Определение содержания ртути в воде (лабораторная работа). Ртуть в питьевой воде


ТЯЖЕЛЫЕ МЕТАЛЛЫ В ВОДОПРОВОДНОЙ ВОДЕ

                       

                                   Нужен ли нам металлолом в организме?

 

                                           Свинец в водопроводной воде

Во многих домах до сих пор используются свинцовые водопроводные трубы - они очень долговечные. Там, где свинцовых труб нет, обязательно есть свинцовый припой. В результате употребления этих материалов и появляется в питьевой воде свинец. Свинец не имеет ни вкуса ни запаха, поэтому определить есть он в питьевой воде или нет, можно только проведя химический анализ. Но в принципе, можно обойтись и без него: посмотрев на свои водопроводные трубы вы сами без труда сможете определить стоит ли вам опасаться за свое здоровье. Если трубы серые на вид и их можно легко поцарапать острым предметом - это свинец, и естественная коррозия происходящая в водопроводе обязательно приводет к попаданию его в питьевую воду.

Предельно допустимая концентрация свинца в водопроводной воде не должна превышать 0,01-0,03 мг/л. Вода с повышенным содержанием свинца может вызывать острые или хронические отравления у человека. Острое отравление опасно тем, что может привести к смерти. Хроническое отравление свинцом развивается при постоянном употреблении малых концентраций свинца. Свинец имеет свойство накапливаться в тканях организма, его излюбленная локализация в теле - это волосы, ногти и слизистая оболочка десен ( при этом образуется так называемая свинцовая кайма на деснах). Свинец также очень часто поражает центральную и периферическую нервную систему, кишечник, почки. 

Основным механизмом действия свинца блокада им работы ферментов, которые участвуют в синтезе гемоглобина. В результате этого гемоглобин утрачивают способность переносить кислород, что приводит к развитию анемии и хронической недостаточности кислорода в организме. Помимо нарушения кислородного транспорта свинец блокирует образование витамина D, который необходим, для усвоения кальция в костях. Употребление воды с высоким содержанием свинца беременными женщинами повышает риск преждевременных родов и развития врожденных уродств у плода, приводит к возникновению бесплодия. У детей, в организм которых попадает повышенное количество свинца – снижается IQ, часто развиваются пороки сердца.  Превышение ПДК свинца отмечается в питьевой воде Калужской и Рязанской областей. Избавиться от свинца в питьевой воде можно только путем фильтрации или электролиза, кипячение воды в этом случае бесполезно. 

 

                                          Ртуть в водопроводной воде.

Предельно допустимая концентрация ртути в водопроводной питьевой воде составляет 0,0005 мг/ л. Ртуть повреждает любую ткань, с которой она контактирует, но самый большой вред она наносит нервной системе и почкам. Употребление внутрь дозы ртути, превышающей предельно допустимую, вызывает нарушение психики, потерю кожной чувствительности, слуха, зрения, речи, клинические судороги, сердечно-сосудистый коллапс. Поступление небольшого количества ртути провоцирует развитие острой почечной недостаточности, тяжелых заболеваний пищеварительного тракта. Опасны даже малые дозы: нижние границы содержания ртути в питьевой воде при которых она бы не накапливалась в организме до сих пор не установлены. При употреблении малых доз ртути беременными женщинами у новорожденных детей обнаруживают уродства развития и врожденные тяжелые заболевания головного мозга. Одним из основных источников ртути (на 85 %) в окружающей среде является деятельность промышленных предприятий. Превышение гигиенических норм ртути выявлено в Белгородской, Московской и Вологодской областях. Играет роль и естественное повышенное содержание ртути в воде некоторых регионов, например на Горном Алтае.

 

                                          Молибден в питьевой воде

Рекомендуемое содержание молибдена в питьевой воде составляет 0,07 мг/ л. Молибден придает воде слабо вяжущий вкус. В дозах 10-15 мг/л этот элемент вызывает повышение уровня мочевой кислоты в крови человека, остеопороз костей, боли в кистях и стопах, увеличение размеров печени (гепатомегалия), функциональные расстройства пищеварительного тракта, печени и почек.

 

                                          Селен в питьевой воде.

Предельно допустимое содержание селена в питьевой воде составляет 0,01 мг/л.  При однократном поступлении в организм большой дозы селена возникают признаки острого отравления, такие как рвота, диарея, боль в животе, озноб, дрожание и онемение конечностей. Постоянное употребление повышенных концентраций селена приводит к развитию заболевания, называемого селеноз. Оно проявляется расстройствами в работе органов пищеварительного тракта, обесцвечиванием и повышенным выпадением волос, истончением и ломкостью ногтей, различными дерматитами, кариесом зубов.

                                         Медь в водопроводной воде.

Безопасная суточная доза меди составляет 0,5 мг/кг массы тела. Исходя из этой дозы рассчитывается предельно допустимая концентрация меди в питьевой воде: 1-2 мг/л. Концентрация меди более 3 мг/л может вызвать острое нарушение функции желудочно-кишечного тракта, которое будет сопровождаться тошнотой, рвотой, диареей. Особенно осторожно нужно относится к питьевой воде людям, страдающим или перенесшим заболевания печени (например, вирусный гепатит). Т.к собственный обмен меди в организме у них нарушен, даже небольшие ее концентрации, содержащиеся в воде приводят к развитию цирроза печени. Наиболее чувствительны к повышенной концентрации меди в воде грудные дети, находящиеся на искусственном вскармливании. У них еще в младенческом возрасте при употреблении такой воды существует реальная, угроза развития цирроза печени.

 

                                         Железо в водопроводной воде.

Повышенная концентрация железа возникает при использовании стальных и чугунных водопроводных труб, разрушающихся из-за коррозии. Особенно неблагополучными в данном отношении считаются Москва и Санкт-Петербург, где мягкая вода усиливает коррозию. «Железистая вода» первоначально прозрачна, но при отстаивании или нагреве приобретает желтовато-бурую окраску, что является причиной ржавых подтеков на сантехнике. На вкус такая вода приобретает характерный "железистый" привкус. Регулярное употребление питьевой воды с повышенным содержанием железа, может привести к развитию заболевания, которое носит название гемохроматоз и характеризуется отложением соединений железа в органах и тканях человека.

Железо природного происхождения попадает в питьевую воду из подземных источников центральных и южных областей России, а также Сибирского региона. Железо в концентрации, троекратно превышающей норму (ПДК – 0,3 мг/л), присутствует в водопроводах Томской, Вологодской, Тамбовской, Архангельской, Челябинской, Тверской, Новосибирских области.

 

                                      Марганец в водопроводной воде 

В ряде научных исследований установлено, что количество марганца в питьевой воде, превышающего норму (ПДК – 0,1 мг/л) негативно влияет на развитие беременности, оказывает токсический и мутагенный эффект на организм человека. Содержание марганца в питьевой воде напрямую зависит от деятельности расположенных поблизости промышленных предприятий. Марганец в концентрации, превышающей норму в три раза, содержится в водопроводной воде Томской, Вологодской, Тамбовской, Архангельской, Челябинской, Тверской, Новосибирской области.

 

                                       Алюминий в водопроводной воде

Основным источником алюминия в водопроводной воде являются вещества, применяемые в процессе обработки воды на очистных станциях – коагулянты. Ежедневно в организм человека поступает от 5 до 20 мг алюминия, значительная часть которого приходится на питьевую воду. Было установлено, что в повышенных дозах алюминий обладает нейротоксическим эффектом, вызывающим старческое слабоумие. Кроме того, алюминий вымывает из организма кальций, что особенно опасно для растущего организма. Превышение ПДК алюминия зафиксировано в питьевой воде Архангельской, Самарской и Омской областей.

 

                                        Уран в водопроводной воде

Организация по защите   прав   потребителей  Foodwatch провела исследование питьевой воды и собрала официальные данные о наличии урана в питьевой воде по всем федеральным землям Германии. Всего было взято 8000 проб, в 150 из них, согласно результатам проведенного исследования, норма содержания урана в питьевой воде была превышена.  пишет dw-world.de. 

Согласно данным мониторинга питьевой воды, проведенного 4 августа Foodwatch, самое высокое содержание урана в питьевой воде было зафиксировано министерством здравоохранения в городке на севере Баварии Марольдсвейзахе (округ Нижняя Фракония, Хасберге).

Концентрация урана в этом районе больше 39 микрограмм на литр. Общепринятой допустимой нормой концентрации урана в воде считается 10 микрограмм на литр. Однако данная норма не закреплена в законе.

В городе на севере Баварии норма концентрации урана в воде превышена почти в 4 раза. В постановлении о питьевой воде сказано, что состав питьевой воды должен быть таковым, чтобы концентрация хотя бы одного из входящих в нее веществ не угрожала состоянию здоровья граждан.

Токсиколог из города Киль Херман Крузе (Hermann Kruse),  полагает, что даже совсем маленькая концентрация урана негативно воздействует на жизненно важные процессы в почках.Если концентрация урана в питьевой воде превышает допустимую норму, к 70-летнему возрасту каждый потребитель этой воды рискует столкнуться с болезнью почек.

Источник: АкваЭксперт.Ру

При подготовке статьи использованы материалы информационного пособия «Питьевая вода и здоровье населения» (выпуск 1: «Влияние химического состава питьевой воды на здоровье человека»). М., 2002, под общей редакцией профессора Е.Н. Беляева. 

 

                         Как удалить тяжелые металлы из водопроводной воды?

Тяжелые металлы из водопроводной воды можно удалить, используя любой из аппаратов, производимых фирмой „ESPERON“, так как они выполняют две основные функции: фильтра и ионизатора.

                                     В качестве фильтров они очищают воду от:

       В качестве ионизаторов они: разделяют нейтральные молекулы воды на положительно и отрицательно заряженные ионы (аппараты, действующие на основе электролиза) или же насыщают воду отрицательными ионами (аппараты на основе керамики полудрагоценных камней )

       ФИЛЬТРЫ-ИОНИЗАТОРЫ -"АШБАХ" - это уникальный способ получить у себя дома живую, ионизированную воду с идеальными параметрами редокс-потенциала и рН, как для ежедневного, профилактического употребления, так и для лечения. Живую воду, которая обладает не только антиоксидантными, иммуностимулирующими свойствами, но, самое главное, предупреждающую развитие онкологических заболеваний.

 

      Подарите себе натуральный источник здоровья и долголетия, чтобы ощутить

       прилив новой энергии, прекрасного самочувствия и хорошего настроения!

 

      ЭТО ТАК НЕОБХОДИМО, ДОСТУПНО, ЭФФЕКТИВНО И ЭКОНОМИЧНО!!!

www.butikzdorovja.de

Вредная еда и лишний вес. Фаст-фуд и вредные привычки в питании. Вредные продукты и фальсификат. Статьи

Кожные высыпания и пятна на зубах – самое невинное, чем может наградить нас плохая вода из-под крана. В каждом регионе России водопроводная вода имеет свои недостатки: гражданам не мешает узнать о них поподробнее.  

текст: Руслан Баженов

Сульфаты

Превышение предельно допустимой концентрации (далее – ПДК) сульфатов в питьевой воде ведет к снижению кислотности желудочного сока, диарее. При пятикратном превышении нормы (ПДК – до 500 мг/л) значительно ускоряются процессы старения организма. Именно такое превышение характерно для водопроводной воды Ростовской, Самарской, Курганской области и Алтайского края. В регионах даже с двукратным превышением сульфатов в питьевой воде (например, в Средней Азии) местное население привыкает к ним, в то время как у приезжих моментально возникают «перебои» в работе желудочно-кишечного тракта.  

Нитраты и нитриты

В человеческом организме нитраты восстанавливаются до нитритов, а те, в свою очередь, взаимодействуют с гемоглобином, образуя стойкое соединение – метгемоглобин. Как известно, гемоглобин переносит кислород, а вот метгемоглобин такой способностью не обладает. В итоге ткани начинают испытывать кислородное голодание, развивается заболевание – нитратная метгемоглобинемия. Вспышки этого заболевания, по большей части среди детей, были отмечены по всему миру в регионах с повышенным содержанием в воде нитратов. Все заболевшие дети пили воду с содержанием в ней нитратов от 18 до 257 мг/л (в России ПДК нитратов – 45 мг/л). Содержание нитратов в питьевой воде, в три и более раз превышающее норму, имеет место в Ростовской, Липецкой, Брянской, Тульской и Воронежской области.  

Фториды

Из рекламы зубных паст нам достоверно известно, что нехватка фтора вызывает кариес. К слову, именно для профилактики кариеса в США практикуется фторирование питьевой воды. Впрочем, с довольно сомнительными результатами: частота заболеваний кариесом и вправду уменьшается, но взамен многие жители приобретают другое заболевание – флюороз (пятна на зубной эмали).

Для России актуальна проблема прямо противоположная – переизбыток фтора. Исследования показали, что при содержании фтора в воде в количестве 5-7 мг/л развивается ярко выраженный остеосклероз (уплотнение костной ткани), а при 10-20 мг/л у детей наблюдается значительная задержка роста.

Флюороз обеспечен жителям, пьющим воду с содержанием фтора 2 мг/л, при том что рекомендуемый Всемирной организацией здравоохранения (ВОЗ) уровень фтора в питьевой воде – 1,5 мг/л. В зону риска попадают ряд городов и районов Московской, Тверской, Пензенской и Владимирской областей, Республики Башкортостан, Мордовии и Краснодарского края, где содержание фтора в воде превышает норму. К примеру, в таких городах Московской области, как Видное, Подольск, Егорьевск, Одинцово, Красногорск, флюороз выявлен у 25 процентов населения.

Пресса, производители бутилированной воды и фторсодержащих зубных паст охотно муссируют якобы проблему недостатка фтора в российской водопроводной воде. Но на самом деле, то количество фтора (0,01 мг/л), что, являясь недостаточным, и приводит к кариесу, в водных источниках нашей страны практически не встречается. Об этом  свидетельствуют данные исследования Горно-Алтайского государственного университета. Справедливости ради добавим, что по вопросу о том, сколько же фтора требуется для профилактики кариеса, научное сообщество к единому мнению пока что не пришло.  

Железо

Железо в концентрации, троекратно превышающей норму (ПДК – 0,3 мг/л), присутствует в водопроводах Томской, Вологодской, Тамбовской, Архангельской, Челябинской, Тверской, Новосибирских области. Такое превышение приводит к зуду, сухости и высыпаниям на коже; повышается вероятность развития аллергических реакций. Железо природного происхождения попадает в питьевую воду из подземных источников центральных и южных областей России, а также Сибирского региона. Кроме того, повышенная концентрация железа имеет место при использовании стальных и чугунных водопроводных труб, разрушающихся из-за коррозии. Особенно неблагополучными в данном отношении считаются Москва и Санкт-Петербург, где мягкая вода усиливает коррозию.  

Йод

Печальный факт: 65% населения России пьет воду с недостаточным содержанием йода. Среднее потребление йода в нашей стране составляет 40-80 микрограммов в день на человека, что в два раза меньше физиологической потребности. Недостаток йода приводит к развитию базедовой болезни, задержкам в физическом и умственном развитии у детей. Йодирование воды, которое пытались выдвигать в качестве контрмеры, оказалось малоэффективным, как, впрочем, и йодирование соли. 

Бром

Содержание брома в подземных источниках Восточного Зауралья превышает нормативы в 40 раз (ПДК – 0,2 мг/л) – в таких концентрациях он способствует развитию патологий сердечно-сосудистой системы, печени и почек. Анализ статистических данных позволил выявить прямую зависимость между показателями общей смертности населения и содержанием брома в питьевой воде в этом регионе.  

Марганец

Марганец в концентрации, превышающей норму (ПДК – 0,1 мг/л) в три раза, содержится в водопроводной воде Томской, Вологодской, Тамбовской, Архангельской, Челябинской, Тверской, Новосибирской области. В ряде научных исследований установлено, что такое количество марганца негативно влияет на развитие беременности, оказывает токсический и мутагенный эффект на организм человека. Содержание марганца в питьевой воде напрямую зависит от деятельности расположенных поблизости промышленных предприятий.  

Ртуть 

Накапливаясь в тканях головного мозга, ртуть приводит к тяжелым нервным поражениям, способствует нарушениям работы сердечно-сосудистой системы. Опасны даже малые дозы: нижние границы содержания ртути в питьевой воде, при которых она бы не накапливалась в организме, до сих пор не установлены. Одним из основных источников (на 85%) ртути в окружающей среде является деятельность промышленных предприятий. Превышение гигиенических нормативов выявлено в Белгородской и Вологодской областях. Впрочем, играет роль и естественное повышенное содержание ртути в воде некоторых регионов, например на Горном Алтае.  

Свинец 

Наиболее опасен свинец для детей и беременных. У детей – снижает IQ, провоцирует развитие пороков сердца. У женщин – повышает риск выкидышей, токсикозов и рождения детей с дефектами развития, а кроме того, приводит к возникновению бесплодия.  

Превышение ПДК (норма – 0,03 мг/л) свинца отмечается в питьевой воде Калужской и Рязанской областей. Основной источник свинца в водопроводной воде – разрушение свинецсодержащих элементов водопроводных сетей (припои, латунные сплавы).  

Алюминий 

Обладает значительным нейротоксическим эффектом, вызывающим раннее наступление старческого слабоумия. Кроме того, алюминий вымывает из организма кальций, что особенно опасно для растущего организма. Превышение ПДК алюминия (норма – 0,5 мг/л) зафиксировано в питьевой воде Архангельской, Самарской и Омской областей. Основным источником алюминия в водопроводной воде являются вещества, применяемые в процессе обработки воды на очистных станциях – коагулянты.  

Хлороформ

Американскими исследователями установлена прямая зависимость между содержанием хлороформа в питьевой воде и ростом числа раковых заболеваний.

В процессе хлорирования водопроводной воды образуется хлороформ, причем в достаточно высоких концентрациях. ВОЗ устанавливает ПДК для хлороформа в 0,03 мг/л, что, по мнению многих исследователей, является возмутительной недооценкой опасности этого вещества. Но еще хуже ситуация в России, где ПДК для хлороформа во много раз выше норм ВОЗ – 0,2 мг/л!

Превышение ПДК хлорорганических соединений зафиксировано в питьевой воде Кемеровской, Нижегородской, Пермской, Свердловских области, Санкт-Петербурга.  

Поверхностно-активные вещества (ПАВ)

Обладают массой негативных качеств: затрудняют очистку воды от тяжелых металлов; растворяют жидкие и твердые загрязнители, которые, не будь ПАВ, осели бы на фильтрах; служат питательной средой для опасных микроорганизмов. Повышенный уровень содержания ПАВ отмечен в реках – это Волга, Ока, Кама, Иртыш, Дон, Северная Двина, Обь, Томь, Тобол, Нева.

Отчасти вина лежит и на нас: используя стиральные порошки и моющие средства, мы тем самым содействуем значительному увеличению содержания ПАВ в воде.  

Пестициды 

Пестициды способствуют развитию раковых заболеваний, провоцируют возникновение аллергических реакций. Основной источник загрязнений водопроводной воды – удобрения, применяемые в сельском хозяйстве. Главная проблема заключается в том, что все существующие методы очистки воды от пестицидов малоэффективны. 

  

При подготовке статьи использованы материалы информационного пособия «Питьевая вода и здоровье населения» (выпуск 1: «Влияние химического состава питьевой воды на здоровье человека»). М., 2002, под общей редакцией профессора Е.Н. Беляева.  

фото: www.change.org   

Версия для печати

Метки статьи: вода

zdravkom.ru

Определение содержания ртути в воде (Лабораторная работа)

В начало

 

Цель работы: ознакомление студентов с методикой определения содержания ртути в водных растворах и принципами нормирования

 

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ.

Предельно допустимая концентрация вещества в воде - это концентрация индивидуального вещества в воде, выше которой вода непригодна для установленного вида водопользования, не оказывает прямого или косвенного влияния на состояние здоровья населения (при воздействии на организм в течение всей жизни).Нормирование качества воды состоит в установлении для воды совокупности допустимых значений показателей ее состава и свойств, в пределах которых надежно обеспечивается здоровье потребителей, благоприятные условия водопользования и экологического благополучия водного объекта. Нормы качества воды устанавливаются введением предельно допустимых концентраций (ПДК).В питьевой воде содержание  ртути не должно превышать 0,0005 мг/см3 из-за ее токсичности и кумулятивности свойств. Содержание ртути в воздухе колеблется в широких пределах:

0,001 - 0,010 мкг/м3 - в промышленных зонах;

0,2 - 2,0 мкг/м3 - в районах ртутных поясов;

11,0 мкг/м3 - в зоне выбросов от заводов по производству хлора и щелочи.

Предельно допустимая средне-суточная концентрация ртути в воздухе населенных пунктов равна 0,0003 мг/м3 (0,3 мкг/м3),

Кумулятивное действие - накопление в организме и суммирование действия некоторых ядов. Может привести к отравлению.

Абсорбция - поглощение вещества из газовой или жидкой среды всей массой другого вещества (абсорбента).

Барботер - сосуд для пропускания (перемешивания) через жидкость газа или пара под давлением.

ХОЛОСТОЙ РАСТВОР (ХОЛОСТАЯ ПРОБА) - такая проба или раствор, которые заведомо не содержат определяемого вещества и используются в опыте для контроля чистоты, как бы нулевого отсчета.

 

 

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Ртуть

Ртуть - единственный металл, находящийся при комнатной температуре в жидком состоянии. Ртуть широко используется в химической промышленности, при изготовлении ламп дневного света, кварцевых ламп, манометров и термометров. В горном деле ртутью пользуются для отделения золота от неметаллических примесей. Ртуть обладает способностью растворять в себе многие металлы, образуя с ними частью жидкие, частью твердые сплавы, называемые амальгамами. Пары ртути значительно тяжелее воздуха, хорошо сорбируются строительными материалами, в том числе деревом, тканями. 3000 тонн ртути ежегодно поступает в атмосферу при сжигании ископаемого топлива. Присутствуя в атмосфере в небольших концентрациях, ртуть может и не представлять слишком большой опасности. Однако, попадая из атмосферы в водные объекты, ртуть переходит в высокотоксичную метилированную форму. Это делает проблему загрязнения ртутью, при содержании ее в воздухе, чрезвычайно серьезной, т.к. токсичность ртути в метилированной форме увеличивается в 30-100 раз. Пары ртути могут оказывать негативное влияние на многие растения, листья которых покрываются бурыми пятнами, желтеют и затем опадают. Пары ртути могут быть причиной как острых, так и хронических отравлений, при которых поражается центральная нервная система. Ртуть - токсикант кумулятивного действия, т.е. она способна накапливаться в организме и вызывать тяжелые отравления. Депонируется ртуть в печени и почках. Поэтому ртуть относят к 1 классу опасности, т.е. к группе чрезвычайно опасных веществ.

 

Описание прибора

Для определения содержания ртути в водных растворах в данной лабораторной работе использован анализатор "Юлия- 2М", предназначенный для измерения массовой концентрации ртути в водных растворах.

Основные технические данные и характеристики анализатора "Юлия-2М":

1. Чувствительность анализатора не более 0,5 10 -3 мкг/см3.

2. Диапазон измерения концентрации ртути от 0,0015 до 0,15 мкг/см3 перекрывается двумя поддиапазонами:

- 0,0015 - 0,005 мкг/см3

- 0,005 - 0,015 мкг/см3.

3. Предел допустимого значения относительной погрешности анализатора не превышает ± 20%.

4. Объем пробы - 2 см3.

5. Время одного измерения не более 2 минут.

6. Время непрерывной работы не более 8 часов.

7. Время установления рабочего режима - 30 минут.

8. Питание анализатора - сеть однофазного переменного тока напряжением 220 ± 22В частотой 50 ± 1 Гц.

 

Принцип работы анализатора

В основу работы анализатора положен непламенный атомно-абсорб-ционный метод, основанный на измерении поглощения излучения с длиной волны l = 253,7 нм атомами ртути, выделяемыми из анализируемой пробы после восстановления ртути до элементного состояния.

При подаче питания на лампу-излучатель и фотоэлемент при выключенной газодинамической системе преобразователя (т.е. при прохождении через кювету полной энергии излучения  лампы) величина фототока через измерительный прибор максимальная. При наличии ртути в анализируемой пробе и после восстановления ее до элементного состояния, микрокомпрессором подается поток воздуха и ртуть из барботера  направляется в кювету, где атомы ртути поглощают излучение лампы (l= 253,7 нм), в результате чего величина электрического тока в цепи фотоэлемента изменяется пропорционально концентрации ртути в воздухе, проходящем через кювету. Постепенно, по мере выдувания паров ртути из анализируемой пробы, показания измерительного прибора приходят в исходное состояние.

Метод атомно-абсорбционного анализа относится к группе относительных методов, т.е. измерения величины пропускания одного вещества он производит относительно величины пропускания другого вещества. Сначала измеряется величина пропускания раствора с заранее известными свойствами, где концентрация ртути равна нулю (холостого раствора), а затем - величина пропускания раствора, концентрацию ртути в котором необходимо определить (анализируемая проба). Используя значения величин пропусканий этих двух растворов и имея градуировочный график, определяют концентрацию ртути в анализируемой пробе.

Конструктивно анализатор ртути "Юлия-2М" выполнен в виде приставки (рис.1), позволяющей вести работу как со стандартными приборами типа рН-метра или иономера, так и с собственным измерительным блоком.

Рис.1. Функциональная схема анализатора: 1- кювету; 2- шторку лампы; 3- лампу; 4- фотоэлемент; 5- пробирку с барботером для поглощения отработанной ртути; 6, 7, 8 - воздуховоды; 9- микрокомпрессор; 10- пробирку с барботером для пробы; 11- штуцер микрокомпрессора

 

Анализатор представляет собой конструкцию (рис.2 ) с горизонтально расположенной стеклянной кюветой 1. Кювета установлена в оправах 2 с кварцевыми стеклами. Для удобства снятия и замены кюветы левая оправа подкруглена. Кювета в нерабочем состоянии закрывается складывающейся крышкой 3. На внутренней стороне имеется штатив 4 для барботеров с пробирками, приводимый в рабочее положение при открывании крышки. На левой части анализатора расположена ручка регулировки питания фотоэлемента 5. В правой части расположена панель управления, на которой находятся кнопки включения: сети 6, лампы 7, микрокомпрессора 8, ручка регулировки производительности микрокомпрессора 9, индикаторы 10, 11 (включения сети и микрокомпрессора соответственно), ручка управления шторкой лампы 12. Выходной штуцер микрокомпрессора выведен через отверстие в корпусе прибора на верхнюю панель анализатора. На задней панели анализатора находятся держатель предохранителя, клемма заземления.

 

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Меры безопасности при эксплуатации анализатора

1. К работе с анализатором допускаются лица, изучившие устройство, принцип работы и правила эксплуатации анализатора.

2. Анализатор при работе должен быть заземлен при помощи имеющейся специальной клеммы на задней панели.

3. Необходимо следить, чтобы поток ультрафиолетового излучения лампы анализатора не попадал в глаза.

4. К выполнению работ по приготовлению реактивов должны допускаться только лица, прошедшие инструктаж о мерах предосторожности при работе с конкретными вредными веществами и их соединениями.

 

 

Рис. 2. Внешний вид анализатора

 

Подготовка прибора к работе

1. Нажать кнопку включения сети на анализаторе (поз.6, рис.2), при этом должен засветиться индикатор включения прибора.

2. Зажечь лампу анализатора, для чего кратковременно (0,5 - 1 с) несколько раз нажать кнопку запуска лампы. Открыть шторку 12 и по свечению в кювете убедиться в загорании лампы.

3. Закрыть шторку и проверить на измерительном приборе установку нуля.

4. Открыть шторку и вращением ручки анализатора установить на цифровом табло измерительного блока цифру 90, после чего дать прогреться прибору в течение 30 минут.

5. Собрать газодинамическую схему анализатора согласно рис. 1.

6. Включить микрокомпрессор соответствующей кнопкой 8 (рис. 2), при этом должен засветиться индикатор включения микрокомпрессора.

7. Выключить микрокомпрессор, при этом должен погаснуть индикатор включения микрокомпрессора.

 

ПОРЯДОК ВЫПОЛНЕНИЯ

Определение величины пропускания холостой пробы

1.     Ручкой регулировки питания фотоэлемента анализатора установить на цифровом табло измерительного блока цифру 90, что соответствует относительным единицам пропускания через стеклянную кювету спектральной линии ртути.

2.     Поместить в пробирку 1 с барботером (поз. 4, рис. 2) 5 см3 5 %-го раствора перманганата калия (KMnO4), а в пробирку 3 с барботером поместить 2см3 холостой пробы и 0,3 см3 олова двуххлористого очищенного (SnCl2×2h3O).

3.     Ручку "миним-макс" на панели анализатора установить в крайнее левое положение и включить микрокомпрессор соответствующей кнопкой.

4.     Снять показания с цифрового табло измерительного блока при минимальном значении измеряемой величины пропускания (Тхол).

5.     После окончания измерения поместить барботер из пробирки с пробой в пустую пробирку 2 и продуть газодинамическую систему анализатора до установления показаний на цифровом табло измерительного блока на цифру 90.

6.      Раствор из пробирки 3 вылить в стакан для слива, а саму пробирку промыть дистиллированной водой и подготовить для проведения дальнейших измерений.

 

Рис. 3. График для определения концентрации ртути

 

Определение величины пропускания анализируемой пробы

1. Налить 2 см3 анализируемой пробы в пробирку 3, вставить в нее барботер, включить микрокомпрессор анализатора и проверить наличие в пробе летучих органических веществ, поглощающих энергию с длиной волны, близкой к длине волны ртути (о наличии таких веществ судят по изменению показаний цифрового табло). Пробу необходимо продувать до возвращения показаний измерителя к исходному (первоначальному) отсчету.

2. Добавить к анализируемой пробе 0,3 см3 холостой пробы и 0,3 см3 олова двуххлористого очищенного (SnCl2×2h3O) и в соответствии с пп.3-5 раздела 1 выполнить измерение величины пропускания (ТПР).

 

Определение концентрации ртути в анализируемом растворе

1. Значение концентрации ртути в анализируемой пробе определить по графику Tд=f(c), где Тд = Тхол - Тпр  (рис.3).

2.     Сделать выводы о концентрации ртути в анализируемой пробе, сравнив ее с ПДК ртути в питьевой воде.

 

icolog.ru

Влияние химических веществ, на организм человека.

МЕДЬ. Уровень меди в природной воде довольно низок, но использование меди в водопроводных сетях может значительно повышать ее концентрацию в питьевой воде. Концентрация меди больше 3 мг/л может вызвать острое нарушение функций желудочно-кишечного тракта. Особенно опасна повышенная концентрация меди для людей перенесших заболевания печени(вирусный гепатит) и грудных детей на искусственном вскармливании – это приводит к циррозу печени. Безопасная суточная доза меди, по рекомендации ВОЗ,  допустимая в воде -1-2 мг/л. Содержание меди в питьевой воде «Vita» <0,0004 мг/л.

ЖЕЛЕЗО. Железо - один из основных элементов природной воды. Повышенное содержание железа в воде придает ей ржавый цвет и металлический привкус, что делает воду непригодной для питья. Постоянное употребление воды с повышенным содержанием железа, приводит к отложению соединений железа в органах и тканях, что в свою очередь может привести к отслойке слизистой оболочки желудка, заболеваниям почек

Безопасная суточная доза железа, по рекомендации ВОЗ, допустимая в воде – 0.3мг/л. Содержание железа в питьевой воде «Vita» < 0,003 мг/л.

СВИНЕЦ. В питьевую воду свинец попадает преимущественно через водопроводные трубы (сварочные швы, переходники). Но он также может содержаться и в природной воде. Повышенная концентрация свинца в воде вызывает острое или хроническое отравление. Свинец способен откладываться во всех органах и тканях. Основной механизм действия свинца заключается в блокировке ферментов, участвующих в синтезе гемоглобина, в результате чего развивается анемия.

Предельно допустимая концентрация  свинца в питьевой воде по данным ВОЗ – 0.1 мг/л. Питьевая вода «Vita» свинца не содержит.

СЕРОВОДОРОД. Сероводород- это газ, который придает воде неприятный запах тухлых яиц. При употреблении внутрь сероводород не опасен. Опасными могут быть соединения серы- сульфиты, которые повреждают слизистую оболочку пищеварительного тракта. Смертельная доза сульфита натрия – 10-15грамм. В воде «Vita» сера и её производные отсутствуют.

ЦИНК. Содержание цинка в природной воде не превышает 0.05мг/л, но в питьевой воде его концентрация может повышаться за счет контакта с водопроводными трубами. Высокое содержание солей цинка в питьевой воде может вызвать отравление.

Уровень цинка в питьевой воде более 3мг/л делает ее непригодной к употреблению. Содержание цинка в питьевой воде «Vita» < 0,003 мг/л.

АЛЮМИНИЙ. Алюминий в различных концентрациях присутствует как в грунтовых, так и в поверхностных  водах. Кроме того, сульфат алюминия  широко используется в процессах водоподготовки в качестве коагулята и присутствие его в питьевой воде является результатом недостаточного контроля при выполнении этих  процессов. Согласно исследованиям экспертов, алюминий в больших количествах может вызвать повреждение нервной системы человека и, в результате, возникновение таких тяжелых заболеваний, как болезнь Альцгеймера, боковой амиотрофический  склероз, паркинсоническое слабоумие. 

Рекомендуемое содержание алюминия в питьевой воде – 0.2мг/л. Содержание алюминия в питьевой воде «Vita» < 0,003 мг/л.

РТУТЬ. Обычно неорганическая ртуть присутствует в воде в концентрациях менее 0.5мг/л. Однако, в результате техногенных и других загрязнений, уровень ртути в воде может быть повышаться. Ртуть повреждает любую ткань организма, с которой контактирует, но самый большой вред наносит нервной и сердечно-сосудистой системам, а также почкам.

ПДК ртути в питьевой воде – 0.0005мг/л. Питьевая вода «Vita» ртути не содержит.

ХЛОР. В воде хлор образует гипохлорную кислоту и гипохлорид натрия. Эти производные могут быть опасны для здоровья, если содержатся в воде в больших концентрациях. Особенно чувствительны к их  воздействию дети. Сильно хлорированная вода оказывает токсичное действие – провоцирует  возникновение бронхиальной астмы, различные заболевания кожи, вызывает повышение уровня холестерина в крови, увеличивает риск возникновения лейкоза.ПДК остаточного хлора в питьевой воде – 0.1-0.3мг/л. Содержание хлоридов в питьевой воде «Vita» < 0,2 мг/л.

 

СЕРЕБРО. При поступлении в организм больших доз развивается острое отравление. Постоянное употребление внутрь серебра приводит к развитию хронической интоксикации, называемой аргирия. Такое состояние возникает при сознательном введении в организм препаратов серебра, в целях лечения и при добавлении его в воду в целях дезинфекции, без последующей элиминации его из воды. Первым признаком аргирии  является  усиление пигментации радужной оболочки глаз. Серебро откладывается в коже, волосах и других органах.Рекомендуемое содержание в питьевой воде -0.05мг/л.Серебро в питьевой воде «Vita» отсутствует

НАТРИЙ  К натрию в питьевой воде нужно относиться с осторожностью. Избыток натрия может привести к излишней нагрузке на сердечно-сосудистую систему. Иногда производители сознательно увеличивают процент натрия в воде. Делается это для того, чтобы умягчить воду, то есть избавиться от кальция. Конечно такая вода не оставляет осадка на стенках чайников. Но технология умягчения предполагает замещение солей кальция солями натрия. Такая вода хороша для бытовой техники, но не для питья. Так, Американская Национальная Академия наук сочла необходимым рекомендовать полностью удалять натрий из воды. Обратите внимание на этикетку бутылки с минеральными водой, найдите на ней химический состав и посмотрите, сколько в воде натрия (Na), похоже это число на «0»? Действующим ГОСТом на воду определена предельная концентрация натрия в воде- 25-30мг/л. Содержание натрия в питьевой воде «Vita» < 0,1 мг/л.

sites.google.com

Влияние ртути на здоровье человека

Ртуть – один из наиболее токсичных металлов, широко распространен в окружающей среде, обладает способностью к биоаккумуляции и движению по трофическим цепям. В упрощенном виде движение ртути по пищевым цепям может быть представлено следующим образом: вода – донные отложения – биота (бентос, фито-, зоопланктон) – рыбы и птицы, питающиеся рыбой. Особо опасны органические соединения ртути, образующиеся в водных системах и результате процессов биохимического метилирования. В окружающую среду ртуть поступает при добыче и выплавке ртутьсодержащей руды, выплавке цветных металлов из сульфидных руд, извлечении золота из руд, отбеливании целлюлозы, при производстве хлора, каустика, винилхлорида, электрического оборудования (ламп, различных источников тока), приборов измерения и контроля (термометров, манометров), ртутьсодержащих медицинских препаратов, цемента, при применении ртуть содержащих пестицидов, сжигании угля и мазута и т.д. Существенное количество ртути поступает в окружающую среду при сжигании отходов.

В России выброс ртути в атмосферный воздух от промышленных предприятий составляет примерно 10 т в год. Это соответствует выбросам ртути промышленностью в других индустриально развитых странах мира. Вблизи хлорщелочных производств образовались зоны интенсивного загрязнения ртутью окружающей среды. В настоящее время по экологическим требованиям некоторые производства закрыты, но проблема остаточного, чрезвычайно высокого уровня загрязнения окружающей среды остается нерешенной. До 20 т ртути ежегодно поступает в окружающую среду при сжигании угля и мазута. Содержание ртути в углях различных месторождений значительно отличается. В среднем оно составляет 17 мкг/т топлива, но в углях Кузбасса доходит до 28 мкг/т. Высоко загрязнение окружающей среды ртутью также в окрестности золотоизвлекающих фабриках, где содержание этого металла превышает ПДК в атмосферном воздухе в 13 раз, в воде – в 2 – 24 раза, в продуктах питания – в 2 раза (Панов В. И., 2007).

ПДК ртути в атмосферном воздухе составляет 0,3 мкг/м3, в питьевой воде – 0,5 мкг/л, в почве – 2,1 мг/кг. Поступление этого металла за счет сброса отходов в водоемы рыбохозяйственного назначения недопустимо. ПДК ртути в водоемах составляет 0,01 мкг/л. Так, для водных систем охраняемых территорий Великих озер норматив был снижен до 0,0018 мкг/л, и, возможно, поэтому были ужесточены требования относительно вод озера Байкал. Допустимое содержание ртути в продуктах питания дифференцировано по группам продуктов; согласно СанПиН 2.3.2.560–96 в продовольственном сырье и пищевых продуктах не допускается наличие ртутьорганических пестицидов.

Ввиду того, что метилртуть, широко распространенная в окружающей среде, обладает кумулятивными свойствами, ФАО и ВОЗ установили предельное еженедельное поступление в организм ртути. На уровне 300 мкг, из них в виде метилированной – не более 200 мкг в пересчете на ртуть. В 2003 г. по результатам изучения Влияния метилртути на плод показатель ее недельного поступления был снижен до 1,6 мкг/кг массы тела. ФАО/ВОЗ рекомендуют допустимое содержание ртути в рыбе на уровне не более 0,5 мг/кг сырой массы. Агентством по окружающей среды США на основании многолетнего изучения характера питания матерей во время беременности, результатов определения содержания ртути в крови пуповины, в волосах матерей во время рождения ребенка и в волосах детей разных возрастов, а также установления психоневрологического статуса детей рекомендована допустимая пороговая доза метилртути 0,1 мкг/кг массы тела.

В Швеции, где рыба – неотъемлемый компонент пищевого рациона населения, разработаны нормы потребления пресноводной хищной рыбы, в организме которой накапливается поступающая по трофической цепи метилртуть. Женщинам детородного возраста вообще не рекомендуется употреблять такую рыбу.

Ртуть в атмосферном воздухеприсутствует преимущественно в газообразной форме. Фоновое содержание ее в воздухе в нашей стране не превышает 0,05 мкг/м3, а в основном – ниже 0,02 мкг/м3. В воздухе промышленных районов концентрация ртути значительно выше. Дальность распространения ее в атмосферном воздухе от источников загрязнения определяют по содержанию ртути в осадках. Механизм вымывания ее дождем из атмосферы связан с растворением соединений ртути и с вымыванием ее взвешенных частиц. В результате выпадения ртути на поверхность земли формируются антропогенные аномалии в почве и снежном покрове.

В почве накопление ртути определяется уровнем содержания органического углерода и серы. Естественное содержание ртути в почве, унаследованное от материнской породы, колеблется в пределах от 0,02 до 0,3 мг/кг, составляя в среднем 0,06 мкг/кг, и зависит от типа почв. В городах концентрация ртути в почве несколько выше, что связано с наличием большого количества различных выбросов.

В воде ртуть может находиться в органическом и неорганическом состоянии. Основной источник ртути в питьевой воде – водоисточники, загрязненные сточными водами, например, от хлорщелочного производства, далее атмосфера и, наконец, реагенты, используемые при водоподготовке. Не исключено также прямое загрязнение колодцев из колодезных насосов. ПДК ртути в воде водоисточников по санитарно-токсикологическому показателю составляет 0,5 мкг/л. Неорганическая ртуть в окружающей среде может превращаться в металлоорганические соединения, в том числе в высокотоксичную метилированную ртуть. Она образуется в результате биологических процессов в водной среде и по трофической цепи поступает и накапливается в организмах хищных рыб (акул, тунцов, щук и др.) и морских млекопитающих (тюленей, китов). Потребление этих продуктов является основным источником попадания метилртути в организм человека.

Трансграничный перенос токсичных веществ привел к загрязнению ртутью даже вод Арктического региона и других, отдаленных от индустриальных центров территорий. По данным Международной Программы контроля и оценки состояния окружающей среды Арктики (АМАР) концентрация ртути в этом регионе продолжает расти, что наносит ущерб психоневрологическому развитию детей народов Севера.

В незагрязненных морских и пресных водах концентрация ртути находится на уровне 0,0001–0,015 мкг/л, а метилртути – 0,01 – 0,5 нг/л, что составляет, как правило, менее 10% общего содержания ртути. В загрязненных водах на фоне высокого содержания органических веществ доля метилртути может достигать 50%. В России наиболее детально были обследованы бассейны рек Оби, Лены, Енисея, Томи, Катуни и Амура. Повышенный уровень загрязнения вод ртутью зафиксирован в зоне влияния Акташского горнометаллургического комбината (республика Горный Алтай) и в районах золотодобывающих предприятий Забайкалья.

Наиболее детально проблема загрязнения окружающей среды ртутью была изучена в Усолье-Сибирском, где за период эксплуатации завода «Химпром» было использовано 3300 т ртути, из них 40 т поступило в водные системы, 75 – в атмосферный воздух, а 700 т осело в твердых отходах; содержание ртути в атмосферном воздухе достигало 1,5 мкг/м3, т.е. превышало ПДК в 5 раз, а в почве – до 60 ПДК. Вследствие распространения заводской ртути загрязненными оказались питьевая вода и сельскохозяйственные земли. До 1998 г. постоянно регистрировалось превышение ПДК ртути в питьевой воде, содержание ее в грибах, кукурузе, овощах и рыбе было также выше допустимого. В 1998 г. работы с ртутью на заводе были приостановлены, однако вопрос о демеркуризации территории и водных систем до сих пор не решен.

Ртуть оказывает существенное влияние на здоровье человека. Для правильной оценки влияния ртути на здоровье человека очень важно знать, какие ее соединения и каким образом попадают в организм. Ртуть принадлежит к числу тиоловых ядов, блокирующих сульфогидратные группы белковых соединений и нарушающих белковый обмен и ферментативную деятельность организма. Основным путем поступления неорганической ртути из окружающей среды является ингаляционный. С атмосферным воздухом в среднем человек вдыхает около 1 мкг ртути в сутки. До 80 % вдыхаемых паров ртути задерживается в Легких и, попадая в кровь, быстро окисляется. Практически вся поступившая в организм ртуть быстро ионизируется.

Более опасными считаются органические соединения ртути, попадающие в организм с питьевой водой и продуктами питания. С водой поступает менее 0,4 мкг ртути от ее суточного количества. Основным источником ртути для населения, не имеющего производственного контакта с ртутью, является пища, главным образом рыба и рыбные продукты. В районах с высоким загрязнением суточное потребление ртути с этими продуктами питания может достигать 300 мкг, что приводит к отравлению метилртуть.

Ртуть, попадающая в организм в виде паров, способна быстро проходить через плаценту. Органические соединения ртути более длительно, чем неорганические, находятся в организме в неизменном виде, гораздо позже проникая через гематоэнцефалический и плацентарные барьеры. У кормящих матерей, возможно, накопление соединений ртути в грудном молоке, и поэтому ртуть обнаруживают в крови младенцев. Период полувыведения неорганической ртути составляет примерно 80 суток, а при поступлении метилртути – более 600 суток.

Распределение ртути при отравлении обусловлено характером соединений и способом их поступления в организм. При ингаляционном поступлении паров ртути основным ее «депо» являются почки, в результате чего развиваются так называемая «сулемовая почка» и почечная недостаточность. Ртуть проникает также в ткани головного мозга, чем объясняются нервные поражения, которые могут проявляться и через несколько лет после прекращения воздействия. Кроме того, постоянное воздействие ртути, по данным Н. А. Павловской (2002), ведет к развитию иммунной недостаточности. У рабочих, контактировавших с ртутью, в клинической картине профессионального заболевания преобладали неврастения, агрессивность, головные боли, нарушения сна и памяти. При более низких уровнях воздействия наблюдались изменения поведения моторных функций, настроения, повышенная эмоциональность и т.д. Основные эффекты влияния неорганической и органической ртути на здоровье человека при различных путях поступления представлены в таблице 1.

При изучении воздействия ртути на организм человека широко используют методы определения ее содержания в крови, моче и волосах. Обычно содержание ртути в 100 мл крови находится в пределах 0,3–1,6 мкг, но у людей, потребляющих большое количество морепродуктов, этот показатель увеличивается до 12,7 мкг (табл. 2). Особенно много ртути накапливается в креветках. Установлена корреляция между количеством потребляемых морепродуктов и концентрацией ртути в крови людей.

Естественное (фоновое) содержание ртути в моче лиц, не имеющих контакта с ней на производстве, составляет в среднем 5,6 мкг/л. По данным Н. А. Павловской с соавторами (2002) симптомы ртутной интоксикации у работающих появляются при содержании ртути в моче более 50 – 70 мкг/л. Поэтому предлагается считать допустимым уровень не более 40 –50 мкг/л. Для взрослого населения, не имеющего производственного контакта с ртутью, допустимый ее уровень в моче, по оценкам некоторых авторов, не должен быть выше 10 мкг/л, но эта величина нуждается в уточнении. У детей негативное воздействие ртути проявляется при более низких ее концентрациях в моче. Так, для тех, кто проживает около реки Катунь на Алтае вблизи природных месторождений ртути, при содержании ее в моче выше 3 мкг/л наблюдалось достоверное увеличение риска формирования заболеваний специфических органов и систем, характерное для воздействия ртути (В. П. Казначеев, 1990). По результатам исследования, проведенного М. Б. Соболевым (1999) в Санкт-Петербурге, были установлены определенные изменения психоневрологического статуса у детей, содержание ртути в моче которых составляло более 0,9 мкг/л.

В эпидемиологии широко применяют также исследования, в которых изучают накопление ртути в волосах. При равномерном поглощении ртути ее содержание в организме, в том числе и в волосах, быстро возрастает и, достигая половины своей максимальной величины через один период полувыведения, после прекращения воздействия снижается по экспоненте. У людей, практически не употребляющих рыбу, содержание метилртути в волосах составляет примерно 20–25% от общего количества в них ртути и, как правило, не превышает 1–4 мкг/г. У людей, в рационе которых доля морепродуктов достаточно велика, почти вся ртуть в волосах присутствует в виде метилртути. В соответствии с рекомендациями ВОЗ, концентрация ртути в волосах не должна превышать 10 мкг/г.

Профессиональное заболевание, возникшее под воздействием ртути, впервые было описано в XVI в. Классическим примером такого заболевания является «болезнь сумасшедшего шляпника», использовавшего нитрат ртути при изготовлении фетра. Известны случаи смертельных исходов и заболеваний, наступивших вследствие отравления населения некоторых стран продуктами, содержащими метилртуть. Все пострадавшие употребляли и пишу рыбу и моллюсков. Нарушения координации были замечены также у кошек и птиц. Десятки людей погибли, многие получили тяжелые поражения нервной системы (что было связано с проникновением метилртути через плацентарный барьер в чрево матери) и отклонениями физического и умственного развития. Известны также случаи отравления людей метилртутью вследствие употребления загрязненного хлеба, выпеченного из пшеницы и других злаков, обработанных ртутьсодержащими фунгицидами.

В России оценка воздействия ртути на состояние здоровья населения была проведена только в тех населенных пунктах, где расположены источники выбросов этого токсичного металла. Сброс ртути с заводов в водные системы Иркутской области привел к загрязнению донных отложений, воды и рыбы Братского моря. Наибольшее загрязнение было зарегистрировано в Балаганском районе, а ведь здесь доля рыбы в пищевом рационе жителей составляет 25 – 30 %. В результате избыточного потребления загрязненной рыбы суточная доза поступления ртути в организм превысила рекомендуемые ФАО/ВОЗ нормативы в несколько раз, содержание ртути в моче и волосах было значительно выше фоновых показателей. Естественно это повлекло за собой изменение в психоэмоциональной сфере населения (Романов В. И., Романова Р. Л., 2009).

В настоящее время проводятся международные исследования по определению воздействия метилртути, поступающей с морепродуктами, на здоровье жителей прибрежных территорий. Однако в отечественной литературе нет сведений ни о содержании органических соединений ртути в продуктах питания, ни о концентрации их в организме человека. Воздействие атмосферного воздуха, загрязненного ртутью, привело к увеличению заболеваемости детей, проживающих вблизи производства ртутьсодержащих ламп в Саранске, и нарушениям репродуктивного здоровья женщин (высокая частота самопроизвольных абортов, нарушение течения беременности и родов), которые жили рядом с крупнейшим в мире Никитовским заводом по производству ртути. (Ревич, 2004).



biofile.ru

Вода: что мы пьем?

Вода: что мы пьем?

Пятна на зубах – самое невинное, чем может «наградить» нас плохая вода из-под крана.

В том, что касается водопроводной воды, у каждого российского региона свои недостатки: жителям страны не мешает узнать о них поподробнее.

Оказывается, кроме молекулы воды мы поглощаем в жидком виде чуть ли не всю таблицу Менделеева! И далеко не всегда такое богатство микро- и макро- элементов нам на пользу!  

Превышение предельно допустимой концентрации (далее – ПДК) сульфатов в питьевой воде ведет к снижению кислотности желудочного сока, диарее. При пятикратном превышении нормы (ПДК – до 500 мг/л) значительно ускоряются процессы старения организма. Именно такое превышение характерно для водопроводной воды Ростовской, Самарской, Курганской области и Алтайского края.

Любопытно, что в регионах даже с двукратным превышением сульфатов в питьевой воде (например, в Средней Азии) местное население привыкает к ним, в то время как у приезжих моментально возникают «перебои» в работе желудочно-кишечного тракта.

Нитраты и нитриты

В человеческом организме нитраты восстанавливаются до нитритов, а те, в свою очередь, взаимодействуют с гемоглобином, образуя стойкое соединение – метгемоглобин. Как известно, гемоглобин переносит кислород, а вот метгемоглобин такой способностью не обладает. В итоге ткани начинают испытывать кислородное голодание, развивается заболевание – нитратная метгемоглобинемия. Вспышки этого заболевания, по большей части среди детей, были отмечены по всему миру в регионах с повышенным содержанием в воде нитратов. Все заболевшие дети пили воду с содержанием в ней нитратов от 18 до 257 мг/л (в России ПДК нитратов – 45 мг/л). Содержание нитратов в питьевой воде, в три и более раз превышающее норму, имеет место в Ростовской, Липецкой, Брянской, Тульской и Воронежской области.

Из рекламы зубных паст нам достоверно известно, что нехватка фтора вызывает кариес. К слову, именно для профилактики кариеса в США практикуется фторирование питьевой воды. Впрочем, с довольно сомнительными результатами: частота заболеваний кариесом и вправду уменьшается, но взамен многие жители приобретают другое заболевание – флюороз (пятна на зубной эмали).

Для России актуальна проблема прямо противоположная – переизбыток фтора. Исследования показали, что при содержании фтора в воде в количестве 5-7 мг/л развивается ярко выраженный остеосклероз (уплотнение костной ткани), а при 10-20 мг/л у детей наблюдается значительная задержка роста.

Флюороз обеспечен жителям, пьющим воду с содержанием фтора 2 мг/л, при том что рекомендуемый Всемирной организацией здравоохранения (ВОЗ) уровень фтора в питьевой воде – 1,5 мг/л. В зону риска попадают ряд городов и районов Московской, Тверской, Пензенской и Владимирской областей, Республики Башкортостан, Мордовии и Краснодарского края, где содержание фтора в воде превышает норму. К примеру, в таких городах Московской области, как Видное, Подольск, Егорьевск, Одинцово, Красногорск, флюороз выявлен у 25 процентов населения.

Характерно, что прессой, производителями бутилированной воды и фторсодержащих зубных паст якобы проблема недостатка фтора в российской водопроводной воде муссируется весьма охотно. На самом деле то количество фтора (0,01 мг/л), что, являясь недостаточным, и приводит к кариесу, в водных источниках нашей страны, по данным научного исследования Горно-Алтайского государственного университета, практически не встречается. Справедливости ради добавим, что по вопросу о том, сколько же фтора требуется для профилактики кариеса, научное сообщество к единому мнению пока что не пришло.

Железо в концентрации, троекратно превышающей норму (ПДК – 0,3 мг/л), присутствует в водопроводах Томской, Вологодской, Тамбовской, Архангельской, Челябинской, Тверской, Новосибирских области. Такое превышение приводит к зуду, сухости и высыпаниям на коже; повышается вероятность развития аллергических реакций.

Железо природного происхождения попадает в питьевую воду из подземных источников центральных и южных областей России, а также Сибирского региона. Кроме того, повышенная концентрация железа имеет место при использовании стальных и чугунных водопроводных труб, разрушающихся из-за коррозии. Особенно неблагополучными в данном отношении считаются Москва и Санкт-Петербург, где мягкая вода усиливает коррозию.

Печальный факт: 65 процентов населения России пьет воду с недостаточным содержанием йода. Среднее потребление йода в нашей стране составляет 40-80 микрограммов в день на человека, что в два раза меньше физиологической потребности. Недостаток йода приводит к развитию базедовой болезни, задержкам в физическом и умственном развитии у детей. Йодирование воды, которое пытались выдвигать в качестве контрмеры, оказалось малоэффективным, как, впрочем, и йодирование соли.

Содержание брома в подземных источниках Восточного Зауралья превышает нормативы в 40 раз (ПДК – 0,2 мг/л) – в таких концентрациях он способствует развитию патологий сердечно-сосудистой системы, печени и почек. Анализ статистических данных позволил выявить прямую зависимость между показателями общей смертности населения и содержанием брома в питьевой воде в этом регионе.

Марганец в концентрации, превышающей норму (ПДК – 0,1 мг/л) в три раза, содержится в водопроводной воде Томской, Вологодской, Тамбовской, Архангельской, Челябинской, Тверской, Новосибирской области. В ряде научных исследований установлено, что такое количество марганца негативно влияет на развитие беременности, оказывает токсический и мутагенный эффект на организм человека. Содержание марганца в питьевой воде напрямую зависит от деятельности расположенных поблизости промышленных предприятий.

Накапливаясь в тканях головного мозга, ртуть приводит к тяжелым нервным поражениям, способствует нарушениям работы сердечно-сосудистой системы. Опасны даже малые дозы: нижние границы содержания ртути в питьевой воде, при которых она бы не накапливалась в организме, до сих пор не установлены. Одним из основных источников (на 85 процентов) ртути в окружающей среде является деятельность промышленных предприятий. Превышение гигиенических нормативов выявлено в Белгородской и Вологодской областях. Впрочем, играет роль и естественное повышенное содержание ртути в воде некоторых регионов, например на Горном Алтае.

Наиболее опасен свинец для детей и беременных. У детей – снижает IQ, провоцирует развитие пороков сердца. У женщин – повышает риск самопроизвольных абортов, токсикозов и рождения детей с дефектами развития, а кроме того, приводит к возникновению бесплодия.

Превышение ПДК (норма – 0,03 мг/л) свинца отмечается в питьевой воде Калужской и Рязанской областей. Основной источник свинца в водопроводной воде – разрушение свинецсодержащих элементов водопроводных сетей (припои, латунные сплавы).

Обладает значительным нейротоксическим эффектом, вызывающим раннее наступление старческого слабоумия. Кроме того, алюминий вымывает из организма кальций, что особенно опасно для растущего организма. Превышение ПДК алюминия (норма – 0,5 мг/л) зафиксировано в питьевой воде Архангельской, Самарской и Омской областей. Основным источником алюминия в водопроводной воде являются вещества, применяемые в процессе обработки воды на очистных станциях – коагулянты.

Американскими исследователями установлена прямая зависимость между содержанием хлороформа в питьевой воде и ростом числа раковых заболеваний.

В процессе хлорирования водопроводной воды образуется хлороформ, причем в достаточно высоких концентрациях. ВОЗ устанавливает ПДК для хлороформа в 0,03 мг/л, что, по мнению многих исследователей, является возмутительной недооценкой опасности этого вещества. Но еще хуже ситуация в России, где ПДК для хлороформа во много раз выше норм ВОЗ – 0,2 мг/л!

Превышение ПДК хлорорганических соединений зафиксировано в питьевой воде Кемеровской, Нижегородской, Пермской, Свердловских области, Санкт-Петербурга.

Поверхностно-активные вещества (ПАВ)

Обладают массой негативных качеств: затрудняют очистку воды от тяжелых металлов; растворяют жидкие и твердые загрязнители, которые, не будь ПАВ, осели бы на фильтрах; служат питательной средой для опасных микроорганизмов. Повышенный уровень содержания ПАВ отмечен в реках – это Волга, Ока, Кама, Иртыш, Дон, Северная Двина, Обь, Томь, Тобол, Нева.

Отчасти вина лежит и на нас: используя стиральные порошки и моющие средства, мы тем самым содействуем значительному увеличению содержания ПАВ в воде.

Пестициды способствуют развитию раковых заболеваний, провоцируют возникновение аллергических реакций. Основной источник загрязнений водопроводной воды – удобрения, применяемые в сельском хозяйстве. Главная проблема заключается в том, что все существующие методы очистки воды от пестицидов малоэффективны.

При подготовке статьи использованы материалы информационного пособия «Питьевая вода и здоровье населения» (выпуск 1: «Влияние химического состава питьевой воды на здоровье человека»). М., 2002, под общей редакцией профессора Е.Н. Беляева.

www.eda-life.ru

 

 

www.nedug.ru

Тяжёлые металлы в водоёме

Здравствуйте! Скажите, пожалуйста, как тяжелые металлы негативно влияют на гидрофауну и флору водоемов (опасность для флоры водоемов; воздействие тяжелых металлов на гидрофауну). Заранее спасибо! Рома

Здравствуйте, Роман.

Тяжёлые металлы - это элементы периодической системы химических элементов Д. И. Менделеева, с молекулярной массой свыше 50 атомных единиц. Эта группа элементов активно участвует в биологических процессах, входя в состав многих ферментов. Группа "тяжелых металлов" во многом совпадает с группой микроэлементов. С другой стороны, тяжёлые металлы и их соединения оказывают вредное воздействие на организм. К ним относятся свинец, цинк, кадмий, ртуть, молибден, хром, марганец, никель, олово, кобальт, титан, медь, ванадий.

 

IA

IIA

IIIB

IVB

VB

VIB

VIIB

----

VIIIB

----

IB

IIB

IIIA

IVA

VA

VIA

VIIA

VIIIA

Период                                    
1 1

H

                                2

He

2 3

Li

4

Be

                    5

B

6

C

7

N

8

O

9

F

10

Ne

3 11

Na

12

Mg

                    13

Al

14

Si

15

P

16

S

17

Cl

18

Ar

4 19

K

20

Ca

21

Sc

22

Ti

23

V

24

Cr

25

Mn

26

Fe

27

Co

28

Ni

29

Cu

30

Zn

31

Ga

32

Ge

33

As

34

Se

35

Br

36

Kr

5 37

Rb

38

Sr

39

Y

40

Zr

41

Nb

42

Mo

(43)

Tc

44

Ru

45

Rh

46

Pd

47

Ag

48

Cd

49

In

50

Sn

51

Sb

52

Te

53

I

54

Xe

6 55

Cs

56

Ba

  72

Hf

73

Ta

74

W

75

Re

76

Os

77

Ir

78

Pt

79

Au

80

Hg

81

Tl

82

Pb

83

Bi

84

Po

(85)

At

86

Rn

7 87

Fr

88

Ra

  (104)

Rf

(105)

Db

(106)

Sg

(107)

Bh

(108)

Hs

(109)

Mt

(110)

Ds

(111)

Rg

(112)

Cn

(113)

Uut

(114)

Uuq

(115)

Uup

(116)

Uuh

(117)

Uus

(118)

Uuo

8 (119)

Uue

(120)

Ubn

                               
Лантаноиды 57

La

58

Ce

59

Pr

60

Nd

(61)

Pm

62

Sm

63

Eu

64

Gd

65

Tb

66

Dy

67

Ho

68

Er

69

Tm

70

Yb

71

Lu

 
Актиноиды 89

Ac

90

Th

91

Pa

92

U

(93)

Np

(94)

Pu

(95)

Am

(96)

Cm

(97)

Bk

(98)

Cf

(99)

Es

(100)

Fm

(101)

Md

(102)

No

(103)

Lr

Щелочные металлы Щёлочноземельные металлы Лантаноиды Актиноиды Переходные металлы
Лёгкие металлы Полуметаллы Неметаллы Галогены Инертные газы

Одним из сильнейших по действию и наиболее распространенным химическим загрязнением является загрязнение окружающей среды тяжелыми металлами. Тяжелые металлы, попадая в организм, остаются там навсегда, вывести их можно только с помощью белков молока. Достигая определенной концентрации в организме, они начинают свое губительное воздействие - вызывают отравления, мутации. Кроме того, что сами они отравляют организм человека, они еще и чисто механически засоряют его - ионы тяжелых металлов оседают на стенках тончайших систем организма и засоряют почечные каналы, каналы печени, таким образом, снижая фильтрационную способность этих органов. Соответственно, это приводит к накоплению токсинов и продуктов жизнедеятельности клеток нашего организма, т.е. самоотравление организма, т.к. именно печень отвечает за переработку ядовитых веществ, попадающих в наш организм, и продуктов жизнедеятельности организма, а почки - за их выведение из организма. Источники поступления тяжелых металлов делятся на природные (выветривание горных пород и минералов, эрозийные процессы, вулканическая деятельность) и техногенные (добыча и переработка полезных ископаемых, сжигание топлива, движение транспорта, деятельность сельского хозяйства).

Часть техногенных выбросов, поступающих в природную среду в виде тонких аэрозолей, переносится на значительные расстояния и вызывает глобальное загрязнение.

Другая часть поступает в бессточные водоемы, где тяжелые металлы накапливаются и становятся источником вторичного загрязнения, т.е. образования опасных загрязнений в ходе физико-химических процессов, идущих непосредственно в среде (например, образование из нетоксичных веществ ядовитого газа фосгена).

Тяжелые металлы накапливаются в почве, особенно в верхних гумусовых горизонтах, и медленно удаляются при выщелачивании, потреблении растениями, эрозии и дефляции - выдувании почв. Период полуудаления или удаления половины от начальной концентрации составляет продолжительное время: для цинка - от 70 до 510 лет, для кадмия - от 13 до 110 лет, для меди - от 310 до 1500 лет и для свинца - от 740 до 5900 лет. В гумусовой части почвы происходит первичная трансформация попавших в нее соединений.

Кроме того, тяжелые металлы обладают высокой способностью к многообразным химическим, физико-химическим и биологическим реакциям. Многие из них имеют переменную валентность и участвуют в окислительно-восстановительных процессах. Тяжелые металлы и их соединения, как и другие химические соединения, способны перемещаться и перераспределяться в средах жизни, т.е. мигрировать. Миграция соединений тяжелых металлов происходит в значительной степени в виде органо-минеральной составляющей. Часть органических соединений, с которыми связываются металлы, представлена продуктами микробиологической деятельности. Ртуть характеризуется способностью аккумулироваться в звеньях «пищевой цепи». Микроорганизмы почвы могут давать устойчивые к ртути популяции, которые превращают металлическую ртуть в токсические для высших организмов вещества. Некоторые водоросли, грибы и бактерии способны аккумулировать ртуть в клетках.

Ртуть, свинец, кадмий входят в общий перечень наиболее важных загрязняющих веществ окружающей среды, согласованный странами, входящими в ООН.

В качестве токсикантов в водоемах обычно встречаются: ртуть, свинец, кадмий, олово, цинк, марганец, никель, хотя известна высокая токсичность других тяжелых металлов - кобальта, серебра, золота, урана и других. Вообще, высокая токсичность для живых существ - это характерное свойство соединений и ионов тяжелых металлов.

В ряду тяжелых металлов одни крайне необходимы для жизнеобеспечения человека и других живых организмов и относятся к так называемым биогенным элементам. Другие вызывают противоположный эффект и, попадая в живой организм, приводят к его отравлению или гибели. Эти металлы относят к классу ксенобиотиков, то есть чуждых живому. Специалистами по охране окружающей среды среди металлов-токсикантов выделена приоритетная группа. В нее входят кадмий, медь, мышьяк, никель, ртуть, свинец, цинк и хром как наиболее опасные для здоровья человека и животных. Из них ртуть, свинец и кадмий наиболее токсичны.

Токсическое действие тяжёлых металлов на организм усиливается тем, что многие тяжелые металлы проявляют выраженные комплексообразующие свойства. Так, в водных средах ионы этих металлов гидратированы и способны образовывать различные гидроксокомплексы, состав которых зависит от кислотности раствора. Если в растворе присутствуют какие-либо анионы или молекулы органических соединений, то ионы тяжёлых металлов образуют разнообразные комплексы различного строения и устойчивости.

В водоёмы тяжелые металлы поступают обычно со стоками горнодобывающих и металлургических предприятий, а также предприятий химической и легкой промышленности, где их соединения используют в различных технологических процессах. Например, много солей хрома сбрасывают предприятия по дублению кожи, хром и никель используются для гальванического покрытия поверхностей металлических изделий. Соединения меди, цинка, кобальта, титана используются в качестве красителей и т.д.

Тяжелые металлы имеют много общего в биологическом действии и в загрязнении водоемов. Все они очень токсичны, хотя многие из них необходимы в микроколичествах различным организмам /медь, марганец, хром, молибден, ванадий/.

Тяжёлые металлы, к примеру ртуть легко образуют соединения и комплексы с органическими веществами в растворах и в организме, хорошо усваиваются организмами из воды и передаются по пищевой цепи. По классу опасности ртуть относится к первому классу (чрезвычайно опасное химическое вещество). Ртуть реагирует с SH-группами белковых молекул, среди которых – важнейшие для организма ферменты. Ртуть также реагирует с белковыми группами –СООН и Nh3 с образованием прочных комплексов – металлопротеидов. А циркулирующие в крови ионы ртути, попавшие туда из легких, также образуют соединения с белковыми молекулами. Нарушение нормальной работы белков-ферментов приводит к глубоким нарушениям в организме, и прежде всего – в центральной нервной системе, а также в почках.

Один из самых опасных загрязнителей окружающей среды - ртуть, особенно опасны её выбросы в воду, поскольку в результате деятельности населяющих дно микроорганизмов происходит образование растворимых в воде токсичных органических соединений ртути. Органические соединения ртути в целом намного более токсичны, чем неорганические, прежде всего из-за их липофильности и способности более эффективно взаимодействовать с элементами ферментативных систем организма. Эти чрезвычайно ядовитые производные образуются в результате так называемого биологического метилирования. Оно происходит под действием микроорганизмов, например, плесени и характерно не только для ртути, но и для мышьяка, селена, теллура. Ртуть и ее неорганические соединения, которые широко используются на многих производствах, со сточными водами попадают на дно водоемов. Обитающие там микроорганизмы превращают их в диметилртуть (Ch4)2Hg, которая относится к числу наиболее ядовитых веществ. Диметилртуть далее легко переходит в водорастворимый катион HgCh4+. Оба вещества поглощаются водными организмами и попадают в пищевую цепочку; сначала они накапливаются в растениях и мельчайших организмах, затем – в рыбах. Метилированная ртуть очень медленно выводится из организма – месяцами у людей и годами у рыб. Поэтому концентрация ртути вдоль биологической цепочки непрерывно увеличивается, так что в рыбах-хищниках, которые питаются другими рыбами, ртути может оказаться в тысячи раз больше, чем в воде, из которой она выловлена. Именно этим объясняется так называемая «болезнь Минамата» – по названию приморского города в Японии, в котором за несколько лет от отравления ртутью умерло 50 человек и многие родившиеся дети имели врожденные уродства. Опасность оказалась так велика, что в некоторых водоемах пришлось приостановить лов рыбы – настолько она оказалась «нашпигованной» ртутью. Страдают от поедания отравленной рыбы не только люди, но и рыбы, тюлени.

К возможным источникам загрязнения биосферы тяжелыми металлами относят предприятия черной и цветной металлургии (аэрозольные выбросы, загрязняющие атмосферу, промышленные стоки, загрязняющие поверхностные воды), машиностроения (гальванические ванны меднения, никелирования, хромирования, кадмирования), заводы по переработке аккумуляторных батарей, автомобильный транспорт. Кроме антропогенных источников загрязнения среды обитания тяжелыми металлами существуют и другие, естественные, например вулканические извержения: кадмий обнаружили сравнительно недавно в продуктах извержения вулкана Этна на острове Сицилия в Средиземном море. Увеличение концентрации металлов-токсикантов в поверхностных водах некоторых озер может происходить в результате кислотных дождей, приводящих к растворению минералов и пород, омываемых этими озерами. Все эти источники загрязнения вызывают в биосфере или ее составляющих (воздухе, воде, почвах, живых организмах) увеличение содержания металлов-загрязнителей по сравнению с естественным, так называемым фоновым уровнем.

Тяжёлые металлы проникают в живой организм, в основном, через воду (исключением является ртуть, пары которой очень опасны). Попав в организм, тяжёлые металлы чаще всего не подвергаются каким-либо существенным превращениям, как это происходит с органическими токсикантами, и, включившись в биохимический цикл, они крайне медленно покидают его.

Важнейшим показателем качества среды обитания является степень чистоты поверхностных вод. Металл-токсикант, попав в водоем или реку, распределяется между компонентами этой водной экосистемы. Однако не всякое количество металла вызывает расстройство экосистемы. При оценке способности экосистемы сопротивляться внешнему токсическому воздействию принято говорить о буферной емкости экосистемы. Так, под буферной емкостью пресноводных экосистем по отношению к тяжелым металлам понимают такое количество металла-токсиканта, поступление которого существенно не нарушает естественного характера функционирования всей изучаемой экосистемы. При этом сам металл-токсикант распределяется на следующие составляющие: 1) металл в растворенной форме; 2) сорбированный и аккумулированный фитопланктоном, то есть растительными микроорганизмами; 3) удерживаемый донными отложениями в результате седиментации взвешенных органических и минеральных частиц из водной среды; 4) адсорбированный на поверхности донных отложений непосредственно из водной среды в растворимой форме; 5) находящийся в адсорбированной форме на частицах взвеси.

На формы нахождения тяжёлых металлов в водах оказывают влияние гидробионты (например, моллюски). Так, при изучении поведения меди в поверхностных водах наблюдают сезонные колебания ее концентрации: в зимний период они максимальны, а летом вследствие активного роста биомассы снижаются. При осаждении взвешенных органических частиц, которые обладают способностью адсорбировать ионы меди, последние переходят в донные отложения, что и приводит к наблюдаемому эффекту. Следует также отметить, что интенсивность этого процесса зависит от скорости седиментации взвесей, то есть косвенно от таких факторов, как размеры и заряд адсорбирующих ионы меди частиц.

Кроме аккумулирования металлов за счет адсорбции и последующей седиментации в поверхностных водах происходят другие процессы, отражающие устойчивость экосистем к токсическому воздействию такого рода загрязнителей. Наиболее важный из них состоит в связывании ионов металлов в водной среде растворенными органическими веществами. При этом общая концентрация токсиканта в воде не меняется. Тем не менее, принято считать, что наибольшей токсичностью обладают гидратированные ионы металлов, а связанные в комплексы опасны в меньшей мере либо даже почти безвредны. Специальные исследования показали, что между общей концентрацией металла-токсиканта в природных поверхностных водах и их токсичностью нет однозначной зависимости.

В природных поверхностных водах содержится множество органических веществ, 80% которых составляют высокоокисленные полимеры типа гумусовых веществ, проникающих в воду из почв. Остальная часть органических веществ, растворимых в воде, представляет собой продукты жизнедеятельности организмов (полипептиды, полисахариды, жирные и аминокислоты) или же подобные по химическим свойствам примеси антропогенного происхождения. Все они, конечно, претерпевают различные превращения в водной среде. Но все они в то же время являются своего рода комплексообразующими реагентами, связывающими ионы металлов в комплексы и уменьшающими тем самым токсичность вод.

Различные поверхностные воды по-разному связывают ионы тяжёлых металлов, проявляя при этом различную буферную емкость. Воды южных озер, рек, водоемов, имеющих большой набор природных компонентов (гумусовые вещества, гуминовые кислоты и фульвокислоты) и их высокую концентрацию, способны к более эффективной природной детоксикации по сравнению с водами водоемов Севера и умеренной полосы. Поэтому токсичность вод, в которых оказались загрязнители, зависит и от климатических условий природной зоны. Следует отметить, что буферная емкость поверхностных вод по отношению к металлам-токсикантам определяется не только наличием растворенного органического вещества и взвесей, но и аккумулирующей способностью гидробионтов, а также кинетикой поглощения ионов металлов всеми компонентами экосистемы, включая комплексообразование с растворенными органическими веществами. Все это говорит о сложности процессов, протекающих в поверхностных водах при попадании в них металлов-загрязнителей.

Интересно отметить, что гуминовые кислоты, эти специфические природные высокомолекулярные соединения, образующиеся при превращении растительных остатков в почвах под влиянием микроорганизмов, способны, видимо, в наибольшей степени связывать ионы тяжелых металлов в прочные комплексы. Так, константы устойчивости соответствующих гуматов (комплексов ионов тяжелых металлов с гуминовыми кислотами) имеют значения в пределах 105-1012 в зависимости от природы металла. А устойчивость самих гуматов зависит от кислотности водной среды.

Также немаловажным фактором при загрязнении воды тяжёлыми металлами является процесс аккумуляции (включая биоаккумуляцию). Любопытным оказался случай обнаружения залежей киновари (сульфида ртути) в одном из районов Карпат. Для геологов эта находка стала неожиданностью. Оказалось, что в средние века в селениях, расположенных в горах выше по течению реки, систематически применяли препарат ртути для лечения некоторых заболеваний. Шли годы, река собирала этот металл, переносила его вниз по течению и аккумулировала в одной из природных ловушек в виде донных отложений. Дальнейшая его трансформация дала в итоге киноварь. Этот пример показывает, что в природе происходят непрерывное перемещение, миграция и накопление токсикантов антропогенного происхождения, при этом они, кроме того, подвергаются химическому превращению в более устойчивые формы.

Из основных металлов-загрязнителей наиболее опасны для здоровья человека и животных ртуть, свинец и кадмий как представляющие наибольшую опасность для здоровья человека и животных. По классу опасности эти тяжёлые металлы относятся к первому классу (чрезвычайно опасное химическое вещество).

Тяжёлые металлы, к примеру ртуть легко образуют соединения и комплексы с органическими веществами в растворах и в организме, хорошо усваиваются организмами из воды и передаются по пищевой цепи. В водных средах ртуть образует металлорганические соединения типа R-Hg-X и R-Hg-R, где R - метилили этил-радикал.

На нахождение в водной среде той или иной формы ртути большое влияние оказывают кислотность среды и ее окислительный потенциал. Так, в хорошо аэрированных водоемах преобладают соединения Hg(II). Ионы ртути легко связываются в прочные комплексы с различными органическими веществами, находящимися в водах и выступающими в качестве лигандов. Особенно прочные комплексы образуются с серосодержащими соединениями. Ртуть реагирует с SH-группами белковых молекул, среди которых – важнейшие для организма ферменты. Ртуть также реагирует с белковыми группами –СООН и Nh3 с образованием прочных комплексов – металлопротеидов. А циркулирующие в крови ионы ртути, попавшие туда из легких, также образуют соединения с белковыми молекулами. Нарушение нормальной работы белков-ферментов приводит к глубоким нарушениям в организме, и прежде всего – в центральной нервной системе, а также в почках.

Кроме этого, ртуть легко адсорбируется на взвешенных частицах вод. При этом фактор концентрирования достигает порой 105, то есть на этих частицах сконцентрировано ртути в сто тысяч раз больше, чем находится в равновесии в водной среде. Десорбция ртути из донных отложений происходит медленно, поэтому повторное загрязнение поверхностных вод после того, как источник загрязнения установлен и ликвидирован, также имеет заторможенную кинетику.

Выбросы ртути в воду опасны и тем, что поскольку в результате деятельности населяющих дно микроорганизмов происходит образование растворимых в воде токсичных органических соединений ртути. Органические соединения ртути в целом намного более токсичны, чем неорганические, прежде всего из-за их липофильности и способности более эффективно взаимодействовать с элементами ферментативных систем организма. Эти чрезвычайно ядовитые производные образуются в результате так называемого биологического метилирования. Оно происходит под действием микроорганизмов, например, плесени и характерно не только для ртути, но и для мышьяка, селена, теллура. Ртуть и ее неорганические соединения, которые широко используются на многих производствах, со сточными водами попадают на дно водоемов. Обитающие там микроорганизмы превращают их в диметилртуть (Ch4)2Hg, которая относится к числу наиболее ядовитых веществ. Диметилртуть далее легко переходит в водорастворимый катион HgCh4+. Оба вещества поглощаются водными организмами и попадают в пищевую цепочку; сначала они накапливаются в растениях и мельчайших организмах, затем – в рыбах. Метилированная ртуть очень медленно выводится из организма – месяцами у людей и годами у рыб. Поэтому концентрация ртути вдоль биологической цепочки непрерывно увеличивается, так что в рыбах-хищниках, которые питаются другими рыбами, ртути может оказаться в тысячи раз больше, чем в воде, из которой она выловлена. Именно этим объясняется так называемая «болезнь Минамата» – по названию приморского города в Японии, в котором за несколько лет от отравления ртутью умерло 50 человек и многие родившиеся дети имели врожденные уродства. Опасность оказалась так велика, что в некоторых водоемах пришлось приостановить лов рыбы – настолько она оказалась «нашпигованной» ртутью. Страдают от поедания отравленной рыбы не только люди, но и рыбы, тюлени. При этом самый большой аккумулятор соединений ртути (до 97%) - поверхностные воды. Около половины всей ртути в природную среду попадает по техногенным причинам. В незагрязненных поверхностных водах содержание ртути колеблется в пределах 0,2-0,1 мкг/л, в морских - в три раза меньше. Водные растения также поглощают тяжёлые металлы. Органические соединения R-Hg-R' в пресноводном планктоне содержатся в большей концентрации, чем в морском. Из организма органические соединения ртути выводятся медленнее, чем неорганические.

Что касается свинца, то половина от общего количества этого токсиканта поступает в окружающую среду в результате сжигания этилированного бензина. В водных системах свинец в основном связан адсорбционно со взвешенными частицами или находится в виде растворимых комплексов с гуминовыми кислотами. При биометилировании, как и в случае со ртутью, свинец в итоге образует тетраметилсвинец. В незагрязненных поверхностных водах суши содержание свинца обычно не превышает 3 мкг/л. В реках промышленных регионов отмечается более высокое содержание свинца. Снег способен в значительной степени аккумулировать этот токсикант: в окрестностях крупных городов его содержание может достигать почти 1 млн мкг/л, а на некотором удалении от них ~1-100 мкг/л.

Водные растения хорошо аккумулируют свинец, но по-разному. Иногда фитопланктон удерживает его с коэффициентом концентрирования до 105, как и ртуть. В рыбе свинец накапливается незначительно, поэтому для человека в этом звене трофической цепи он относительно мало опасен. Метилированные соединения в рыбе в обычных условиях содержания водоемов обнаруживаются относительно редко. В регионах с промышленными выбросами накопление тетраметилсвинца в тканях рыб протекает эффективно и быстро - острое и хроническое воздействие свинца наступает при уровне загрязненности 0,1-0,5 мкг/л. В организме человека свинец может накапливаться в скелете, замещая кальций.

Другой важный загрязнитель водоёмов – кадмий. По химическим свойствам этот металл подобен цинку. Он может замещать последний в активных центрах металлсодержащих ферментов, приводя к резкому нарушению в функционировании ферментативных процессов.

Кадмий обычно проявляет меньшую токсичность по отношению к растениям в сравнении с метилртутью и сопоставим по токсичности со свинцом. При содержании кадмия ~ 0,2-1 мг/л замедляются фотосинтез и рост растений. Интересен следующий зафиксированный эффект: токсичность кадмия заметно снижается в присутствии некоторых количеств цинка, что еще раз подтверждает предположение о возможности конкуренции ионов этих металлов в организме за участие в ферментативном процессе.

Порог острой токсичности кадмия варьирует в пределах от 0,09 до 105 мкг/л для пресноводных рыб. Увеличение жесткости воды повышает степень защиты организма от отравления кадмием. Известны случаи сильного отравления людей кадмием, попавшим в организм по трофическим цепям (болезнь итай-итай). Из организма кадмий выводится в течение длительного периода (около 30 лет).

В водных системах кадмий связывается с растворенными органическими веществами, особенно если в их структуре присутствует сульфгидрильные группы SH. Кадмий образует также комплексы с аминокислотами, полисахаридами, гуминовыми кислотами. Как и в случае со ртутью и другими тяжёлыми металлами адсорбция ионов кадмия донными осадками сильно зависит от кислотности среды. В нейтральных водных средах свободный ион кадмия практически нацело сорбируется частицами донных отложений.

Для контроля качества поверхностных вод созданы различные гидробиологические службы наблюдений. Они следят за состоянием загрязнения водных экосистем под влиянием антропогенного воздействия. Поскольку такая экосистема включает в себя как саму среду (воду), так и другие компоненты (донные отложения и живые организмы - гидробионты), сведения о распределении тяжелых металлов между отдельными компонентами экосистемы имеют весьма важное значение. Надежные данные в этом случае могут быть получены при использовании современных методов аналитической химии, позволяющих определить содержание тяжелых металлов на уровне фоновых концентраций.

К.х.н. О. В. Мосин

www.o8ode.ru


Смотрите также