Волны вода. Гравитационные волны на воде

Происхождение морских волн. Волны вода


Возникновение волн

Волны бывают различными - на поверхности жидкости, звуковыми, электромагнитными. Но сейчас мы сосредоточимся на волнах, возникающих на морских просторах. Как явствует из определения, волны возникают, когда некие образовавшиеся колебания начинают распространяться в пространстве. А чтобы эти самые колебания возникли, необходимо действие внешней силы. В зависимости от того, какая внешняя сила является причиной возникновения колебаний (а значит и волн), различают волны трения, барические волны, сейсмические, стоячие и приливные.

К волнам трения относят ветровые волны и внутренние. Ветровые волны возникают на границе воздух - вода. Когда дует ветер, слои воздуха периодически воздействуют на поверхность воды и вызывают ее колебания. Колебания распространяются в пространстве и по морю бегут волны. Обычно их высота не более четырех метров, но в случае штормовых ветров возрастает до пятнадцати метров и выше. Наибольшей высоты волны могут достигать в полосе западных ветров Южного полушария - до 25 метров.

Появлению волн на поверхности моря предшествует рябь. Она возникает при скорости ветра менее одного метра в секунду. С увеличением скорости возрастает величина волн. Высокие и крутые ветровые волны носят образное имя толчея. Когда ветер стихает, волнение еще какое- то время продолжается по инерции, в этом случае говорят, что на море зыбь. Волна, бегущая по мелководью на берег, называется прибоем. В этот процесс вовлекаются значительные массы воды, даже когда высота волны не очень велика. При выходе ее на прибрежное мелководье, частицы воды из- за большого значения энергии, начинают двигаться по горизонтали, взад и вперед, неся с собой камни и песок. Каждый, кто купался в море, знает как бьют эти камешки по ногам. Достаточно сильный прибой в состоянии тащить огромные валуны.

Внутренние волны

Внутренние волны (подводные) возникают под поверхностью моря, на границе двух слоев воды с различными свойствами. Капитан Немо был не совсем точен и слишком идеализировал океан, когда утверждал, что внутри него царит покой. Водная толща океана неоднородна, она состоит из разных слоев. Физические характеристики их (температура, соленость, плотность) меняются от слоя к слою неравномерно, на границе между ними и образуются внутренние волны. Впервые они были обнаружены норвежским полярным исследователем, доктором зоологии, основателем физической океанографии Фритьофом Ведель- Ярлсбергом Нансеном (1861 - 1930 г.г.). Во время плавания на судне "Фрам" на Северный Полюс, Нансен наблюдал в Северном Ледовитом океане периодические изменения температуры и солености морской воды на одной и той же глубине.

Подобные волны могут возникать вблизи устьев рек, в проливах с двухслойными течениями, у кромки тающих льдов. Высота внутренних волн может в десятки раз превышать высоту волн на поверхности, но по скорости они уступают поверхностным. Эти волны несут опасность подводным лодкам, размывают портовые сооружения (волнорезы, дебаркадеры, причалы), способны рассеивать звуковые волны. Такие волны хорошо видны со спутника (на фото). Обычно они невелики, но в проливе Лусон, между Филиппинами и Тайванем, достигают 170 метров в высоту. Это объясняется особенностями водных потоков и рельефом дна.

Барические волны возникают из- за быстрой смены атмосферного давления в местах прохождения циклонов. Это одиночные волны, способные пройти сотни, а то и тысячи километров от места своего возникновения и неожиданно броситься на берег, смывая все на своем пути. Так в сентябре 1935 года барическая волна высотой девять метров обрушилась на берег Флориды и унесла 400 человеческих жизней. Образование таких волн не редкость на побережьях Индии, Китая, Японии.

Сейсмические волны возникают в результате активных процессов в недрах Земли - землетрясений, извержений подводных вулканов, образования трещин и разломов в земной коре на океаническом дне. В результате образуются специфические волны , невысокие в открытом океане и вырастающие до колоссальных размеров при приближении к берегу - цунами. Обычно предвестником появления такой аномальной волны является резкое отступление моря на несколько километров от берега. Это сигнал опасности - море вернется в виде безумствующего пенящегося чудовища, несущего смерть и разрушения. Впрочем, о a href="/tcunami">цунами на нашем сайте есть отдельная статья и мы будем рады, если Вы обратитесь к ней.

Приливные волны

В результате действия гравитационных сил на водную оболочку Земли со стороны Солнца и Луны образуются приливные волны. Эти волны чаще всего невелики, в открытом океане их высота до двух метров. У берега она возрастает. Максимальной величины высота прилива достигает на Атлантическом побережье Северной Америки - до 18 метров. В нашем Охотском море - почти 13 метров. Самое сильное воздействие наблюдается в новолуние и полнолуние, когда складываются гравитационные притяжения Солнца и Луны. В это время приливы становятся максимально высокими, а отливы - низкими.

Во внутренних морях приливная волна и вовсе незначительна, так на Балтике у Санкт- Петербурга ее высота составляет пять сантиметров. А вот в некоторых реках движение ее представляет собой замечательную картину. Например, в Амазонке (на фото), когда приливная волна движется против течения и ее высота достигает пяти метров. Это явление ощущается на расстоянии 1400 километров от устья.

Стоячие волны (сейши) появляются как результат интерференции (сложения) волн, возникающих под действием внешних сил (ветровых, барических) и волн, отраженных от уступов берега или подводных препятствий достаточной протяженности.

Сейши

Такие волны вырастают в высоту, чередуя гребень с впадиной и остаются на месте, поднимаясь и опускаясь. Их легко смоделировать в ванне, если совершать вертикальные колебательные движения на поверхности воды, например, периодически опуская в воду крышку от сливного отверстия ванны. Через некоторое время установятся правильно распределенные во времени и пространстве остроконечные валы, стоящие на одном месте. Это и есть объект наших исследований.

Сейши возникают в неожиданных местах, где, казалось бы, нет отраженных волн, так как препятствия не видны, они находятся под поверхностью воды. Они могут быть причиной гибели морских судов. В частности, такая версия существует для района таинственного и ужасного Бермудского треугольника, как одно из возможных объяснений исчезновения кораблей. Это место вообще считается сложным для судоходства в связи с различными факторами - наличие мелководных выступов, слияние нескольких морских течений с разной температурой воды, сложным рельефом дна. Здесь континентальный шельф сперва постепенно углубляется, а затем внезапно уходит на приличную глубину. Подводная топография региона оказывает влияние на образование стоячей волны. Она возникает при ясной безветренной погоде и поэтому коварна вдвойне. Современное многотонное судно, поднятое такой волной, расколется на части под действием собственной силы тяжести и исчезнет с поверхности в считанные минуты.

Морские волны - одно из завораживающих природных явлений. Их бесконечное разнообразие и вечное движение успокаивает, заряжает энергией. Недаром еще народам древних цивилизаций были известны целительные свойства талассотерапии (морелечения). Солевой состав крови человека близок к составу морской воды, эта стихия родственна нам, а в шуршании прибоя о берег чудится биение большого и доброго сердца.

originof.ru

Волны на поверхности воды. О чем рассказывает свет

Волны на поверхности воды

Каждый знает, что водяные волны бывают разные. На поверхности пруда едва заметная зыбь слегка качает пробку рыболова, а на морских просторах огромные водяные валы раскачивают океанские пароходы. Чем же отличаются волны друг от друга?

Посмотрим, как возникают водяные волны.

Рис. 4. Прибор для ритмического возбуждения волн на поверхности воды

Для возбуждения волн на воде возьмем прибор, показанный на рис. 4. Когда моторчик А вращает эксцентрик Б, стерженек В движется вверх и вниз, погружаясь в воду на разную глубину. От него разбегаются круговые волны (рис. 5).

Они представляют собой ряд чередующихся гребней и впадин.

Расстояние между соседними гребнями (или впадинами) называется длиной волны и обычно обозначается греческой буквой ? (лямбда) (рис. 6).

Рис. 5. Волны, создаваемые ритмично колеблющимся стерженьком; буквой ? обозначена длина волны

Увеличим число оборотов моторчика, а стало быть, и частоту колебаний стерженька вдвое. Тогда число волн, появившихся за то же время, будет вдвое больше. Но при этом длина волн будет вдвое меньше.

Число волн, образующихся в одну секунду, называется частотой волн. Она обычно обозначается греческой буквой ? (ню).

Рис. 6. Поперечный разрез водяной волны. АБ — амплитуда а, БВ — длина волны ?

Пусть на воде плавает пробка. Под влиянием бегущей волны она будет совершать колебания. Подошедший к пробке гребень поднимет ее вверх, а следующая за ним впадина опустит вниз. За одну секунду пробку поднимет столько гребней (и опустит столько впадин), сколько за это время образуется волн. А это число и есть частота волны ?. Значит, пробка будет колебаться с частотой ?. Так, обнаруживая действие волн в любом месте их распространения, мы можем установить их частоту.

Рис. 7. Схема связи длины волны ?, скорости v и частоты ?. Из рисунка ясно, что v = ??

Ради простоты мы будем считать, что волны не затухают. Частота и длина незатухающих волн связаны друг с другом простым законом. За секунду образуется ? волн. Все эти волны уложатся на некотором отрезке (рис. 7). Первая волна, образовавшаяся в начале секунды, дойдет до конца этого отрезка; она отстоит от источника на расстоянии, равном длине волны, умноженной на число образовавшихся волн, то есть на частоту ?. Но расстояние, пройденное волной за секунду, есть скорость волны v. Таким образом,

? ? ? = v

Длину волны и скорость распространения волн часто узнают из опыта, но тогда частоту v можно определить из вычисления, а именно:

? = v / ?

Частота и длина волн являются их существенными характеристиками; по этим характеристикам одни волны отличают от других.

Кроме частоты (или длины волны), волны отличаются еще и высотой гребней (или глубиной впадин). Высота волны измеряется от горизонтального уровня покоящейся поверхности воды. Она называется амплитудой, или размахом колебаний.

Амплитуда колебаний связана с энергией, которую несет волна. Чем больше амплитуда водяной волны (это относится также и к колебаниям струн, почвы, фундамента и т. д.), тем больше энергия, которая передается волнами, причем больше в квадрат раз (если амплитуда больше в два раза, то энергия больше в 4 раза и т. д.).

Теперь мы можем сказать, чем океанская волна отличается от зыби в пруду: длиной волны, частотой колебаний и амплитудой.

А зная, какими величинами характеризуется каждая волна, нетрудно будет понять и характер взаимодействия волн друг с другом.

Поделитесь на страничке

Следующая глава >

fis.wikireading.ru

Волны океана | ФОТО НОВОСТИ

Австралийский фотограф Мэтт Берджесс (Matt Burgess) на протяжении шести лет снимает океан. Он делает снимки с необычных ракурсов и даже заглядывает «под волну» — большинство людей не видели океан с этой стороны.

22 фото

Волны океана

1. Воды Мирового океана постоянно двигаются. На берег то набегают, то откатываются волны. И вода в волнах не перемещается только в горизонтальном направлении — в этом можно легко убедиться, наблюдая за поплавком на воде.

Волны океана2. У пологого берега волна «чувствует» дно. От трения нижняя часть слоя жидкости тормозится, а гребень волны продолжает движение, наклоняется вперед и опрокидывается. Так возникает прибой. На берег набегает пенистый водяной вал, а навстречу ему, с берега стекает вода предыдущей волны.

Волны океана

3. Главной причиной возникновения волн является ветер. Он словно вдавливает водную поверхность и выводит её из состояния равновесия.

Волны океана

4. Даже слабый ветер может создает волны. Обычно высота волн не превышает 4 метров. Большие волны (более 20 метров) порождаются штормовыми ветрами. Крупнейшая из ветровых волн высотой 34 метра (это высота 10-этажного дома) была зафиксирована в центральной части Тихого океана в 1933 году.

Волны океана

5. Когда ветер слабеет, высокие волны океана меняются рябью — низким волнением. Чем сильнее, длительный ветер и больший водное пространство, тем выше волны. С глубиной воды волнение уменьшается и становится незаметным.

Волны океана

6. Волны выполняют разрушительную и созидательную работу. В одних местах они с такой силой бьют о берег, что разрушают горные породы

Волны океана

7. На берегах Черного моря сила удара волны может достигать 25 тонн на 1 кв.м. Не всякая постройка выдержит такой натиск. При этом, вода поднимается вверх на высоту до 60 метров.

Волны океана

8. При шторме волны океана способны перемещать камни весом в несколько тонн. Чтобы защитить берега и портовые сооружения от разрушения, строят специальные волнорезы из железобетонных плит.

Волны океана

9. Творческая работа волн океана — это создание песчаных и галечных пляжей. Кроме того, волны перемешивают воду, способствуют обогащению ее кислородом и теплом. Это необходимо для живых организмов Океана.

Волны океана

10. Землетрясения и извержения вулканов могут вызывают огромные волны — цунами, которые распространяются во все стороны от места возникновения и охватывают всю толщу воды от дна до поверхности. Цунами идут через весь океан со скоростью реактивного самолета.

Волны океана

11. Высота цунами в открытом океане невелика — до 1 м при длине волны 200 км. Поэтому среди водных просторов большого волнения нет и цунами трудно заметить.

Волны океана

12. Все меняется с приближением к берегу. Перед цунами море, обнажая дно, отходит от берегов на сотни метров, будто для разбега. А потом стремительно накатывается волна. Зажатая берегами в узкой гавани, она вырастает до 20-30 м. Вот почему японское слово «цунами» дословно переводится, как «волна в гавани».

Волны океана

13. Стена воды цунами всей тяжестью обрушивается на побережье. Она переворачивает судна, разрушает здания, а отступая, несет в океан всё, что попадается на её пути. Чаще цунами случаются на западном побережье Тихого океана. Предотвратить цунами невозможно, можно можно лишь заранее предупредить о приближении.

Волны океана

14. Издавна было замечено, что каждые 6 часов уровень воды в Мировом океане то поднимается, то опускается. Вода то наступает на берег и продвигается далеко на сушу, то отступает от него, обнажая дно. Поднятие уровня воды в Океане называется притоком, а ее спад — оттоком. На побережьях морей ширина приточной полосы достигает иногда нескольких километров. В приток там можно плавать на лодке и ловить рыбу. В отлив — гулять по дну и собирать ракушки.

Волны океана

15. Приливы — это тоже волны океана. Они вызваны гравитацией Луны и Солнца. Вместе им удается создавать приливную волну. В отличие от обычной, приливная волна носит всепланетный характер. Огромные массы Мирового океана то поднимаются, то опускаются. Океан как-будто дышит.

Волны океана

16. Луна и, в меньшей степени, Солнце вызывают приливы и отливы, как по расписанию — 2 раза в сутки. Приливы и отливы, как день и ночь, приходят на нашу планету с точностью хороших часов.

Волны океана

17. Время наступления приливов не везде одинаково. Кроме того, в океане высота таких волн составляет менее 1 м, поэтому там они незаметны. Высокие приливы наблюдаются в узких заливах, устьях рек. Так, высота прилива в Черном море может быть всего несколько сантиметров, а в узких заливах Охотского моря достигает 13 метров. Самые высокие приливы в Мировом океане, достигающие 18 м, наблюдаются в заливе Фанди у восточного побережья Северной Америки.

Волны океана

18. Мореплавателями давно были составлены специальные таблицы, которые позволяли проводить корабли с учетом высокой или низкой волны. В наши дни таблицы заменили компьютеры. А еще приливные волны имеют огромную энергию, которую человек использует для получения электроэнергии.

Волны океана

19.

Волны океана

20.

Волны океана

21.

Волны океана

22.

Волны океана

Также смотрите «10 интересных фактов о цунами» и «Замерзшее Черное море».

loveopium.ru

Гравитационные волны на воде - это... Что такое Гравитационные волны на воде?

Гравитацио́нные во́лны на воде́ — разновидность волн на воде, при которых сила, возвращающая деформированную поверхность воды к состоянию равновесия, есть просто сила тяжести, т.е. перепад высот гребня и впадины в гравитационном поле.

Общие свойства

Гравитационные волны на воде — это нелинейные волны.

Точный математический анализ возможен лишь в линеаризованном приближении и в отсутствие турбулентности. Кроме того, обычно речь идёт про волны на поверхности идеальной жидкости. Результаты точного решения в этом случае описаны ниже.

Гравитационные волны на воде не поперечны и не продольны. При колебании частицы жидкости описывают некоторые кривые, т.е. перемещаются как в направлении движения, так и поперёк него. В линеаризованном приближении эти траектории имеют вид окружностей. Это приводит к тому, что профиль волн не синусоидальный, а имеет характерные заострённые гребни и более пологие провалы.

Нелинейные эффекты сказываются, когда амплитуда волны становится сравнимой с её длиной. Одним из характерных эффектов в этом режиме является появление изломов на вершинах волн. Кроме того, появляется возможность опрокидывания волны. Эти эффекты пока не поддаются точному аналитическому расчёту.

Закон дисперсии для слабых волн

Поведение волн малой амплитуды можно с хорошей точностью описать линеаризованными уравнениями движения жидкости. Для справедливости этого приближения необходимо, чтобы амплитуда волны была существенно меньше как длины волны, так и глубины водоёма.

Имеется две предельные ситуации, для которых решение задачи имеет наиболее простой вид — это гравитационные волны на мелкой воде и на глубокой воде.

Гравитационные волны на мелкой воде

Приближение волн на мелкой воде справедливо в тех случаях, когда длина волны существенно превышает глубину водоёма. Классический пример таких волн — это цунами в океане: до тех пор, пока цунами не вышла на берег, она представляет собой волну амплитудой порядка нескольких метров и длиной в десятки и сотни километров, что, конечно же, существенно больше глубины океана.

Закон дисперсии и скорости волны в этом случае имеет вид:

\omega = \sqrt{gH}\cdot k\,;\quad v_{ph} = v_{gr} = \sqrt{gH}.

,

где k = 1 / λ - волновой вектор, а λ - длина волны.

Этот закон дисперсии приводит к некоторым явлениям, которые можно легко заметить на морском берегу.

  • Даже если волна в открытом море шла под углом к берегу, то при выходе на берег гребни волны имеют тенденцию разворачиваться параллельно берегу. Это связано с тем, что вблизи берега, когда глубина начинает постепенно уменьшаться, скорость волны падает. Поэтому косая волна притормаживает на подходе к берегу, разворачиваясь при этом.
  • За счёт аналогичного механизма при подходе к берегу уменьшается продольный размер цунами, при этом высота волны возрастает.

Гравитационные волны на глубокой воде

Приближение волны на глубокой воде справедливо, когда глубина водоёма значительно превышает длину волны. В этом случае для простоты рассматривают бесконечно глубокий водоём. Это обоснованно, поскольку при колебаниях поверхности реально движется не вся толща воды, а лишь приповерхностный слой глубиной порядка длины волны.

Закон дисперсии и скорости волны в этом случае имеет вид:


\omega = \sqrt{gk}\,;\quad v_{ph} = 2 v_{gr} = \sqrt{{g\over k}}.

Из выписанного закона следует, что длинноволновые колебания будут распространяться по воде быстрее коротковолновых, что приводит к ряду интересных явлений. Например, бросив камень в воду и глядя на круги, образуемые им, можно заметить, что граница волн расширяется не равномерно, а примерно равноускоренно. При этом чем больше граница, чем более длинноволновыми колебаниями она формируется. Другим красивым следствием выписанного закона дисперсии являются корабельные волны.

Гравитационные волны в общем случае

Если длина волны сравнима с глубиной бассейна H, то закон дисперсии в этом случае имеет вид:


\omega = \sqrt{gk\cdot th(kH)}\,.

Некоторые проблемы теории гравитационных волн на воде

  • До сих пор не понят механизм формирования и устойчивости так называемых волн-убийц - внезапных волн экстремальной амплитуды.

Ссылки

dic.academic.ru


Смотрите также