Общие физико-химические показатели воды. Физико химические показатели воды питьевой
Физико-химические показатели качества питьевой воды
Водородный показатель
Водородный показатель характеризует концентрацию свободных ионов водорода в воде. В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и т.д. Контроль за уровнем рН особенно важен на всех стадиях водоочистки, так как его отклонения в ту или иную сторону могут не только существенно сказаться на запахе, привкусе и внешнем виде воды, но и повлиять на эффективность водоочистных мероприятий. Для питьевой и хозяйственно-бытовой воды оптимальным считается уровень рН в диапазоне от 6 до 9 (СанПиН).
Общая минерализация
Общая минерализация представляет собой суммарный количественный показатель содержания растворенных в воде веществ. Этот параметр также называют содержанием растворимых твердых веществ или общим солесодержанием, так как растворенные в воде вещества находятся в виде солей. СанПиН рекомендует верхний предел минерализации в 1000 мг/л.
Вода же с низким солесодержанием слишком пресная и безвкусная. К величине минерализации с точки зрения отложения осадков и накипи в нагревательных приборах, паровых котлах, бытовых водогрейных устройствах применяются специальные требования, и чем меньше уровень минерализации (особенно содержание солей жесткости), тем лучше.
Общая минерализация воды совпадает с сухим остатком, который получают путем выпаривания определенного объема воды, предварительно профильтрованного через бумажный фильтр, и последующего высушивания остатка до постоянного веса при температуре 105-120 °С. Сухой остаток можно рассчитать также путем суммирования значений концентраций анионов и катионов, определенных методами химического анализа.
Жесткость
Жесткость воды обусловлена наличием в ней катионов кальция и магния.
Различают следующие виды жесткости:
Общая жесткость — определяется суммарной концентрацией ионов кальция и магния, представляет собой сумму карбонатной (временной) и некарбонатной (постоянной) жесткости.
Карбонатная жесткость — обусловлена наличием в воде гидрокарбонатов и карбонатов (при рН > 8.3) кальция и магния. Данный тип жесткости почти полностью устраняется при кипячении воды и поэтому называется временной жесткостью.
Некарбонатная жесткость — обусловлена присутствием кальциевых и магниевых солей сильных кислот (серной, азотной, соляной) и при кипячении не устраняется (постоянная жесткость).
Эти катионы образуют малорастворимые соли с обычно присутствующими в воде карбонатными и гидроксильными ионами.
Имеющиеся в природных водах бикарбонатные ионы при нагревании разлагаются на углекислый газ и карбонатный ион:
2Н2СО3 —› С02 + СО32-+Н2О.
Если в воде присутствуют катионы жесткости, то, взаимодействуя с карбонатными ионами при высоких температурах они образуют малорастворимые соли. Поэтому жесткие воды могут образовывать накипь и отложения на бытовой технике, котлах, трубопроводах горячей воды. Катионы жесткости образуют малорастворимые соли также с жирными кислотами, входящими в состав мыла. Поэтому при использовании жесткой воды для стирки белья ее необходимо предварительно умягчать, т. е. устранять из нее катионы жесткости.
Жесткость воды определяют путем титрования пробы воды реактивом «трилон- Б» в присутствии индикатора мурексида или хрома темного синего при значении рН пробы около 9. По количеству трилона-Б, необходимого для изменения окраски индикатора, судят о жесткости воды. В мировой практике используется несколько единиц измерения жесткости, все они определенным образом соотносятся друг с другом. Концентрацию катионов жесткости в воде определяют в миллиграмм-эквивалентах на литр (мг-экв/л) или в милли-молях на литр (ммоль/л). Жесткость воды для питьевых целей ограничена концентрацией 7 ммоль/л.
Окисляемость перманганатная
Окисляемость — это величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых (при определенных условиях) одним из сильных химических окислителей. Выражается этот параметр в миллиграммах кислорода, пошедшего на окисление этих веществ, содержащихся в 1 дм3 воды. В соответствии с требованиями СанПиН перманганатная окисляемость не должна превосходить 5,0 мгО2/л.
Железо
Может встречаться в природных водах в следующих видах:
Истинно растворённом виде (двухвалентное железо, прозрачная бесцветная вода)
Нерастворённом виде (трёхвалентное железо, прозрачная вода с коричневато-бурым осадком или ярко выраженными хлопьями)
Коллоидном состоянии (окрашенная желтовато-коричневая опалесцирующая вода, осадок не выпадает даже при длительном отстаивании)
Железоорганика — соли железа и гуминовых и фульвокислот (прозрачная желтовато-коричневая вода)
Железобактерии (коричневая слизь на водопроводных трубах)
ПДК в воде железа составляет 0,3 мг/л.
Марганец
Встречается в аналогичных модификациях. Повышенное содержание обоих элементов в воде вызывает потёки на сантехнике, окрашивает бельё при стирке и придаёт воде железистый или чернильный привкус. Длительное употребление такой воды для питья вызывает отложение указанных элементов в печени и по вредности значительно обгоняет алкоголизм.ПДК в воде марганца — 0,1 мг/л.
Сероводород
Встречающийся в подземных водах, преимущественно неорганического происхождения. Он образуется в результате разложения сульфидов (пирит, серный колчедан) кислыми водами и восстановления сульфатов сульфатредуцирующими бактериями. Сероводород обладает резким неприятным запахом и является общеклеточным и каталитическим ядом. По этим причинам, а также вследствие интенсификации процессов коррозии, сероводород следует полностью удалять из воды хозяйственно-питьевого назначения (по ГОСТ «Вода питьевая»).
Хлор
Появляется в питьевой воде в результате её обеззараживания. Сущность обеззараживающего действия хлора заключается в окислении или хлорировании (замещении) молекул веществ, входящих в состав цитоплазмы клеток бактерий, отчего бактерии гибнут. Очень чувствительны к хлору возбудители брюшного тифа, паратифов, дизентерии, холеры. Даже сильно заражённая бактериями вода в значительной мере дезинфицируется сравнительно малыми дозами хлора. Однако отдельные хлоррезистентные особи сохраняют жизнеспособность, поэтому полной стерилизации воды не происходит.
Ввиду того, что свободный хлор относится к числу вредных для здоровья веществ, гигиенические номы СанПиН строго регламентирует содержание остаточного свободного хлора в питьевой воде централизованного водоснабжения. При этом СанПиН устанавливает не только верхнюю границу допустимого содержания свободного остаточного хлора, но и минимально-допустимую границу. Дело в том, что, что несмотря на обеззараживание на станции водоочистки, готовую «товарную» питьевую воду подстерегает немало опасностей по пути к крану потребителя. Например, свищ в стальной подземной магистрали, сквозь которые не только магистральная вода попадает наружу, но и загрязнения из почвы могут попасть в магистраль.Остаточный хлор (оставшийся в воде после обеззараживания) необходим для предотвращения возможного вторичного заражения воды во время прохождения по сети.Хлорированная вода неблагоприятно воздействует на кожу и слизистые оболочки, поскольку хлор является сильным аллергическим и токсическим веществом. Так, хлор вызывает покраснения различных участков кожи, а также становится причиной аллергического конъюктевита, первыми признаками которого являются жжение, слезотечение, отек век и другие болевые ощущения в области глаз. Дыхательная система также подвергается вредному воздействию: у 60% пловцов регистрируется проявление бронхоспазма после нескольких минут нахождения в бассейне с хлорированной водой.
Исследования показали, что около 10% хлора, используемого при хлорировании, участвует в образовании хлорсодержащих соединений. Приоритетными хлорсодержащими соединениями являются хлороформ, четырёххлористый углерод, дихлорэтан, трихлорэтан, тетрахлоэтилен. В сумме образующихся при водоподготовке ТГМ хлороформ составляет 70 — 90 %. Хлороформ вызывает профессиональные хронические отравления с преимущественным поражением печени и центральной нервной системы.
При хлорировании есть вероятность образования чрезвычайно токсичных соединений, тоже содержащих хлор, — диоксинов (диоксин в 68 тыс. раз ядовитее цианистого калия).
Хлорированная вода обладает высокой степенью токсичности и суммарной мутагенной активностью (СМА) химических загрязнений, что многократно увеличивает риск онкологических заболеваний.
По оценке американских экспертов, хлорсодержащие вещества в питьевой воде косвенно или непосредственно виновны в 20 онкозаболеваниях на 1 млн. жителей. Риск онкозаболеваний при максимальном хлорировании воды достигает 470 случаев на 1 млн. жителей. Предполагается, что 20-35% случаев заболевания раком (преимущественно толстой кишки и мочевого пузыря) обусловлены потреблением питьевой воды.Остаточный хлор (оставшийся в воде после обеззараживания) необходим для предотвращения возможного вторичного заражения воды во время прохождения по сети.
Содержание остаточного хлора в водопроводной воде должно быть не менее 0,3 мг/л и не более 0,5 мг/л.
Натрий и калий попадают в подземные воды за счёт растворения коренных пород. Основным источником натрия в природных водах являются залежи поваренной соли NaCl, образовавшиеся на месте древних морей. Калий встречается в водах реже, так как он лучше поглощается почвой и извлекается растениями.
Медь, цинк
Преимущественно попадают в источники водоснабжения со стоками промышленных вод. Медь и цинк могут также попадать при коррозии соответственно оцинкованных и медных водопроводных труб из-за повышенного содержания агрессивной углекислоты.
Все вышеперечисленные соединения относятся к тяжёлым металлам и обладают кумулятивным действием, то есть свойством накапливаться в организме и срабатывать при превышении определённой концентрации в организме.
ПДК в воде меди составляет 1,0 мг/л; цинка — 5,0 мг/л.
Хлориды
Присутствуют практически во всех водах. В основном их присутствие в воде связано с вымыванием из горных пород наиболее распространённой на Земле соли — хлорида натрия (поваренной соли). Повышенное содержание хлоридов в совокупности с присутствием в воде аммиака, нитритов и нитратов может свидетельствовать о загрязнённости бытовыми сточными водами.ПДК хлоридов в воде питьевого качества — 350 мг/л .
Сульфаты
Попадают в подземные воды в основном при растворении гипса, находящегося в пластах. Повышенное содержание сульфатов в воде приводит к расстройству желудка (тривиальные названия сульфата магния и сульфата натрия (солей, обладающих слабящим эффектом) — «английская соль» и «глауберова соль» соответственно).ПДК сульфатов в воде питьевого качества — 500 мг/л.
Азотосодержащие вещества (нитраты NO3-, нитриты NO2- и аммонийные соли Nh5+)
Почти всегда присутствуют во всех водах, включая подземные, и свидетельствуют о наличии в воде органического вещества животного происхождения. Являются продуктами распада органических примесей, образуются в воде преимущественно в результате разложения мочевины и белков, поступающих в неё с бытовыми сточными водами. Рассматриваемая группа ионов находится в тесной взаимосвязи.
Первым продуктом распада является аммиак (аммонийный азот) — является показателем свежего фекального загрязнения и является продуктом распада белков. В природной воде ионы аммония окисляются бактериями Nitrosomonas и Nitrobacter до нитритов и нитратов. Нитриты являются лучшим показателем свежего фекального загрязнения воды, особенно при одновременном повышенным содержании аммиака и нитритов. Нитраты служат показателем более давнего органического фекального загрязнения воды. Недопустимо содержание нитратов вместе с аммиаком и нитратами.
По наличию, количеству и соотношению в воде азотсодержащих соединений можно судить о степени и давности заражения воды продуктами жизнедеятельности человека.
Отсутствие в воде аммиака и в то же время наличие нитритов и особенно нитратов, т.е. соединений азотной кислоты, свидетельствуют о том, что загрязнение водоема произошло давно, и вода подверглась самоочищению. Наличие в воде аммиака и отсутствие нитратов указывают на недавнее загрязнение воды органическими веществами. Следовательно, в питьевой воде не должно быть аммиака, не допускаются соединения азотной кислоты (нитриты).
Наличие иона аммония в концентрациях, превышающих фоновые значения, указывает на свежее загрязнение и близость источника загрязнения (коммунальные очистные сооружения, отстойники промышленных отходов, животноводческие фермы, скопления навоза, азотных удобрений, поселения и др.). Употребление воды с повышенным содержанием нитритов и нитратов приводит к нарушению окислительной функции крови.По нормам СанПиН ПДК в воде аммония составляет 2,0 мг/л; нитритов — 3,0 мг/л; нитратов — 45,0 мг/л.
Фториды и йодиды.
Фториды и йодиды в чём-то похожи. Оба элемента при недостатке или избытке в организме приводят к серьёзным заболеваниям. Для йода это — заболевания щитовидной железы («зоб»), возникающие при суточном рационе менее 0,003 мг или более 0,01 мг. Для восполнения дефицита йода в организме возможно употребление йодированной соли, но лучший выход — это включение в рацион рыбы и морепродуктов. Особенно богата йодом морская капуста.
Недостаток фтора в воде приводит к кариесу, его избыток — к флюорозу («пятнистая эмаль зубов»), рахиту и малокровию. Оптимальная доза фтора в питьевой воде составляет 0,7…1,2 мг/л. При пониженном содержание фтора в питьевой воде рекомендуется пользоваться зубной пастой с добавлением фтора. Фтор — один из немногих элементов, которые лучше усваиваются организмом из воды, хотя его можно получать и из ананасов.
Органолептические показатели
К числу органолептических показателей относятся те параметры качества воды, которые определяют ее потребительские свойства, т. е. те свойства, которые непосредственно влияют на органы чувств человека (обоняние, осязание, зрение).
Наиболее значимые из этих параметров — вкус и запах — не поддаются формальному измерению, поэтому их определение производится экспертным путем.
Кроме вкуса и запаха, выделяют такие показатели как привкус, цветность, мутность и прозрачность.
Запах и привкус
Химически чистая вода совершенно лишена привкуса и запаха. С научной точки зрения, запах и привкус — это свойство веществ вызывать у человека и животных специфическое раздражение рецепторов слизистой оболочки носоглотки и языка. Привкус может быть щелочной, металлический, вяжущий и т. п. Интенсивность запаха воды определяют экспертным путем при 20°С и 60°С и измеряют в баллах. СанПиН нормирует допустимую интенсивность привкуса – 2 балла, запаха – 2 балла.
Вкус
Вкус воды определяется растворенными в ней веществами органического и неорганического происхождения и различается по характеру и интенсивности.
Различают четыре основных вида вкуса: соленый, кислый, сладкий, горький. Все другие виды вкусовых ощущений называются привкусами.
Интенсивность вкуса определяют при 20°С и оценивают по пятибалльной системе. СанПиН нормирует допустимую интенсивность вкуса – 2 балла.
Цветность
Цветностью называют показатель качества воды, характеризующий интенсивность окраски воды. Определяется цветность путем сравнения окраски испытуемой воды с эталонами и выражается в градусах платиново-кобальтовой шкалы. Высокая цветность свидетельствует о неблагополучии воды. СанПиН нормирует допустимый показатель цветности — 20 градус Pt-Co шкалы.
Мутность
Мутность воды вызвана присутствием тонкодисперсных взвесей органического и неорганического происхождения. Главным отрицательным следствием высокой мутности является то, что она защищает микроорганизмы при ультрафиолетовом обеззараживании и стимулирует рост бактерий.
hoh.by
Общие физико-химические показатели воды - Ватера
Показатель |
Единицы измерения |
ВОЗ |
USEPA |
ЕС |
СанПиН |
Водородный показатель |
единицы рН |
- |
6,5-8,5 |
6,5-8,5 |
6,0-9,0 |
Общая минерализация |
мг/л |
1000 |
500 |
1500 |
1000 |
Жесткость общая |
мг-экв/л |
- |
- |
1,2 |
7,0 |
Окисляемость перманганатная |
мгО2/л |
- |
- |
5,0 |
5,0 |
Электропроводность (при 20°С) |
мкС/см |
- |
- |
- |
- |
Температура |
°С |
- |
- |
25 |
- |
Окислительно-восстановительный потенциал |
МВ |
- |
- |
- |
- |
Кислотность |
мг-экв |
- |
- |
- |
- |
Щелочность |
мг HCO3-/л |
- |
- |
30 |
- |
Степень насыщения кислородом |
% |
- |
- |
- |
- |
Водородный показатель
Водородный показатель характеризует концентрацию свободных ионов водорода в воде. Для удобства отображения был введен специальный показатель, названный рН и представляющий собой логарифм концентрации ионов водорода, взятый с обратным знаком, т.е. pH = -log[H+].
Если говорить проще, то величина рН определяется количественным соотношением в воде ионов Н+ и ОН-, образующихся при диссоциации воды. Если в воде пониженное содержание свободных ионов водорода (рН>7) по сравнению с ионами ОН-, то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н+ (рН<7)-кислую. В идеально чистой дистиллированной воде эти ионы будут уравновешивать друг друга. В таких случаях вода нейтральна и рН=7. При растворении в воде различных химических веществ этот баланс может быть нарушен, что приводит к изменению уровня рН.
Очень часто показатель рН путают с такими параметрами, как кислотность и щелочность воды. Важно понимать разницу между ними. Главное заключается в том, что рН – это показатель интенсивности, но не количества. То есть, рН отражает степень кислотности или щелочности среды, в то время как кислотность и щелочность характеризуют количественное содержание в воде веществ, способных нейтрализовывать соответственно щелочи и кислоты. В качестве аналогии можно привести пример с температурой, которая характеризует степень нагрева вещества, но не количество тепла. Например, опустив руку в воду, мы можем сказать какая вода – прохладная или теплая, но при этом не сможем определить, сколько в ней тепла (т.е. условно говоря, как долго эта вода будет остывать). В зависимости от уровня рН воды можно условно разделить на несколько групп:
Величина рН |
|
Сильнокислые воды |
< 3 |
Кислые воды |
3 – 5 |
Слабокислые воды |
5 – 6,5 |
Нейтральные воды |
6,5 –7,5 |
Слабощелочные воды |
7,5 – 8,5 |
Щелочные воды |
8,5 – 9,5 |
Сильнощелочные воды |
> 9,5 |
pH воды – один из важнейших рабочих показателей качества воды, во многом определяющих характер химических и биологических процессов, происходящих в воде. Взависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и т.д.
Контроль уровня рН особенно важен на всех стадиях водоочистки, так как его «уход» в ту или иную сторону может не только существенно сказаться на запахе, привкусе и внешнем виде воды, но и повлиять на эффективность водоочистных мероприятий. Оптимальная требуемая величина рН варьируется для различных систем водоочистки в соответствии с составом воды, характером материалов, применяемых в системе распределения, а также в зависимости от применяемых методов водообработки.
Обычно уровень рН находится в пределах, при которых он непосредственно не влияет на потребительские качества воды. Так, в речных водах pH обычно находится в пределах 6,5 - 8,5, в атмосферных осадках 4,6 - 6,1, в болотах 5,5 - 6,0, в морских водах 7,9 - 8,3.
Поэтому ВОЗ не предлагает какой-либо рекомендуемой по медицинским показателям величины для рН. Вместе с тем известно, что при низком рН вода обладает высокой коррозионной активностью, а при высоких уровнях (рН>11) вода приобретает характерную мылкость, неприятный запах, способна вызывать раздражение глаз и кожи. Именно поэтому для питьевой и хозяйственно-бытовой воды оптимальным считается уровень рН в диапазоне от 6 до 9.
Общая минерализация
Общая минерализация представляет собой суммарный количественный показатель содержания растворенных в воде веществ.
Этот параметр также называют содержанием растворимых твердых веществ или общим солесодержанием, так как растворенные в воде вещества находятся именно в виде солей. К числу наиболее распространенных относятся неорганические соли (в основном бикарбонаты, хлориды и сульфаты кальция, магния, калия и натрия) и небольшое количество органических веществ, растворимых в воде.
Очень часто этот параметр путают с сухим остатком. Действительно, эти параметры очень близки между собой, но методика определения сухого остатка такова, что в результате не учитываются более летучие органические соединения, растворенные в воде. Это приводит к тому, что общая минерализация и сухой остаток могут отличаться на небольшую величину (как, правило, не более 10 %).
Уровень солесодержания в питьевой воде обусловлен качеством воды в природных источниках, которые существенно варьируются в разных геологических регионах вследствие различной растворимости минералов.
В зависимости от минерализации природные воды можно разделить на следующие категории:
Категория вод |
Минерализация, г/дм3 |
Ультрапресные |
< 0,2 |
Пресные |
0,2 – 0,5 |
Воды с относительно повышенной минерализацией |
0,5 – 1,0 |
Солоноватые |
1,0 – 3,0 |
Соленые |
3,0 – 10,0 |
Воды повышенной солености |
10,0 – 35,0 |
Рассолы |
> 35,0 |
Кроме природных факторов, на общую минерализацию воды большое влияние оказывают промышленные сточные воды, городские ливневые стоки (особенно когда соль используется для борьбы с обледенением дорог) и т.п.
По данным Всемирной Организации Здравоохранения надежные данные о возможном воздействии на здоровье повышенного солесодержания отсутствуют. Поэтому по медицинским показаниям ограничения ВОЗ не вводятся. Обычно хорошим считается вкус воды при общем солесодержании до 600 мг/л, однако уже при величинах более 1000 - 1200 мг/л вода может вызвать нарекания у потребителей. Поэтому по органолептическим показаниям ВОЗ рекомендован верхний предел минерализации в 1000 мг/л.
Разумеется, уровень приемлемости общего солесодержания в воде сильно варьируется в зависимости от местных условий и сложившихся привычек.
Вопрос о воде с низким солесодержанием также открыт. Считается, что такая вода слишком пресная и безвкусная, хотя многие тысячи людей, употребляющих обратноосмотическую воду, отличающуюся очень низким солесодержанием, наоборот находят ее более приемлемой.
Отдельных слов заслуживает величина минерализации с точки зрения отложения осадков и накипи в нагревательных приборах, паровых котлах, бытовых водогрейных устройствах. В этом случае к воде применяются специальные требования, и чем меньше уровень минерализации (особенно содержание солей жесткости), тем лучше.
Жесткость
Жесткостью называют свойство воды, обусловленное наличием в ней растворимых солей кальция и магния.
Химия жесткости
Понятие жесткости воды принято связывать с катионами кальция (Са2+) и в меньшей степени магния (Mg2+). В действительности, все двухвалентные катионы в той или иной степени влияют на жесткость. Они взаимодействуют с анионами, образуя соединения (соли жесткости) способные выпадать в осадок. Одновалентные катионы (например, натрий Na+) таким свойством не обладают.
В данной таблице приведены основные катионы металлов, вызывающие жесткость, и главные анионы, с которыми они ассоциируются.
Катионы |
Анионы |
Кальций (Ca 2+ ) |
Гидрокарбонат (HCO 3–) |
Магний (Mg 2+ ) |
Сульфат (SO 42–) |
Железо (Fe 2+ ) |
Нитрат (NO 3–) |
Марганец (Mn 2+ ) |
Силикат (SiO 32–) |
Стронций (Sr 2+ ) |
Хлорид (Cl–) |
На практике стронций, железо и марганец оказывают на жесткость столь небольшое влияние, что ими, как правило, пренебрегают. Алюминий (Al3+) и трехвалентное железо (Fe3+) также влияют на жесткость, но при уровнях рН, встречающихся в природных водах, их растворимость и, соответственно, «вклад» в жесткость ничтожно малы. Аналогично, не учитывается и незначительное влияние бария (Ва2+).
Виды жесткости
Различают следующие виды жесткости.
Общая жесткость. Определяется суммарной концентрацией ионов кальция и магния. Представляет собой сумму карбонатной (временной) и некарбонатной (постоянной) жесткости.
Карбонатная жесткость. Обусловлена наличием в воде гидрокарбонатов и карбонатов (при рН>8,3) кальция и магния. Данный тип жесткости почти полностью устраняется при кипячении воды и поэтому называется временной жесткостью. При нагреве воды гидрокарбонаты распадаются с образованием угольной кислоты и выпадением в осадок карбоната кальция и гидроксида магния.
Некарбонатная жесткость. Обусловлена присутствием кальциевых и магниевых солей сильных кислот (серной, азотной, соляной) и при кипячении не устраняется (постоянная жесткость).
Единицы измерения
В мировой практике используется несколько единиц измерения жесткости, все они определенным образом соотносятся друг с другом. В России Госстандартом в качестве единицы жесткости воды установлен моль на кубический метр (моль/м3).
Кроме этого в зарубежных странах широко используются такие единицы жесткости, как немецкий градус (d°, dH), французский градус (f°), американский градус, ppm CaCO3. Соотношение этих единиц жесткости представлено в следующем виде:
Единицы жесткости воды |
|
моль/м3 (мг-экв/л) |
1.000 |
Немецкий градус, d° |
2.804 |
Французский градус, f° |
5.005 |
Американский градус |
50.050 |
ppm (мг/дм3) СаСО3 |
50.050 |
Примечание:
1. Один немецкий градус соответствует 10 мг/дм3 СаО или 17.86 мг/дм3 СаСО3 в воде.
2. Один французский градус соответствует 10 мг/дм3 СаСО3 в воде.
3. Один американский градус соответствует 1 мг/дм3 СаСО3 в воде.
Происхождение жесткости
Ионы кальция (Ca2+) и магния (Mg2+), а также других щелочноземельных металлов, обуславливающих жесткость, присутствуют во всех минерализованных водах. Их источником являются природные залежи известняков, гипса и доломитов. Ионы кальция и магния поступают в воду в результате взаимодействия растворенного диоксида углерода с минералами и при других процессах растворения и химического выветривания горных пород. Источником этих ионов могут служить также микробиологические процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий.
Жесткость воды колеблется в широких пределах и существует множество типов классификаций воды по степени ее жесткости.
Ниже в таблице приведены четыре примера классификации. Две классификации из российских источников - из справочника «Гидрохимические показатели состояния окружающей среды» и учебника для вузов «Водоподготовка», а две – из зарубежных: нормы жесткости немецкого института стандартизации (DIN 19643) и классификация, принятая Агентством по охране окружающей среды США (USEPA) в 1986.
Таблица наглядно иллюстрирует гораздо более «жесткий» подход к проблеме жесткости.
Обычно в маломинерализованных водах преобладает (до 70-80 %) жесткость, обусловленная ионами кальция (хотя в отдельных редких случаях магниевая жесткость может достигать 50-60 %). С увеличением степени минерализации воды содержание ионов кальция (Са2+) быстро падает и редко превышает 1 г/л. Содержание же ионов магния (Mg2+) в высокоминерализованных водах может достигать нескольких граммов, а в соленых озерах – десятков граммов на один литр воды.
В целом, жесткость поверхностных вод, как правило, меньше жесткости вод подземных. Жесткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период половодья, когда обильно разбавляется мягкой дождевой и талой водой. Морская и океанская вода имеют очень высокую жесткость (десятки и сотни мг-экв/дм3).
Влияние жесткости на качество воды
С точки зрения применения воды для питьевых нужд, ее приемлемость по степени жесткости может существенно варьироваться в зависимости от местных условий. Порог вкуса для иона кальция лежит (в пересчете на мг-эквивалент) в диапазоне 2-6 мг-экв/л, в зависимости от соответствующего аниона, а порог вкуса для магния и того ниже. В некоторых случаях для потребителей приемлема вода с жесткостью выше 10 мг-экв/л.
Высокая жесткость ухудшает органолептические свойства воды, придавая ей горьковатый вкус и оказывая отрицательное действие на органы пищеварения. Всемирная Организация Здравоохранения не предлагает какой-либо рекомендуемой величины жесткости по показаниям влияния на здоровье. В материалах ВОЗ говорится о том, что хотя ряд исследований и выявил статистически обратную зависимость между жесткостью питьевой воды и сердечно-сосудистыми заболеваниями, имеющиеся данные не достаточны для вывода о причинном характере этой связи. Аналогичным образом, однозначно не доказано, что мягкая вода оказывает отрицательный эффект на баланс минеральных веществ в организме человека.
Вместе с тем, в зависимости от рН и щелочности, вода с жесткостью выше 4 мг-экв/л может вызвать в распределительной системе отложение шлаков и накипи (карбоната кальция), особенно при нагревании. Именно поэтому нормами Котлонадзора вводятся очень жесткие требования к величине жесткости воды, используемой для питания котлов (0,05-0,1 мг-экв/л).
Кроме того, при взаимодействии солей жесткости с моющими веществами (мыло, стиральные порошки, шампуни) происходит образование «мыльных шлаков» в виде пены. Это приводит не только к значительному перерасходу моющих средств.
Такая пена после высыхания остается в виде налета на сантехнике, белье, человеческой коже, на волосах (неприятное чувство жестких волос хорошо известное многим). Главным отрицательным воздействием этих шлаков на человека является то, что они разрушают естественную жировую пленку, которой всегда покрыта нормальная кожа и забивают ее поры.
Признаком такого негативного воздействия является характерный скрип чисто вымытой кожи или волос. Оказывается, что вызывающее у некоторых раздражение чувство «мылкости» после пользования мягкой водой является признаком того, что защитная жировая пленка на коже цела и невредима. Именно она и скользит. В противном случае, приходится тратиться на лосьоны, умягчающие и увлажняющие кремы и прочие хитрости для восстановление этой защиты. Вместе с тем, необходимо упомянуть и о другой стороне медали. Мягкая вода с жесткостью менее 2 мг-экв/л имеет низкую буферную емкость (щелочность) и может, в зависимости от уровня рН и ряда других факторов, оказывать повышенное коррозионное воздействие на водопроводные трубы. Поэтому, в ряде применений (особенно в теплотехнике) иногда приходится проводить специальную обработку воды с целью достижения оптимального соотношения между жесткостью и ее коррозионной активностью.
Перманганатная окисляемость
Окисляемость – это величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых (при определенных условиях) одним из сильных химических окислителей.
Выражается этот параметр в миллиграммах кислорода, необходимого на окисление этих веществ, содержащихся в 1 дм3 воды.
Различают несколько видов окисляемости воды: перманганатную, бихроматную, иодатную, цериевую. Наиболее высокая степень окисления достигается бихроматным и иодатным методами. В практике водоочистки для природных малозагрязненных вод определяют перманганатную окисляемость, а в более загрязненных водах – как правило, бихроматную окисляемость (называемую также ХПК – «химическое потребление кислорода»).
Окисляемость является очень удобным комплексным параметром, позволяющим оценить общее загрязнение воды органическими веществами.
Органические вещества, находящиеся в воде весьма разнообразны по своей природе и химическим свойствам. Их состав формируется как под влиянием внутриводоемных биохимических процессов, так и за счет поступления поверхностных и подземных вод, атмосферных осадков, промышленных и хозяйственно-бытовых сточных вод.
Величина окисляемости природных вод может варьироваться в широких пределах от долей миллиграммов до десятков миллиграммов О 2 на литр воды. Поверхностные воды имеют более высокую окисляемость, а значит и более «богаты» органикой по сравнению с подземными.
Так, горные реки и озера характеризуются окисляемостью 2-3 мгО2/дм3 , реки равнинные – 5-12 мгО2/дм3, реки с болотным питанием – десятки миллиграммов на 1 дм3.
Подземные же воды имеют в среднем окисляемость на уровне от сотых до десятых долей миллиграмма О2/дм3 (исключения составляют воды в районах нефтегазовых месторождений, торфяников, в сильно заболоченных местностях).
Бихроматная окисляемость
В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, бихроматную окисляемость (ХПК) используют в качестве меры содержания органического вещества в пробе воды. Таким образом, ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и промышленных сточных вод (в том числе, и степени их очистки), а также поверхностного стока.
В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мгО2/дм3.
Электропроводность
Электропроводность – это численное выражение способности водного раствора проводить электрический ток. Электрическая проводимость природной воды зависит в основном от степени минерализации (концентрации растворенных минеральных солей) и температуры. Благодаря этой зависимости, по величине электропроводности можно с определенной степенью погрешности судить о минерализации воды. Такой принцип измерения используется, в частности, в довольно распространенных приборах оперативного измерения общего солесодержания (так называемых TDS-метрах).
Дело в том, что природные воды представляют собой растворы смесей сильных и слабых электролитов. Минеральную часть воды составляют преимущественно ионы натрия (Na+), калия (K+), кальция (Ca2+), хлора (Cl-), сульфата (SO42-), гидрокарбоната (HCO3-).
Этими ионами и обуславливается в основном электропроводность природных вод.
Присутствие же других ионов, например трехвалентного и двухвалентного железа (Fe3+ и Fe2+), марганца (Mn2+), алюминия (Al3+), нитрата (NO3-), HPO4- , h3PO4- и т.п. не столь сильно влияет на электропроводность (конечно при условии, что эти ионы не содержатся в воде в значительных количествах, как например, это может быть в производственных или хозяйственно-бытовых сточных водах).
Погрешности же измерения возникают из-за неодинаковой удельной электропроводимости растворов различных солей, а также из-за повышения электропроводимости с увеличением температуры. Однако, современный уровень техники позволяет минимизировать эти погрешности, благодаря заранее рассчитанным и занесенным в память зависимостям.
Электропроводность не нормируется, но величина 2000 мкСм/см примерно соответствует общей минерализации в 1000 мг/л.
Температура
Температура – важнейший фактор, влияющий на протекающие в воде физические, химические, биохимические и биологические процессы. От температуры воды в значительной мере зависят кислородный режим, интенсивность окислительно-восстановительных процессов, активность микрофлоры и т.д. Температура воды также может повлиять и на производительность систем очистки воды. Например, производительность систем обратного осмоса очень существенно зависит от температуры воды, поступающей на мембрану. Поэтому фактор температуры учитывается во многих расчетах при построении систем очистки воды.
Специальных норм, определяющих температуру воды, кроме ЕС (<25 °С) никто не вводит. В рекомендациях ВОЗ сказано лишь, что температура воды «должна быть приемлемой». Говорить же о неких нормах в масштабах России практически бессмысленно, так как в силу естественных причин среднегодовая температура воды в Мурманской области и в Краснодарском крае не может быть одинаковой и пытаться привести ее к некоему общему знаменателю, как минимум не оправдано экономически.
С точки зрения потребительских качеств, холодная вода, как правило, более приятна на вкус. Высокая же температура воды не только ускоряет рост микроорганизмов, но и может усугубить проблемы, связанные с привкусом, запахом, цветностью, коррозией.
Окислительно–восстановительный потенциал
В справочнике по гидрохимии дано следующее определение: «Окислительно-восстановительный потенциал (ОВП) является мерой химической активности элементов или их соединений в обратимых химических процессах, связанных с изменением заряда ионов в растворах».
В переводе на более понятный неспециалисту язык это означает, что ОВП, называемый также редокс-потенциал (от английского RedOx - Reduction/Oxidation), характеризует степень активности электронов в окислительно-восстановительных реакциях, т.е. реакциях, связанных с присоединением или передачей электронов.
Значение окислительно-восстановительного потенциала для каждой окислительно-восстановительной реакции вычисляется по довольно сложной формуле, выражается в милливольтах и может иметь как положительное, так и отрицательное значение.
В природной воде значение Eh колеблется от -400 до +700 мВ, что определяется всей совокупностью происходящих в ней окислительных и восстановительных процессов. В условиях равновесия значение ОВП определенным образом характеризует водную среду, и его величина позволяет делать некоторые общие выводы о химическом составе воды.
В зависимости от значения ОВП различают несколько основных ситуаций, встречающихся в природных водах:
1. Окислительная. Характеризуется значениями Еh>+(100-150) мВ, присутствием в воде свободного кислорода, а также целого ряда элементов в высшей форме своей валентности (Fe3+, Mo6+, As5-, V5+, U6+, Sr4+, Cu2+, Pb2+). Ситуация, наиболее часто встречающаяся в поверхностных водах.
2. Переходная окислительно-восстановительная. Определяется величинами Еh от 0 до +100 мВ, неустойчивым геохимическим режимом и переменным содержанием сероводорода и кислорода. В этих условиях протекает как слабое окисление, так и слабое восстановление целого ряда металлов.
3. Восстановительная. Характеризуется значениями Еh<0. Типична для подземных вод, где присутствуют металлы низких степеней валентности (Fe2+, Mn2+, Mo4+, V4+, U4+), а также сероводород.
Окислительно-восстановительный потенциал зависит от температуры и взаимосвязан с рН. В некоторых применениях (например, в обработке воды для бассейнов) ОВП является одним из основных параметров контроля качества воды. В частности потому, что позволяет оценить эффективность обеззараживания воды. Для иллюстрации приведём таблицу зависимости продолжительности жизни типичных микроорганизмов от величины редокс-потенциала.
ОВП, мВ |
Время жизни E-Coli, мин. |
450–500 |
167 |
500–550 |
6 |
550–600 |
1,7 |
700–750 |
0,2 |
750–800 |
0,05 |
Кислотность
Кислотностью называют содержание в воде веществ, способных вступать в реакцию с гидроксид-ионами (ОН-). Кислотность воды определяется эквивалентным количеством гидроксида, необходимого для реакции.
В обычных природных водах кислотность в большинстве случаев зависит только от содержания свободного диоксида углерода.
Естественную часть кислотности создают также гуминовые и другие слабые органические кислоты и катионы слабых оснований (ионы аммония, железа, алюминия, органических оснований). В этих случаях pH воды не бывает ниже 4,5.
В загрязненных водоемах может содержаться большое количество сильных кислот или их солей за счет сброса промышленных сточных вод. В этих случаях pH может быть ниже 4,5. Часть общей кислотности, снижающей pH до величин <4,5, называется свободной.
Щелочность
Под щелочностью природных или очищенных вод понимают способность некоторых их компонентов связывать эквивалентное количество сильных кислот. Этот параметр также часто называют буферной емкостью воды, имея в виду способность воды нейтрализовывать коррозионное воздействие кислот.
Под общей щелочностью подразумевается сумма содержащихся в воде гидроксильных ионов (ОН-) и анионов слабых кислот (карбонатов, гидрокарбонатов, силикатов, боратов, сульфитов, гидросульфитов, сульфидов, гидросульфидов, анионов гуминовых кислот, фосфатов), которые в свою очередь, гидролизуясь, образуют гидроксильные ионы.
Поскольку в большинстве природных вод преобладают карбонаты, то обычно различают лишь гидрокарбонатную и карбонатную щелочность. В редких случаях, при рН>8,5 возникает гидратная щелочность.
Щелочность определяется количеством сильной кислоты, необходимой для нейтрализации 1 дм3 воды. Щелочность большинства природных вод определяется только гидрокарбонатами кальция и магния, pH этих вод не превышает 8,3.
Определение щелочности полезно при дозировании химических веществ, необходимых при обработке вод для водоснабжения.
Вместе со значениями рН, щелочность воды служит для расчета содержания карбонатов и баланса угольной кислоты в воде.
Степень насыщения кислородом
Растворенный кислород находится в природной воде в виде молекул O2 . На его содержание в воде влияют две группы противоположно направленных процессов: одни увеличивают концентрацию кислорода, другие уменьшают ее.
К числу первых относятся: поглощение кислорода из атмосферы, выделение кислорода водной растительностью в процессе фотосинтеза и поступление в водоемы с дождевыми и снеговыми водами, которые обычно перенасыщены кислородом. В артезианских водах все эти факторы практически не действуют, и поэтому кислород в таких водах отсутствует. В поверхностных же водах содержание кислорода меньше теоретически возможного в силу протекания процессов, уменьшающих его концентрацию, а именно: потребления кислорода различными организмами брожения, гниения органических остатков, реакций окисления и т.п.
Относительное содержание кислорода в воде, выраженное в процентах его нормального содержания и называется степенью насыщения кислородом. Этот параметр зависит от температуры воды, атмосферного давления и уровня минерализации. Вычисляется по формуле:
M = (a × 01308 × 100)/N × P,
где М – степень насыщения воды кислородом, %;
а – концентрация кислорода, мг/дм3;
Р – атмосферное давление в данной местности, МПа.
N – нормальная концентрация кислорода при данной температуре и общем давлении 0,101308 Мпа, приведенная в следующей таблице:
Температура воды, °С
0 |
10 |
20 |
30 |
40 |
50 |
60 |
80 |
100 |
|
мгО2/дм3 |
14,6 |
11,3 |
9,1 |
7,5 |
6,5 |
5,6 |
4,8 |
2,9 |
0,0 |
Концентрация кислорода определяет величину окислительно-восстановительного потенциала и в значительной мере направление и скорость процессов химического и биохимического окисления органических и неорганических соединений. Содержание кислорода в поверхностных водах служит косвенной характеристикой оценки качества поверхностных вод.
Для растворенного кислорода ВОЗ не предлагает какой-либо величины по показаниям его влияния на здоровье. Однако резкое снижение содержания кислорода в воде указывает на ее химическое и/или биологическое загрязнение.
В свою очередь, истощение растворенного кислорода в системах водоснабжения может способствовать микробиологическому восстановлению нитрата в нитрит и сульфата в сульфид, что вызывает появление запаха. Уменьшение количества кислорода приводит также к повышению концентрации двухвалентного железа в растворе и осложняет его удаление. В то же время при определенных условиях растворенный кислород придает воде коррозионные свойства по отношению к металлам и бетону.
Для поверхностных вод нормальной считается степень насыщения не менее 75 %.
www.watera.ru
Показатели качества водной среды — Мегаобучалка
Для оценки качества вод, степени их чистоты или загрязнённости и возможности водопользования для тех или иных нужд применяются три группы показателей качества воды: физико-химические, биологические и органолептические (табл. 3.17).
К физико-химическим показателям качества воды относятся: содержание в ней солей, металлов, сухой остаток, жёсткость, кислотность.
Таблица 3.17
Характеристики качества вод
Физико-химические | Биологические | Органо-лептические |
Сухой остаток Мутность Химические вещества Жёсткость Температура Растворённый кислород Химическая потребность кислоода | Число бактерий Число микроорганизмов Органические вещества Биологическая потребность кислорода | Запах Вкус Цвет Прозрачность |
Биологические показатели качествахарактеризуютколичество бактерий и микробов, количество органических примесей, биологический показатель качества (БПК).
Органолептические показатели качества воды – это её вкус, цвет, запах, прозрачность.
Показатели качества вод, используемых для разных нужд, имеют существенные различия.
Физико-химические показатели качества воды
Охарактеризуем более подробно физико-химические показатели качества воды.
Сухой остаток воды – это соли и вещества, которые остаются после её выпаривания. В воде источника и питьевой воде он не должен превышать 1 000 мг на литр. Более высокое содержание солей, если оно не обусловлено геологическими особенностями, даёт основание полагать, что соли поступают в водоём вместе с промышленными стоками.
Мутность определяют с помощью мутномера, в котором исследуемую воду сравнивают с эталонным раствором, приготовленным из инфузорной земли или каолина на основе дистиллированной воды. Мутность воды выражают в мг/л взвешенного вещества.
Жёсткость воды зависит от содержания солей кальция и магния, главным образом двууглекислых. Различают три вида жёсткости: общую, постоянную и устранимую.
Общая жёсткость воды– это жёсткость сырой воды, обусловленная содержанием всех соединений Са и Mg, независимо от того, с какими анионами они связаны.
Постоянная жёсткость – это жёсткость воды после одночасового кипячения, зависящая от присутствия солей Са и Mg, не дающих осадка при кипячении (сульфаты и хлориды).
Устранимая жёсткость – это жёсткость воды, которая устраняется при кипячении, что связано с превращением бикарбонатов в нерастворимые соединения (монокарбокаты), которые выпадают в осадок.
Жёсткость измеряется в градусах или миллиграмм-эквивалентах.
За один градус жёсткости принимается количество солей Са и Mg эквивалентное 10 мг СаО, в одном литре воды:
1° жёсткости = 10 мг СаО в литре воды;
1 мг экв СаО – 28 мг/л СаО;
1 мг экв СаО s 2,8° жёсткости.
Мягкой считается вода, имеющая жёсткость менее 10°, т.е. менее 100 мг СаО в 1 литре воды, умеренно жёсткой – от 10° до 20°, жёсткой – более 20°.
Очень жёсткая вода может оказывать на желудок человека послабляющее действие. Косвенное влияние жёсткой воды состоит в худшей усваиваемости организмом пищи: овощей, мяса, бобовых, которые плохо провариваются в жёсткой воде. При использовании жёсткой воды в промышленности происходит быстрое засорение труб осадками.
Важнейшим показателем качества воды является её кислотность или рН. Кислотность характеризует активность и определяется концентрацией ионов водорода. Чем меньше значение показателя, тем более кислой является вода.
Концентрация ионов водорода в дистиллированной воде при температуре 25оС равна 1∙10-7 моль/л.
pH равно десятичному логарифму величины обратной активности иона водорода и рассчитывается по формуле (3.17):
pH = - log V(H+), (3.17)
где V(H+) есть концентрация ионов водорода (моль/л).
рН атмосферной воды находится в пределах от 5 до 6 ед. рН. Под влиянием абсорбированных углекислого газа, окислов серы и азота (особенно в промышленных районах) атмосферная вода может становиться кислой и её рН понижается до 4 – 5 ед. рН. Для питьевой воды, как видно из табл.3.18, показатель рН находится в пределах от 6,5 до 8,5 ед. рН. Кислую реакцию вода приобретает при загрязнении её промышленными и другими сточными водами, содержащими кислоты и их соли.
Количество растворённого кислорода зависит от температуры воды и барометрического давления. В чистых открытых водоёмах при температуре + 5+15°С содержание кислорода составляет 3 – 6 мг/л, при сильном загрязнении оно снижается до нуля за счёт поглощения его водной фауной и загрязняющими воду органическими веществами.
Таблица 3.18
Шкала кислотности
pH | ||||||||
концентрация H+, моль/л | 1 | 10-1 | 10-2 | 10-3 | 10-4 | 10-5 | 10-6 | 10-7 |
pH | |||||||
концентрация H+, моль/л | 10-8 | 10-9 | 10-10 | 10-11 | 10-12 | 10-13 | 10-14 |
Косвенными показателями является окисляемость воды, характеризуемая химической потребностью кислорода (ХПК), и биологической потребностью кислорода (БПК).
ХПК характеризует расход кислорода на окислительно-восстановительные процессы в воде, обусловленные её загрязнением химическими веществами (без учёта его расхода на биологические процессы, т.е. процессы, связанные с потреблением кислорода живыми организмами).
megaobuchalka.ru
3.1 Физико-химические показатели качества воды. Показатели качества питьевой воды, методы очистки
Похожие главы из других работ:
Загрязнение среды обитания от гальванического производства предприятия ОАО "Курганмашзавод"
2.3 Расчет предельно допустимых сбросов. Параметры сброса сточных вод. Показатели качества воды в контрольных створах водного объекта
Приемником очищенных промливневых сточных вод ОАО "КМЗ" является р. Черная (таблица 7). Река Черная относится к водоемам 2 категории рыбохозяйственного назначения. Является левым притоком р. Тобол, впадает в него ниже г. Кургана на 688 км от устья...
Оценка влияния крупных промышленных предприятий на экологические системы города
2.4 Физико-химические методы
...
Оценка влияния крупных промышленных предприятий на экологические системы города
4.2 Физико-химические методы
Для получения достоверных результатов анализ следует проводить возможно быстрее. В воде происходят процессы окисления - восстановления, физико-химические, биохимические, вызванные деятельностью микроорганизмов, сорбции, десорбции...
Показатели качества питьевой воды, методы очистки
3. Показатели качества вод
Качество воды характеризуют следующие параметры: общие физико-химические показатели качества воды, орагнолептические показатели, бактериологические и паразитологические показатели, радиологические показатели...
Показатели качества питьевой воды, методы очистки
3.4 Радиологические показатели качества воды
Воздействие ионизирующей радиации на человека обусловлено как естественными, так и искусственными источниками излучения. Доза облучения, получаемая человеком (здесь и далее под дозой подразумевается эффективная приведенная доза)...
Полевые методы экологического мониторинга
3. Показатели качества воды и их определение
В различных аналитических лабораториях нашей страны специалисты ежегодно выполняют не менее 100 млн анализов качества воды, причем 23% определений заключается в оценке их органолептических свойств...
Предварительный расчет теплообменника
5.3 Физико-химические характеристики теплоносителя
Раствор NaOH (30%) с=1310 ; м= 5,5*10-3 Па*с; с = 0,768 ; с=0,768*4190=3217,92 ; л= 0,470 ; л= 0,470*1,16=0,54 ; Греющий пар р=1,4 атм; tпара= 110оС; r= 2230,0 ; с= 0,826 ; мn= 12,46*106 Па*с; Конденсат tконд=tпара=110оС; с= 951,0 ; м= 259*106 Па*с; л=68...
Разработка мероприятий по переработке нефтешламов и очистки сточных вод предприятия
2.1.5 Физико-химические методы
Сущность физико-химического метода заключается в применении специально подобранных поверхностно-активных веществ (деэмульгаторов, диспергаторов, смачивателей и т.д.), вспомогательных веществ...
Расчет и проектирование гидроциклона для комплексной технологии глубокой очистки промышленных сточных вод
2.2 Физико-химические методы очистки
2.2.1 Флотация применяется для удаления из сточных вод нерастворимых диспергированных примесей, которые плохо отстаиваются. Для этого в воду подают воздух под давлением через перфорированные трубы с мелкими отверстиями...
Расчет и проектирование системы очистки воздуха от зерновой пыли
1.4 Физико-химические показатели солода
Таблица 1. Физико-химические показатели солода. Наименование показателя Норма Проход через сито (2,2 х 2,0) мм, %, не более 1,5 Массовая доля сорной примеси, %, не более 0,2 Количество зерен, %, мучнистых, не менее 87,0 стекловидных...
Создание научных основ обеззараживания и очистки воды на основе нанотехнологии
Глава 1. Физико-химические свойства воды
В ХIХ веке была открыта химическая формула этого соединения Н2О, которая, как тогда казалось, дает полную информацию о воде, но в 1932 году открылся новый сенсационный факт - помимо обыкновенной воды, существует еще и понятие «тяжелая» вода...
Способы очистки воды и её качество
Основные показатели качества воды
Мутность и прозрачность Мутность - показатель качества воды, обусловленный присутствием в воде нерастворенных и коллоидных веществ неорганического и органического происхождения. Причиной мутности поверхностных вод являются илы...
Требования к качеству питьевой воды
2. Показатели качества питьевой воды
Согласно нормативным требованиям, все показатели качества питьевой воды можно разделить на следующие основные группы: 1) органолептические показатели (включая химические вещества...
Экологический мониторинг и система управления качеством окружающей среды в Ленинградской области
3.2.1 Физико-химические методы
Качественные методы. Позволяют определить, какое вещество находится в испытуемой пробе. Количественные методы. Гравиметрический метод. Суть метода состоит в определении массы и процентного содержания какого-либо элемента...
Экология природопользования
1. Закон физико-химического единства живого вещества и биогеохимические принципы В.И. Вернадского. Термодинамическое правило Вант-Гоффа - Аррениуса и другие физико-химические закономерности развития основ жизни
Закон физико-химического единства живого вещества и биогеохимические принципы В.И. Вернадского - одни из важнейших закономерностей развития биосистем. Закон биогенной миграции атомов (В.И...
eco.bobrodobro.ru