 1.

Таблица 1.
Концентрация хитозана, мг/лрНОстаточная концентрация НП, мг/лСтепень очистки, %
1506,020,595.90
1508,52,199.58
1509,51,899.64
15011,08,298.36
508,03,299.36
1508,02,299.56
3008,01,799.66
6008,07,298.56

Видно, что выход за пределы заявленного интервала концентрации хитозана (600 мг/л), а также допустимого диапазона рН (рН 6 и 11) снижает эффективность очистки.

Пример 2.

Приготовление эмульсии проводили аналогично примеру 1, но на основе разбавленной (1:1) морской воды и без регулирования рН, так как рН исходной эмульсии 7,9. Исследование эффективности удаления НП проводили в динамическом режиме на установке, представленной на фиг.1, но с использованием одного фильтра (4) с гидрофильным фильтрующим материалом (кварцевый песок, фракция 0,25-0,5 мм). Дозирование рабочего раствора хитозана осуществлялось непосредственно в поток очищаемой воды из расчета 50 мг/л, подаваемой на фильтрацию с линейной скоростью 2 см/мин, что соответствует пропусканию 20 колоночных объемов в час. Отобранные пробы фильтрата (30-40 мл) анализировали флуориметрически после экстракции гексаном. Результаты представлены в таблице 2.

Таблица 2.
Объем пропущенной воды, колоночные объемы20406080100
Остаточная концентрация НП, мг/л0,70,81,51,71,8

Пример 3.

Очистку модельной эмульсии, приготовленной аналогично примеру 1, при рН 8,5, и термостатируемой при температуре 70°С, осуществляли дозированием хитозана непосредственно в поток, как описано в примере 2, с последующим фильтрованием на термостатируемом при той же температуре фильтре с керамзитом (фракция 0,3-0,5 мм), линейная скорость фильтрации 2 см/мин. Остаточная концентрация НП в фильтрате после пропускания 200 колоночных объемов составляла не более 1,6 мг/л.

Пример 4.

Очистку модельной эмульсии, приготовленной аналогично примеру 1, при рН 8,5, осуществляли дозированием раствора хитозана непосредственно в поток, как описано в примере 2, с последующим ступенчатым фильтрованием через слой гидрофильного материала (кварцевый песок, фракция 0,30-0,5 мм) на первой стадии и через слой гидрофобизированного вермикулита (фракция 0,3-1 мм) на второй стадии. Линейная скорость фильтрации составляла 2 см/мин. Результаты эксперимента представлены в таблице 3.

Таблица 3.
Объем пропущенной воды, колоночные объемы1020304050
Остаточная концентрация НП после первого фильтра, мг/л0.80.81.81.81.8
Остаточная концентрация НП после второго фильтра, мг/л0.070.060.060.090.1

Пример 5.

Выполняли на натурных замазученных водах ФГУП "ДальРАО", май-ноябрь 2003 г., с содержанием НП в виде эмульсий, стабилизированных ПАВ, 240 мг НП/л, рН 8. Цель работ: снижение содержания НП в технических водах до 5 мг/л, общий объем очищенных вод 300 м3.

Испытания схемы флокуляционной очистки вод от НП проводили с использованием хитозана, гидрофильного сорбента (песчаная засыпка) и гидрофобных сорбентов, разработанных в Институте химии ДВО РАН, свойства которых приведены в таблице 4. В качестве фильтра с гидрофобным сорбентом использовали фильтр, который представляет собой устройство объемом 0,2 м3, верхний блок которого состоит из засыпки гидрофобизированного керамзита - высокопористого экологически чистого алюмосиликатного материала, представляющего собой шарики диаметром 5-25 мм, образованные в результате специальной обработки, а нижний блок - из более мелкого сорбента - гидрофобизированного вермикулита с размером частиц 0,3-3,0 мм, полученных по патенту РФ №1606182, опубл. 15.11.1990.

В поток загрязненной воды вводят дозатором 0,5% рабочий раствор флокулянта-хитозана из расчета 4 мг/л, что соответствует предварительно определенной оптимальной дозе, и при помощи насоса подают на фильтр с песчаной загрузкой с линейной скоростью 3-4 м/ч. После этой стадии остаточная концентрация НП не превышает 5,0 мг/л. Затем пропускают воду через фильтр с выше описанной гидрофобной загрузкой.

Результаты опытных испытаний по данному примеру представлены на фиг.2, где ось Х - объем пропущенных вод, м3; ось Y - содержание НП, мг/л. Видно, что прямая сорбционная очистка таких вод (до введения хитозана) не дает удовлетворительного результата. Несмотря на то, что статическая емкость гидрофобного сорбента не превышает общего содержания НП в водах, эффективность очистки при высоких скоростях потока низкая, что наряду с блокированием пор сорбентов каплями эмульсии приводит к постоянному росту остаточной концентрации НП в фильтрате. Сразу после начала дозирования хитозана наблюдается резкое увеличение эффективности очистки (кривая 1 - фильтрация через гидрофильный сорбент, а кривая 2 - через гидрофильный и гидрофобные сорбенты), с остаточной концентрацией НП, сохраняющейся на неизменно низком уровне (2 мг/л) и после пропускания 200 м3.

Таким образом, использование для очистки эмульгированных нефтесодержащих вод предлагаемого флокулянта - природного хитозана позволяет непосредственно после его введения в поток исходной воды направить очищаемые воды на стадию фильтрации, минуя стадию отстоя, что приводит к интенсификации процесса очистки. При этом простая механическая фильтрация достаточно крупных флокул "хитозан-НП" через гидрофильную засыпку фильтра, проведенная непосредственно после введения флокулянта-хитозана, позволяет снизить общее содержание НП в растворе эмульсий НП в десятки раз, практически до концентрации растворенных НП, что позволяет в ряде случаев избежать фильтрацию через гидрофобный сорбент, а при необходимости более глубокой очистки путем фильтрации воды через гидрофобную засыпку осуществить очистку вод до предельно допустимых концентраций сброса и увеличить реальную емкость дорогостоящего гидрофобного сорбента.

1. Способ очистки вод от эмульгированных нефтепродуктов, включающий введение в очищаемую воду катионного флокулянта и последующую фильтрацию, отличающийся тем, что очистку осуществляют в непрерывном режиме при рН от 7,0 до 10,5, а в качестве катионного флокулянта используют раствор хитозана в количестве 1-300 мг на литр очищаемой воды.

2. Способ по п.1, отличающийся тем, что очистку осуществляют при рН очищаемой воды 8,0-10,5.

3. Способ по п.1, отличающийся тем, что очистку проводят при температуре очищаемой воды от 0 до 75°С.

4. Способ по п.1, отличающийся тем, что очистке подвергают морскую воду.

5. Способ по п.1, отличающийся тем, что фильтрацию проводят с использованием гидрофильного сорбента.

6. Способ по п.5, отличающийся тем, что в качестве гидрофильного сорбента используют песок, или кварцевый песок, или керамзит, или цеолит.

7. Способ по п.1, отличающийся тем, что фильтрацию проводят в две стадии, сначала с использованием гидрофильного, а затем гидрофобного сорбентов.

8. Способ по п.7, отличающийся тем, что в качестве гидрофобного сорбента используют активированный уголь или гидрофобизированные алюмосиликатные материалы.

9. Способ по п.7, отличающийся тем, что в качестве гидрофобного сорбента используют фильтрующую засыпку, состоящую из 2-х слоев гидрофобизированного алюмосиликатного материала, при этом первый слой состоит из материала с размером частиц 5-25 мм, а второй 0,1-3,0 мм.

www.findpatent.ru


Смотрите также