Деманганация воды (стр. 1 из 2). Деманганация воды


Деманганация воды

К настоящему времени разработаны и внедрены в практику различные методы очистки воды от марганца. Диаграмма Пурбе Е=ф(рН) дает наглядное представление о возможных способах очистки воды от марганца (см. рис. 17.1, б): увеличением окислительно-восстановительного потенциала среды путем применения сильных окислителей без корректирования значения рН воды, повышением значения рН воды при недостаточном окислительно-восстановительном потенциале в случае использования слабых окислителей; совместным применением более сильного окислителя и повышением значения рН воды.

Многие из них основаны на окислении присутствующего в воде иона марганца (II) до марганца (III) и марганца (IV), образующих гидроксиды, растворимость которых при рН>7 меньше 0,01 мг/л. Для этого применяют различные окислители: перманганат калия, озон, хлор и его производные, кислород воздуха. Кроме того, удаление марганца из воды может быть достигнуто с помощью ионного обмена (водород или натрий катионированием), при умягчении известковосодовым методом, при фильтровании воды через загрузку из марганцевого цеолита, биохимическими и другими методами.

Известные в технологии улучшения качества воды методы ее деманганации можно классифицировать на безреагентные и реагентные, на окислительные, сорбционные, ионообменные и биохимические. К числу безреагентных методов удаления марганца из воды следует отнести: глубокую аэрацию с последующим отстаиванием (вариант) и фильтрованием на скорых осветлительных фильтрах с сорбцией марганца на свежеобразованном гидроксиде железа, метод «Виредокс».

К числу реагентных методов деманганации воды прежде всего относятся окислительные с использованием хлора и его производных, озона, перманганата калия, технического кислорода. К ним относятся и методы, предусматривающие использование щелочных реагентов.

Для окисления марганца (II) в диоксид марганца должен поддерживаться определенный окислительно-восстановительный потенциал, значение которого зависит от требуемой в данном конкретном случае концентрации остаточного марганца и рН среды.

Удаление марганца методом глубокой аэрации с последующим фильтрованием предусматривает первоначальное извлечение из воды под вакуумом свободной углекислоты (рН повышается до 8 . . . 8,5), которое производится в вакуумно-эжекционном аппарате с последующим насыщением обрабатываемой воды кислородом воздуха в его эжекционной части, ее диспергирование до капельного состояния и фильтрование через зернистую загрузку. Технологическая схема состоит из скорых осветлительных фильтров, над зеркалом воды которых размещены напорные вакуумно-эжекционные аппараты. Метод применим при окисляемости исходной воды до 9,5 мг 02/л. Подобная технология позволяет успешно решать задачи не только деманганации, деферизации, но и дегазации воды.

Необходимым условием рассматриваемого метода даманганации воды является присутствие в ней железа (II), которое при окислении растворенным кислородом образует гидроксид железа, адсорбирующий на поверхности марганец (II) и каталитически влияющий на его окисление. Процесс успешно протекает при рН аэрированной воды ниже 8,5 и величине Е<0,4 В. Сорбционный характер извлечения марганца подтверждается изотермой адсорбции, построенной по результатам производств венного эксперимента, график которого адекватен изотерме Бедеккера — Фрейндлиха.

Производственные эксперименты, выполненные кафедрой водоснабжения МГСУ (Г. И. Николадзе, В. Б. Викулина и др.) на пяти артезианских водоисточниках показатели качества, воды которых характеризовались рН 7 . . . 7,4, общей жесткостью до 7 мг-экв/л, щелочностью 4 ... 6 мг-экв/л, окисляемостью до 8,1 мг 02/л, сухим остатком 0,5 ... 0,76 г/л. £=0,21 ... 0,39 В, содержанием свободной углекислоты до 6,5 мг/л, содержанием общего железа до 6,3 мг/л, а марганца (II) до 0,76 мг/л, подтвердили целесообразность использования данного метода для получения питьевой воды. Следует отметить, что соотношение концентраций железа (II) и марганца (II) в исходной воде должно быть не менее 7:1.

Результаты проведенных экспериментов позволяют следующим образом объяснить механизм явления. Величина дзета-потенциала гидроксида железа равна нулю при рН=6,7, с возрастанием рН отрицательная величина потенциала увеличивается. Положительно заряженные ионы железа (II) и марганца (II) сорбируются осадком из соединений железа (III), имеющим отрицательный потенциал при рН>7. Поскольку при повышении значения рН отрицательная величина потенциала растет, адсорбция ионов железа (II) и марганца (II) увеличивается.

При фильтровании происходят следующие процессы. Поверхность песка при рН~7 имеет малый электрический отрицательный заряд и поэтому обладает слабыми сорбционными свойствами по отношению к ионам марганца (II) и железа (II) г имеющими положительный заряд. С ростом рН эти свойства усиливаются. При фильтровании через песок сначала происходит адсорбция ионов железа (II) и марганца (II) поверхностью его зерен. Под действием растворенного в воде кислорода ион железа (II) окисляется до железа (III), который, гидролизуясь, образует на поверхности зерен загрузки качественно новый сорбент, состоящий из соединений железа, который и сорбирует ионы марганца (II). Растворимая в воде свободная углекислота также сорбируется этим сорбентом, ухудшая эффект очистки за счет понижения значения рН.

Достоинством этого метода очистки является возможность удалять марганец не только из вод, в которых он присутствует совместно с железом, но и из вод, где железо отсутствует, создавая добавления в воду железного купороса, одного из самых Дешевых реагентов.

Удаление марганца из подземных вод может быть достигнуто в пласте при условии достаточно высокого значения рН. При введении в подземный поток воды, содержащей растворенный кислород, или воздуха, технического кислорода достигается окисление железа (II) и марганца(II), их соосаждение и задержание в порах водовмещающих пород. На процесс деманганации и деферизации воды по этому методу существенное влияние оказывают железо- и марганец- бактерии. Метод экономичный, относительно простой, однако, не всегда обеспечивающий надлежащую глубину деманганации воды. Считается целесообразным его использование при содержании марганца в подземной воде до 0,5 мг/л и высоком рН.

Наиболее эффективным и технологически простым методом удаления марганца из вод поверхностных и подземных источников в настоящее время является обработка их перманганатом калия. Этот метод может быть применен на очистных комплексах любой производительности при любом качестве исходной воды; существенного изменения технологической схемы при этом не происходит. На удаление 1 мг Mn(II) расходуется 1,88 мг КМп04.

Использование катализаторов окисления марганца. Установлено, что предварительно осажденные на поверхности зерен фильтрующей загрузки оксиды марганца оказывают каталитическое влияние на процесс окисления иона марганца (П) растворенным в воде кислородом. При фильтровании аэрированной и подщелаченной (при низких (рН) воды, содержащей марганец, через песчаную загрузку по прошествии некоторого времени на поверхности зерен песка образуется слой, состоящий из отрицательно заряженного осадка гидроксида марганца Мп(ОН)4, который адсорбирует положительно заряженные ионы марганца (II). Гидролизируясь, эти ионы реагируют с осадком Мп(ОН)4, образуя хорошо окисляемый полутораоксид Мn203 по реакциям:

Мn(ОН)4+Мn (ОН) 2 → Mn203 + ЗН20,

2Мn203 + 02 + 8Н20 → Mn(ОН)4

Таким образом, в результате снова образуется гидроксид марганца (IV), который опять участвует в процессе окисления в качестве катализатора. Использование этого свойства оксидов марганца дало возможность применить в практике кондиционирования воды метод ее фильтрования через песок, зерна которого предварительно покрыты пленкой оксида марганца (так называемый «черный песок»). Для этого обычный кварцевый песок крупностью 0,5... 1,2 мм обрабатывают последовательно 0,5%-ным раствором хлорида марганца и перманганата калия.

При использовании такой загрузки фильтров окисление марганца растворенным в воде кислородом воздуха возможно осуществить при значениях рН, значительно меньших, чем обычно (рН>7,5).

В практике водоподготовки за рубежом в качестве катализатора окисления марганца кислородом воздуха или хлором получили распространение соли меди, медно-никелевые сплавы.

Деманганация воды перманганатом калия. Основана на его способности окислять марганец (II) с образованием малорастворимого оксида марганца:

вода марганец деманганация

ЗМn2+ + 2МnО4- + 2Н20 → 5Мn02 + 4Н+

Очень важным аспектом применения перманганата калия для очистки воды от марганца является образование дисперсного осадка оксида марганца Мп02, который, имея большую удельную поверхность порядка 300 м2/г, является эффективным сорбентом. При обработке воды перманганатом калия снижение привкусов и запахов происходит также вследствие частичной сорбции органических соединений образующимся мелкодисперсным хлопьевидным осадком гидроксида марганца. Кроме того, осадок оксида марганца, как это указывалось выше, обладает каталитическими свойствами по отношению к процессу окисления иона марганца (II) кислородом воздуха.

Применение перманганата калия дает возможность удалить из воды как марганец, так и железо независимо от форм их содержания в воде. В водах с повышенным содержанием органических веществ железо и марганец образуют устойчивые органические соединения (комплексы), медленно и трудно удаляемые при обычной обработке хлором и коагулянтом. Применение перманганата калия, сильного окислителя, позволяет разрушить эти комплексы с дальнейшим окислением ионов марганца (II) и железа(II) и коагуляцией продуктов окисления. Кроме того, коллоидные частицы гидроксида марганца Мп(ОН)4 в интервале рН=5...11 имеют заряд, противоположный зарядам коллоидов коагулянтов Fe(OH)3 и А1(0Н)3, поэтому добавление перманганата калия к воде интенсифицирует процесс коагуляции. Таким образом, пермангаиат калия, оказывая совокупное действие как окислителя, сорбента и вспомогательного средства коагуляции, является высокоэффективным реагентом для очистки воды от целого ряда загрязнений, в том числе и от марганца.

mirznanii.com

Деманганация воды - Ватера

 

Химизм процесса демаганации

В подземных водах марганец находится в виде хорошо  растворимых  солей  в  двухвалентном  состоянии  (Mn2+ ).  Для  удаления    марганца  из  воды его  необходимо  перевести  в нерастворимое  состояние  окислением  в  трех-  и  четырехвалентную форму (Mn3+  и Mn4+ ). Окисленные формы марганца  гидролизуются  с  образованием  практически нерастворимых  гидроксидов    Mn(OH)3 и  Mn(OH)4. Последний при осаждении на зернистой загрузке фильтра  проявляет  каталитические  свойства,  то есть  ускоряет  процесс  окисления  двухвалентного марганца растворенным кислородом. Для эффективного окисления марганца кислородом необходимо, чтобы значение рН очищаемой воды было на уровне 9,5–10,0. Перманганат калия, хлор  или  его  производные  (гипохлорит  натрия), озон позволяют вести процесса демаганации при меньших значениях рН, равных 8,0 – 8,5. Для окисления 1 мг растворенного марганца нужно 0,291 мг кислорода.

 

Методы деманганации

Глубокая аэрация с последующим фильтрованием

На первом этапе очистки из воды под вакуумом извлекают свободную углекислоту, что способствует повышению значения рН до 8,0 – 8,5. Для этой цели используют   вакуумноэжекционный   аппарат,   при этом в его эжекционной части происходят диспергирование воды и ее насыщение кислородом воздуха. Далее вода направляется на фильтрацию через зернистую загрузку, например, кварцевый песок. Этот  метод  очистки  применим  при  перманганатной  окисляемости  исходной  воды  не  более 9,5 мгО2/л. В воде обязательно присутствие двухвалентного  железа,  при  окислении  которого  образуется  гидроксид  железа,  адсорбирующий  Mn2+   и  каталитически  его окисляющий. Соотношение  концентраций  [Fe2+ ]  /  [Mn2+ ]  не должно  быть  менее  7/1.  Если  в  исходной  воде такое  соотношение  не  выполняется,  то  в  воду дополнительно  дозируют  сульфат  железа  (железный купорос).

 

Деманганация перманганатом калия

Метод применим как для поверхностных, так и для подземных вод. При введении в воду перманганата калия растворенный марганец окисляется с образованием  малорастворимого  оксида  марганца согласно следующему уравнению:

3Mn2+  + 2KMnO4 + 2h3O = 5MnO2↓ + 4H+  (1)

Осадок представляет собою смесь MnO2 · 2h3O и Mn(OH)4.

Осажденный оксид марганца в виде хлопьев имеет высокую развитую удельную поверхность – примерно 300 м2  на 1 г осадка, что определяет его высокие  сорбционные  свойства.  Осадок  –  хороший катализатор, позволяющий вести демангацию при рН = 8,5.

В соответствии с уравнением (1) для удаления 1 мг Mn2+   требуется 1,92  мг перманганата калия. Как уже отмечалось, перманганат калия обеспечивает удаление из воды не только марганца, но и  железа  в  различных  формах.  Также  удаляются запахи и за счет сорбционных свойств улучшаются вкусовые качества воды.

Практические   данные   по   удалению   марганца  с  помощью  перманганата  калия  показывают, что  доза  его  должна  составлять  2  мг  на  каждый мг марганца, при этом окисляется  до 97% Mn2+.

После  перманганата  калия  вводят  коагулянт  для удаления  продуктов  окисления  и взвешенных  веществ и далее фильтруют на песчаной загрузке. При очистке от марганца подземных вод параллельно  с  перманганатом  калия  вводят  активированную  кремниевую  кислоту  из  расчета  3–4  мг/л или флокулянты. Это позволяет укрупнить хлопья оксида марганца.

 

Каталитическое окисление марганца

Как и в процессах очистки от железа, так и при деманганации   предварительное   осаждение   оксидов марганца на поверхности зерен фильтрующей  загрузки  оказывает  каталитическое  влияние на  процесс  окисления  двухвалентного  марганца растворенным  кислородом.  В  процессе  фильтрования  предварительно  аэрированной  и  при  необходимости подщелоченной воды на зернах песчаной  загрузки  образуется  слой  осадка  гидроксида марганца  Mn(OH)4. Ионы  растворенного  Mn2+   адсорбируются  поверхностью  гидроксида  марганца и  гидролизуются, образуя  оксид  трехвалентного марганца Mn2O3.

Последний окисляется растворенным кислородом вновь до Mn(OH)4, который опять участвует в процессе  каталитического  окисления.  Как  всякий классический катализатор,  Mn(OH)4 почти не расходуется. Уравнения реакций этих процессов можно представить следующим образом:

Mn(OH)4 + Mn(OH)2 = Mn2O3 + 3h3O;          (2)

2Mn2O3 + 2O2 + 8h3O =  Mn(OH)4↓.           (3)

Практическая   реализация   таких   процессов возможна  при  использовании  каталитических  наполнителей. Можно отметить, что значение рН очищаемой воды может быть меньше, чем в традиционных процессах деманганации.

 

Фильтрование через модифицированную загрузку

Для повышения ресурса работы фильтрующей загрузки за счет закрепления пленки катализатора  из  гидроксидов железа  и  оксида  марганца  на поверхности зерен, а также для уменьшения расхода перманганата  калия,  предлагается  следующий метод.

Перед началом фильтрования через фильтрующую загрузку последовательно пропускают  снизу вверх раствор железного купороса (FeSO4) и перманганат калия, а затем загрузку  обрабатывают тринатрийфосфатом  (Na3PO4) или сульфитом натрия (Na2SO3).

Скорость  фильтрования  исходной  воды,  подаваемой сверху вниз, составляет 8–10 м/ч. Каталитическую пленку можно создать так же, пропуская через загрузку фильтра 0,5%-ный раствор хлорида марганца и перманганата калия.

 

Введение реагентов-окислителей

Скорость  процесса  окисления  двухвалентного марганца реагентами-окислителями из ряда: хлор, диоксид хлора (ClO2), гипохлорит натрия, озон – зависит от величины рН исходной воды. 

При  введении  хлора  или  гипохлорита  натрия эффект окисления достигается в достаточно полной  мере  при  значениях  рН  не  менее  8,0 – 8,5  и времени  контакта  окислителя  и  воды  60 – 90  мин. В большинстве случаев (если окислитель – только кислород и рН <7,0)  обрабатываемая вода должна быть подщелочена. Требуемая доза реагента для окисления   Mn2+  до Mn4+   по стехиометрии составляет 1,3 мг на каждый миллиграмм растворенного двухвалентного  марганца.  Фактические дозы гораздо выше.

Обработка воды озоном или диоксидом хлора значительно  эффективнее.  Процесс  окисления марганца завершается в течение 10 – 15 мин при значении  рН  воды  6,5 – 7,0.  Доза  озона  по  стехиометрии составляет 1,45 мг, а диоксида хлора 1,35 мг на 1 мг двухвалентного марганца. Однако при озонировании воды озон подвержен каталитическому разложению оксидами марганца, а потому доза должна быть увеличена. Указанные   количества   окислителей   KMnO4, ClO2, O3 – теоретические. Практически дозы окислителей зависят от значения рН, времени контакта окислителей с водой,  от образующихся  отложений, содержания органических веществ, конструкции аппаратов   и   могут   составить   увеличение по  сравнению  с теоретическими  количествами: для KMnO4 – в 1 – 6 раз, для ClO2   –  в 1,5 – 10 раз, для O3 – 1,5 – 5 раз.

 

Удаление марганца методом ионного обмена

Удаление марганца (II) методом ионного обмена так же, как и железа (II), происходит при натрий-и водород-катионировании. Метод целесообразен при   необходимости   одновременного   глубокого умягчения воды и проведения обезжелезивания и деманганации.

www.watera.ru

Удаление марганца из воды | Деманганация

Описание процесса деманганации с точки зрения химии

Под землей марганец представляет собой хорошо растворимую соль, его состояние при этом двухвалентное (Mn2+). Чтобы избавиться от марганца в воде, надо сделать так, чтобы он стал нерастворимым. Для этого достаточно преобразовать его в III или IV- валентную форму, для этого элемент окисляют. После такого воздействия марганец гидролизуется, причем во время процесса образуются гидроксиды марганца с различной валентностью (3 и 4), практически не растворяющиеся в воде. Удаление марганца.jpgЧетырехвалентный гидроксид марганца после оседания на зернистом наполнителе фильтра становится катализатором, он способствует ускорению окислительного процесса двухвалентного марганца с участием растворенного кислорода.

Чтобы избавление от марганца методом окисления при помощи кислорода было эффективным, уровень рН должен находиться в пределах 9,5-10,0. При использовании перманганата калия, хлора, а также его производных (гипохлорита натрия) или же применении озона процесс деманганации может проходить и при меньшем значении рН (8,0-8,5). Чтобы окислить 1 мг растворенного в воде марганца, понадобится 0,291 мг кислорода. Один из самых сильных окислителей, озон, может быть эффективным при широком диапазоне значений рН.

Методы деманганации

Один из самых распространенных методов – проведение глубокой аэрации с последующей фильтрацией. На первой стадии обработки воде из нее под вакуумом выделяют свободную углекислоты, таким образом удается повысить уровень рН до значения 8.0-8,5. Традиционно применяют вакуумно-эжекционное оборудование, в котором производится диспергирование воды, а затем она обогащается кислородом. После этого вода фильтруется с применением зернистого наполнителя, к примеру, кварцевого песка.

Такой метод может применяться, если перманганатная окисляемость начальной воды не превышает 9,5 мгО/л. Кроме того, обязательно наличие двухвалентного железа, во время окисления которого выделяется гидроксид железа, впитывающий двухвалентный марганец и окисляющий его. При этом следует соблюдать соотношение между двухвалентными железом и марганцем 1:7. Если это условия не выполняется, в воду следует добавить железный купорос (сульфат железа).

Избавиться от марганца можно при помощи перманганата калия. Этот способ подходит для очищения как поверхностных вод, так и для грунтовых. Когда в воду добавляют перманганат калия, происходит окисление растворенного марганца, при этом образуется малорастворимый оксид этого элемента. Он оседает вниз, имеет при этом хлопьеобразное состояние, обладает высокой удельной поверхностью, приблизительно 300 кв. м на 1 г вещества, благодаря чему ему свойственны высокие свойства впитывания. Этот осадок – отличный катализатор, в его присутствии возможна демангация при значении рН 8,5. С целью избавления от 1 мг двухвалентного марганца придется затратить 1,92 мг реагента (перманганата калия).

Ранее уже говорилось о том, что с помощью перманганата калия можно удалить не только марганец, но и различные формы железа. Одновременно исчезают запахи и улучшается вкус воды (благодаря сорбции).

Практическими опытами было установлено оптимальное соотношения для избавления от марганца с использованием перманганата калия, на каждый 1 мг марганца следует брать 2 мг перманганата калия. При такой пропорции окислится около 97% двухвалентного марганца.

Следующий этап очистки воды – введение в нее коагулянта, это нужно для выведения продуктов окисления, а также элементов, находящихся в воде в виде взвеси. После коагуляции вода подвергается фильтрации с применением песчаного наполнителя. Также может использоваться ультрафильтрующее оборудование. Если от марганца потребовалось очистить грунтовые воды, следует одновременно с перманганатом калия добавлять в них кремниевую кислоту (активированную), в количестве 3-4 мг/л, также можно использовать флокулянты. Тогда хлопья марганца будут крупнее.

Каталитическое окисление марганца

Подобно процессу обезжелезивания при избавлении от марганца во время остановки его оксидов на поверхности зернистой фильтрующей загрузки происходит катализация окисления марганца растворенным кислородом. Если фильтруется вода после аэрации (по потребности и подщелачивания), на зернах песчаного наполнителя может оседать слой гидроксида четырехвалентного марганца. Ионы двухвалентного марганца впитываются поверхностью гидроксида марганца, затем происходит процесс гидролизации, во время которого получается Mn2O3, затем он окисляется и снова становится четырехвалентным Mn(OH)4. В результате вновь может участвовать в реакции каталитического окисления. При этом его расход практически нулевой.

Фильтрация посредством модифицированного наполнителя

С целью увеличения срока использования фильтрующего наполнителя благодаря образованию на нем пленки катализатора, состоящей из оксида марганца и гидроксидов железа, а также для снижения затрат перманганата калия можно использовать еще один способ. Суть его в том, что перед фильтрацией через наполнитель пропускают железный купорос в растворенном состоянии снизу вверх и перманганат калия. После этой манипуляции загрузка подвергается воздействию сульфита натрия (Na2SO3) и тринатрийфосфата (Na3PO4). Исходная вода подается сверху, скорость ее фильтрации равна 8-10 м/ч. Для создания каталитической пленки можно также использовать хлорид марганца (0,5% раствор) и перманганат калия, пропускаемые через наполнитель фильтра.

Применение реагентов-окислителей

На скорость окисления марганца хлором, диоксидом хлора, гипохлоритом натрия, озоном влияет показатель рН. Если добавляется гипохлорит натрия или хлор, достаточно полный эффект окислительной реакции можно будет наблюдать при рН не меньше 8,0-8,5 при длительности взаимодействия между водой и окислителем 60-90 минут. Чаще всего исходную воду приходится подщелачивать, эта необходимость возникает при использовании в качестве окислителя кислорода и при рН меньше 7.

Согласно стехиометрии, чтобы окислить двухвалентный марганец до четырехвалентного, понадобится 1,3 мг реагента на 1 мг марганца. Но это теоретические сведения, практические дозы обычно намного выше.

Гораздо эффективнее обрабатывать воду диоксидом хлора или озоном. Окисление марганца в таком случае отнимает всего 10-15 минут при условии, что параметр рН равен 6,5-7,0. По стехиометрии порция озона должна составлять 1,45 мг (диоксида хлора 1,35 мг) на 1 мг двухвалентного марганца. Следует учесть, что в процессе озонирования озон разлагается оксидами марганца, из-за чего его порция должна быть больше, чем указано в теоретических расчетах.

Приведенные выше дозы окислителей (перманганата калия, оксида хлора и озона) взяты из книжек. На практике дозировка зависит от рН воды, времени воздействия окислителей на воду, соединений, образующихся в процессе окисления, наличия органических веществ, используемого оборудования. Чаще всего их необходимо брать больше, чем получается из теоретических расчетов: перманганата калия – в 1-6 раз; оксида хлора – в 1,5-10 раз, озона – в 1,5-5 раз.

Избавиться от марганца можно также способом ионного обмена. Для этого проводится натриевое или водородное катионирование. Метод хорош в тех случаях, когда надо не только избавиться от избытка железа и марганца, но и смягчить воду.

Назад в раздел

ncwt.ru

Деманганация воды - часть 2

Эксперименты показали, что максимальное снижение концентрации марганца(II) в воде (до 97%) достигается при обработке воды перманганатом калия дозой 2 мг КМп04 на I мг марганца(II) с дальнейшим добавлением коагулянта для удаления продуктов окисления и взвешенных веществ. Остаточное содержание марганца в воде при этом не превышало 0,1 мг/л, а после фильтрования воды на песчаных фильтрах она практически не содержала ионов марганца (II), одновременно наблюдалось полное удаление железа.

В настоящее время разработана технология применения перманганата калия для удаления марганца, а также привкусов и запахов воды в промышленном производстве. Достоинством этого метода является возможность использования его на уже действующих сооружениях очистки без изменения существующей технологической схемы.

На фильтровальных комплексах очистки воды из поверхностных источников раствор перманганат калия вводится в воду до коагулирования в смеситель или на насосной станции I подъема. При удалении марганца из подземных вод для увеличения фильтроцикла одновременно с раствором КМп04 в обрабатываемую воду рекомендуется вводить активированную кремнекислоту в количестве 3...4 мг/л или флокулянт К-4. В этом случае укрупняются хлопья образующихся при окислении соединений марганца(IV), которые медленнее проникают в фильтрующую загрузку.

Деманганация воды фильтрованием через модифицированную загрузку. Метод фильтрования аэрированной воды через загрузку, обработанную оксидами марганца, имеет недостаток, заключающийся в постепенном измельчении частиц, образующих покрытие зерен загрузки, и проскоке их в фильтрат. Попытки исправить этот недостаток заключались в растворении этих частиц до того, как они обретали способность проскакивать в фильтрат, что усложняет процесс очистки воды. Другим недостатком деманганации фильтрованием через «черный песок» является значительный расход перманганата калия. Для исключения указанных недостатков в МГСУ (Г. И. Николадзе, А. И. Назаров и др.) был запатентован метод деманганации воды фильтрованием через модифицированную загрузку, приготавливаемую последовательным пропуском снизу вверх через кварцевый песок растворов железного купороса и перманганата калия, что позволяет достичь экономики последнего. Для закрепления образующей пленки из гидроксида железа и оксида марганца на зернах фильтрующей загрузки последнюю затем дополнительно обрабатывают тринатрийфосфатом или сульфитом натрия. Обрабатываемая вода фильтруется сверху вниз со скоростью 8... 10 м/ч. Производственные испытания указанного метода подтвердили его универсальность и высокие технико-экономические показатели.

Очистка воды, от марганца с использованием сильных окислителей. Скорость окисления ионов марганца (II) хлором, озоном, оксидом хлора зависит от величины рН среды. Хлор — сильный окислитель, однако эффект окисления им марганца может быть достаточно полным при значениях рН=8...8,5, что чаще всего требует подщелачивания воды. На окисление 1 мг Mn(II) в Mn(IV) требуется 1,3 мг хлора. Экспериментальные исследования показали, что хлор окисляет марганец(II) при рН=7 за 60... 90 мин всего на 50%. В отсутствии ионов Nh5+ при рН=8 окисление марганца (II) хлором за 60... 90 мин завершается полностью, остаточное содержание марганца в воде составляет 0,05... 0,1 мг/л. Остаточное содержание марганца (И) в воде, подвергнутой хлорированию и фильтрованию, через 60 мин при исходной концентрации марганца 10 мг/л составило: при рН воды — 9... 5,0 мг/л; при рН=9,45..~ ...1,3 мг/л; при рН=10 — менее 0,02 мг/л, т. е. эффект окисления хлором был намного ниже эффекта окисления кислородом воздуха в присутствии катализатора. Окисление марганца (II) озоном или оксидом хлора(IV) при рН=6,5...7,0 завершается в течение 10...15 мин, при этом расход озона составляет 1,45, а оксида хлора(^) — 1,35 мг/мг марганца(П).

Исследования А. И. Назарова показали, что слабый окислитель (кислород) в присутствии более сильного (хлора) активизируется. Это позволило разработать технологию деманганации воды, сущность которой сводится к глубокой аэрации воды, что влечет за собой повышение рН, обогащение воды кислородом воздуха, окисление железа(II) с образованием гидроксида. Затем в «водяную подушку» фильтра вводится хлор, воздействующий как окислитель и как катализатор окислительного действия растворенного кислорода. В результате в поровом пространстве фильтрующей загрузки формируется гидроксид железа (III), на поверхности которого адсорбируется, а затем окисляется марганец (II). Образующийся оксид марганца (IV) также катализирует процесс окисления марганца(II).

Как показали результаты экспериментов, для осуществления этого метода требуется соблюдение соотношения Fe2+/Mn2+ — 10. Процесс деманганации воды зависит от ее температуры, РН, окисляемости, присутствия силикатов, соотношения Fe(II)/ Mn(II).

Результаты исследований процессов окисления иона марганца (II) озоном показали, что расход последнего на I мг марганца составил: при концентрации марганца 0,4 мг/л — 2 мг и при концентрации 0,8 мг/л — 4 мг. Объяснить этот факт можно каталитическим разложением озона мелкодисперсной агрегативно-устойчивой взвесью оксидов марганца, образующихся в процессе озонирования воды. Удаление взвеси происходит эффективно после коагулирования и фильтрования. Без коагулирования (просто фильтрованием) взвесь удаляется незначительно. Обнаружено, что взвесь оксидов железа, образующаяся в первую очередь, также является катализатором распада озона. В связи с этим очистку вод, содержащих одновременно большое количество железа (И) и марганца(II), предлагается производить в две стадии (рис. 17.8): на первой осуществляется окисление железа(II) и выделение его из воды, да второй — окисление марганца(II) озоном, коагулирование, отстаивание и фильтрование. Очевидно, что известная громоздкость этой технологической схемы может быть оправдана лишь для водопроводов большой производительности, в основном при заборе воды из поверхностных источников. Несмотря на свою высокую эффективность, озон используют редко из-за высокой стоимости и сложности эксплуатации озонаторных установок.

Рис. 17.8. Установка деманганации воды озонированием.

1 — подача озона, 2 — камера озонирования, 3 — ступенчатый каскадный аэратор, 4 — поглотитель остаточного озона, 5 — подача исходной воды, 6 — двуслойный фильтр, 7 — отвод чистой воды

Оксид хлора СО2 также является сильным окислителем, однако, использование этого реагента затруднено из-за необходимости применения сложных в строительстве и эксплуатации установок, что особенно невыгодно на сооружениях очистки подземных вод небольшой производительности, которые составляют большинство.

Удаление марганца(Ц) и железа(II) из воды методом ионного обмена. Это происходит как при натрий, так и при водород-катионировании при фильтровании воды через катионитовую загрузку в ходе умягчения. Метод целесообразно применять при необходимости одновременного глубокого умягчения воды и освобождения ее от железа(II) и марганца (II).

Биохимический метод удаления марганца. Заключается в высевании на зернах загрузки фильтра марганце потребляющих бактерий типа Bacteriamanganicus, Metallogeniumpersonatum, Caulococeusmanganiferи последующем фильтровании обрабатываемой воды. Эти бактерии поглощают марганец из воды в процессе жизнедеятельности, а отмирая, образуют на зернах песка пористую массу, содержащую большое количество оксида марганца, служащего катализатором окисления марганца (II). При скорости фильтрования до 22 м/ч фильтры полностью удаляют из воды марганец.

Исследования биологических и биохимических методов очистки воды от марганца продолжаются. Т. П. Пейчевым предложен метод удаления марганца на биофильтрах и скорых обычных фильтрах. Испытывалась артезианская вода с содержанием железа 3,75... 9,0 мг/л и марганца 0,2—0,8 мг/л. Для очистки воды от железа и марганца использовались двухступенчатые биофильтры. Первая ступень предназначалась для удаления железа и состояла из двух слоев кварцевого песка: нижнего высотой 0,8 м и крупностью I ... 2 мм и верхнего высотой 1,05 м и крупностью 1,5... 2,5 мм. Вторая ступень предназначалась для удаления марганца; ее загрузка состояла из песка крупностью 1,5... 2,5 мм, высота слоя составила 1,4 м. При скорости фильтрования 16...28 м/ч достигалось стабильное снижение содержания железа до 0,1...0,2 мг/л, марганца — до 0,02 ... 0,05 мг/л. Продолжительность фильтроцикла (до достижения сопротивления 0,08... 0,1 МПа) составляла 40... 100 ч в зависимости от скорости фильтрования. Для интенсификации процессов очистки на биофильтры подавался кислород.

Из сказанного следует, что для деманганации подземных вод наибольший интерес представляют: метод сорбции на гидроксиде железа(III), фильтрование через модифицированию загрузку и биохимический метод.

ЛИТЕРАТУРА

Алексеев Л. С., Гладков В. А. Улучшение качества мягких вод. М., Стройиздат, 1994 г.

Алферова Л. А., Нечаев А. П. Замкнутые системы водного хозяйства промышленных предприятий, комплексов и районов. М., 1984.

Аюкаев Р. И., Мельцер В. 3. Производство и применение фильтрующих материалов для очистки воды. Л., 1985.

Вейцер Ю. М., Мииц Д. М. Высокомоллекуляриые флокулянты в процессах очистки воды. М., 1984.

Егоров А. И. Гидравлика напорных трубчатых систем в водопроводных очистных сооружениях. М., 1984.

Журба М. Г. Очистки воды на зернистых фильтрах. Львов, 1980.

mirznanii.com

Деманганация воды

Деманганация воды

 

К настоящему времени разработаны и внедрены в практику различные методы очистки воды от марганца. Диаграмма Пурбе Е=ф(рН) дает наглядное представление о возможных способах очистки воды от марганца (см. рис. 17.1, б): увеличением окислительно-восстановительного потенциала среды путем применения сильных окислителей без корректирования значения рН воды, повышением значения рН воды при недостаточном окислительно-восстановительном потенциале в случае использования слабых окислителей; совместным применением более сильного окислителя и повышением значения рН воды.

Многие из них основаны на окислении присутствующего в воде иона марганца (II) до марганца (III) и марганца (IV), образующих гидроксиды, растворимость которых при рН>7 меньше 0,01 мг/л. Для этого применяют различные окислители: перманганат калия, озон, хлор и его производные, кислород воздуха. Кроме того, удаление марганца из воды может быть достигнуто с помощью ионного обмена (водород или натрий катионированием), при умягчении известковосодовым методом, при фильтровании воды через загрузку из марганцевого цеолита, биохимическими и другими методами.

Известные в технологии улучшения качества воды методы ее деманганации можно классифицировать на безреагентные и реагентные, на окислительные, сорбционные, ионообменные и биохимические. К числу безреагентных методов удаления марганца из воды следует отнести: глубокую аэрацию с последующим отстаиванием (вариант) и фильтрованием на скорых осветлительных фильтрах с сорбцией марганца на свежеобразованном гидроксиде железа, метод «Виредокс».

К числу реагентных методов деманганации воды прежде всего относятся окислительные с использованием хлора и его производных, озона, перманганата калия, технического кислорода. К ним относятся и методы, предусматривающие использование щелочных реагентов.

Для окисления марганца (II) в диоксид марганца должен поддерживаться определенный окислительно-восстановительный потенциал, значение которого зависит от требуемой в данном конкретном случае концентрации остаточного марганца и рН среды.

Удаление марганца методом глубокой аэрации с последующим фильтрованием предусматривает первоначальное извлечение из воды под вакуумом свободной углекислоты (рН повышается до 8 . . . 8,5), которое производится в вакуумно-эжекционном аппарате с последующим насыщением обрабатываемой воды кислородом воздуха в его эжекционной части, ее диспергирование до капельного состояния и фильтрование через зернистую загрузку. Технологическая схема состоит из скорых осветлительных фильтров, над зеркалом воды которых размещены напорные вакуумно-эжекционные аппараты. Метод применим при окисляемости исходной воды до 9,5 мг 02/л. Подобная технология позволяет успешно решать задачи не только деманганации, деферизации, но и дегазации воды.

Необходимым условием рассматриваемого метода даманганации воды является присутствие в ней железа (II), которое при окислении растворенным кислородом образует гидроксид железа, адсорбирующий на поверхности марганец (II) и каталитически влияющий на его окисление. Процесс успешно протекает при рН аэрированной воды ниже 8,5 и величине Е

Производственные эксперименты, выполненные кафедрой водоснабжения МГСУ (Г. И. Николадзе, В. Б. Викулина и др.) на пяти артезианских водоисточниках показатели качества, воды которых характеризовались рН 7 . . . 7,4, общей жесткостью до 7 мг-экв/л, щелочностью 4 ... 6 мг-экв/л, окисляемостью до 8,1 мг 02/л, сухим остатком 0,5 ... 0,76 г/л. £=0,21 ... 0,39 В, содержанием свободной углекислоты до 6,5 мг/л, содержанием общего железа до 6,3 мг/л, а марганца (II) до 0,76 мг/л, подтвердили целесообразность использования данного метода для получения питьевой воды. Следует отметить, что соотношение концентраций железа (II) и марганца (II) в исходной воде должно быть не менее 7:1.

Результаты проведенных экспериментов позволяют следующим образом объяснить механизм явления. Величина дзета-потенциала гидроксида железа равна нулю при рН=6,7, с возрастанием рН отрицательная величина потенциала увеличивается. Положительно заряженные ионы железа (II) и марганца (II) сорбируются осадком из соединений железа (III), имеющим отрицательный потенциал при рН>7. Поскольку при повышении значения рН отрицательная величина потенциала растет, адсорбция ионов железа (II) и марганца (II) увеличивается.

При фильтровании происходят следующие процессы. Поверхность песка при рН~7 имеет малый электрический отрицательный заряд и поэтому обладает слабыми сорбционными свойствами по отношению к ионам марганца (II) и железа (II) г имеющими положительный заряд. С ростом рН эти свойства усиливаются. При фильтровании через песок сначала происходит адсорбция ионов железа (II) и марганца (II) поверхностью его зерен. Под действием растворенного в воде кислорода ион железа (II) окисляется до железа (III), который, гидролизуясь, образует на поверхности зерен загрузки качественно новый сорбент, состоящий из соединений железа, который и сорбирует ионы марганца (II). Растворимая в воде свободная углекислота также сорбируется этим сорбентом, ухудшая эффект очистки за счет понижения значения рН.

Достоинством этого метода очистки является возможность удалять марганец не только из вод, в которых он присутствует совместно с железом, но и из вод, где железо отсутствует, создавая добавления в воду железного купороса, одного из самых Дешевых реагентов.

Удаление марганца из подземных вод может быть достигнуто в пласте при условии достаточно высокого значения рН. При введении в подземный поток воды, содержащей растворенный кислород, или воздуха, технического кислорода достигается окисление железа (II) и марганца(II), их соосаждение и задержание в порах водовмещающих пород. На процесс деманганации и деферизации воды по этому методу существенное влияние оказывают железо- и марганец- бактерии. Метод экономичный, относительно простой, однако, не всегда обеспечивающий надлежащую глубину деманганации воды. Считается целесообразным его использование при содержании марганца в подземной воде до 0,5 мг/л и высоком рН.

Наиболее эффективным и технологически простым методом удаления марганца из вод поверхностных и подземных источников в настоящее время является обработка их перманганатом калия. Этот метод может быть применен на очистных комплексах любой производительности при любом качестве исходной воды; существенного изменения технологической схемы при этом не происходит. На удаление 1 мг Mn(II) расходуется 1,88 мг КМп04.

Использование катализаторов окисления марганца. Установлено, что предварительно осажденные на поверхности зерен фильтрующей загрузки оксиды марганца оказывают каталитическое влияние на процесс окисления иона марганца (П) растворенным в воде кислородом. При фильтровании аэрированной и подщелаченной (при низких (рН) воды, содержащей марганец, через песчаную загрузку по прошествии некоторого времени на поверхности зерен песка образуется слой, состоящий из отрицательно заряженного осадка гидроксида марганца Мп(ОН)4, который адсорбирует положительно заряженные ионы марганца (II). Гидролизируясь, эти ионы реагируют с осадком Мп(ОН)4, образуя хорошо окисляемый полутораоксид Мn203 по реакциям:

 

Мn(ОН)4+Мn (ОН) 2 → Mn203 + ЗН20,

2Мn203 + 02 + 8Н20 → Mn(ОН)4

 

 

Таким образом, в результате снова образуется гидроксид марганца (IV), который опять участвует в процессе окисления в качестве катализатора. Использование этого свойства оксидов марганца дало возможность применить в практике кондиционирования воды метод ее фильтрования через песок, зерна которого предварительно покрыты пленкой оксида марганца (так называемый «черный песок»). Для этого обычный кварцевый песок крупностью 0,5... 1,2 мм обрабатывают последовательно 0,5%-ным раствором хлорида марганца и перманганата калия.

При использовании такой загрузки фильтров окисление марганца растворенным в воде кислородом воздуха возможно осуществить при значениях рН, значительно меньших, чем обычно (рН>7,5).

В практике водоподготовки за рубежом в качестве катализатора окисления марганца кислородом воздуха или хлором получили распространение соли меди, медно-никелевые сплавы.

Деманганация воды перманганатом калия. Основана на его способности окислять марганец (II) с образованием малорастворимого оксида марганца:

вода марганец деманганация

ЗМn2+ + 2МnО4- + 2Н20 → 5Мn02 + 4Н+

 

Очень важным аспектом применения перманганата калия для очистки воды от марганца является образование дисперсного осадка оксида марганца Мп02, который, имея большую удельную поверхность порядка 300 м2/г, является эффективным сорбентом. При обработке воды перманганатом калия снижение привкусов и запахов происходит также вследствие частичной сорбции органических соединений образующимся мелкодисперсным хлопьевидным осадком гидроксида марганца. Кроме того, осадок оксида марганца, как это указывалось выше, обладает каталитическими свойствами по отношению к процессу окисления иона марганца (II) кислородом воздуха.

Применение перманганата калия дает возможность удалить из воды как марганец, так и железо независимо от форм их содержания в воде. В водах с повышенным содержанием органических веществ железо и марганец образуют устойчивые органические соединения (комплексы), медленно и трудно удаляемые при обычной обработке хлором и коагулянтом. Применение перманганата калия, сильного окислителя, позволяет разрушить эти комплексы с дальнейшим окислением ионов марганца (II) и железа(II) и коагуляцией продуктов окисления. Кроме того, коллоидные частицы гидроксида марганца Мп(ОН)4 в интервале рН=5...11 имеют заряд, противоположный зарядам коллоидов коагулянтов Fe(OH)3 и А1(0Н)3, поэтому добавление перманганата калия к воде интенсифицирует процесс коагуляции. Таким образом, пермангаиат калия, оказывая совокупное действие как окислителя, сорбента и вспомогательного средства коагуляции, является высокоэффективным реагентом для очистки воды от целого ряда загрязнений, в том числе и от марганца.

Эксперименты показали, что максимальное снижение концентрации марганца(II) в воде (до 97%) достигается при обработке воды перманганатом калия дозой 2 мг КМп04 на I мг марганца(II) с дальнейшим добавлением коагулянта для удаления продуктов окисления и взвешенных веществ. Остаточное содержание марганца в воде при этом не превышало 0,1 мг/л, а после фильтрования воды на песчаных фильтрах она практически не содержала ионов марганца (II), одновременно наблюдалось полное удаление железа.

В настоящее время разработана технология применения перманганата калия для удаления марганца, а также привкусов и запахов воды в промышленном производстве. Достоинством этого метода является возможность использования его на уже действующих сооружениях очистки без изменения существующей технологической схемы.

На фильтровальных комплексах очистки воды из поверхностных источников раствор перманганат калия вводится в воду до коагулирования в смеситель или на насосной станции I подъема. При удалении марганца из подземных вод для увеличения фильтроцикла одновременно с раствором КМп04 в обрабатываемую воду рекомендуется вводить активированную кремнекислоту в количестве 3...4 мг/л или флокулянт К-4. В этом случае укрупняются хлопья образующихся при окислении соединений марганца(IV), которые медленнее проникают в фильтрующую загрузку.

Деманганация воды фильтрованием через модифицированную загрузку. Метод фильтрования аэрированной воды через загрузку, обработанную оксидами марганца, имеет недостаток, заключающийся в постепенном измельчении частиц, образующих покрытие зерен загрузки, и проскоке их в фильтрат. Попытки исправить этот недостаток заключались в растворении этих частиц до того, как они обретали способность проскакивать в фильтрат, что усложняет процесс очистки воды. Другим недостатком деманганации фильтрованием через «черный песок» является значительный расход перманганата калия. Для исключения указанных недостатков в МГСУ (Г. И. Николадзе, А. И. Назаров и др.) был запатентован метод деманганации воды фильтрованием через модифицированную загрузку, приготавливаемую последовательным пропуском снизу вверх через кварцевый песок растворов железного купороса и перманганата калия, что позволяет достичь экономики последнего. Для закрепления образующей пленки из гидроксида железа и оксида марганца на зернах фильтрующей загрузки последнюю затем дополнительно обрабатывают тринатрийфосфатом или сульфитом натрия. Обрабатываемая вода фильтруется сверху вниз со скоростью 8... 10 м/ч. Производственные испытания указанного метода подтвердили его универсальность и высокие технико-экономические показатели.

Очистка воды, от марганца с использованием сильных окислителей. Скорость окисления ионов марганца (II) хлором, озоном, оксидом хлора зависит от величины рН среды. Хлор — сильный окислитель, однако эффект окисления им марганца может быть достаточно полным при значениях рН=8...8,5, что чаще всего требует подщелачивания воды. На окисление 1 мг Mn(II) в Mn(IV) требуется 1,3 мг хлора. Экспериментальные исследования показали, что хлор окисляет марганец(II) при рН=7 за 60... 90 мин всего на 50%. В отсутствии ионов Nh5+ при рН=8 окисление марганца (II) хлором за 60... 90 мин завершается полностью, остаточное содержание марганца в воде составляет 0,05... 0,1 мг/л. Остаточное содержание марганца (И) в воде, подвергнутой хлорированию и фильтрованию, через 60 мин при исходной концентрации марганца 10 мг/л составило: при рН воды — 9... 5,0 мг/л; при рН=9,45..~ ...1,3 мг/л; при рН=10 — менее 0,02 мг/л, т. е. эффект окисления хлором был намного ниже эффекта окисления кислородом воздуха в присутствии катализатора. Окисление марганца (II) озоном или оксидом хлора(IV) при рН=6,5...7,0 завершается в течение 10...15 мин, при этом расход озона составляет 1,45, а оксида хлора(^) — 1,35 мг/мг марганца(П).

Исследования А. И. Назарова показали, что слабый окислитель (кислород) в присутствии более сильного (хлора) активизируется. Это позволило разработать технологию деманганации воды, сущность которой сводится к глубокой аэрации воды, что влечет за собой повышение рН, обогащение воды кислородом воздуха, окисление железа(II) с образованием гидроксида. Затем в «водяную подушку» фильтра вводится хлор, воздействующий как окислитель и как катализатор окислительного действия растворенного кислорода. В результате в поровом пространстве фильтрующей загрузки формируется гидроксид железа (III), на поверхности которого адсорбируется, а затем окисляется марганец (II). Образующийся оксид марганца (IV) также катализирует процесс окисления марганца(II).

Как показали результаты экспериментов, для осуществления этого метода требуется соблюдение соотношения Fe2+/Mn2+ — 10. Процесс деманганации воды зависит от ее температуры, РН, окисляемости, присутствия силикатов, соотношения Fe (II)/ Mn (II).

Результаты исследований процессов окисления иона марганца (II) озоном показали, что расход последнего на I мг марганца составил: при концентрации марганца 0,4 мг/л — 2 мг и при концентрации 0,8 мг/л — 4 мг. Объяснить этот факт можно каталитическим разложением озона мелкодисперсной агрегативно-устойчивой взвесью оксидов марганца, образующихся в процессе озонирования воды. Удаление взвеси происходит эффективно после коагулирования и фильтрования. Без коагулирования (просто фильтрованием) взвесь удаляется незначительно. Обнаружено, что взвесь оксидов железа, образующаяся в первую очередь, также является катализатором распада озона. В связи с этим очистку вод, содержащих одновременно большое количество железа (И) и марганца(II), предлагается производить в две стадии (рис. 17.8): на первой осуществляется окисление железа(II) и выделение его из воды, да второй — окисление марганца(II) озоном, коагулирование, отстаивание и фильтрование. Очевидно, что известная громоздкость этой технологической схемы может быть оправдана лишь для водопроводов большой производительности, в основном при заборе воды из поверхностных источников. Несмотря на свою высокую эффективность, озон используют редко из-за высокой стоимости и сложности эксплуатации озонаторных установок.

 

 

Рис. 17.8. Установка деманганации воды озонированием.

1 — подача озона, 2 — камера озонирования, 3 — ступенчатый каскадный аэратор, 4 — поглотитель остаточного озона, 5 — подача исходной воды, 6 — двуслойный фильтр, 7 — отвод чистой воды

 

Оксид хлора СО2 также является сильным окислителем, однако, использование этого реагента затруднено из-за необходимости применения сложных в строительстве и эксплуатации установок, что особенно невыгодно на сооружениях очистки подземных вод небольшой производительности, которые составляют большинство.

Удаление марганца(Ц) и железа(II) из воды методом ионного обмена. Это происходит как при натрий, так и при водород-катионировании при фильтровании воды через катионитовую загрузку в ходе умягчения. Метод целесообразно применять при необходимости одновременного глубокого умягчения воды и освобождения ее от железа(II) и марганца (II).

Биохимический метод удаления марганца. Заключается в высевании на зернах загрузки фильтра марганце потребляющих бактерий типа Bacteria manganicus, Metallogenium personatum, Caulococeus manganifer и последующем фильтровании обрабатываемой воды. Эти бактерии поглощают марганец из воды в процессе жизнедеятельности, а отмирая, образуют на зернах песка пористую массу, содержащую большое количество оксида марганца, служащего катализатором окисления марганца (II). При скорости фильтрования до 22 м/ч фильтры полностью удаляют из воды марганец.

Исследования биологических и биохимических методов очистки воды от марганца продолжаются. Т. П. Пейчевым предложен метод удаления марганца на биофильтрах и скорых обычных фильтрах. Испытывалась артезианская вода с содержанием железа 3,75... 9,0 мг/л и марганца 0,2—0,8 мг/л. Для очистки воды от железа и марганца использовались двухступенчатые биофильтры. Первая ступень предназначалась для удаления железа и состояла из двух слоев кварцевого песка: нижнего высотой 0,8 м и крупностью I ... 2 мм и верхнего высотой 1,05 м и крупностью 1,5... 2,5 мм. Вторая ступень предназначалась для удаления марганца; ее загрузка состояла из песка крупностью 1,5... 2,5 мм, высота слоя составила 1,4 м. При скорости фильтрования 16...28 м/ч достигалось стабильное снижение содержания железа до 0,1...0,2 мг/л, марганца — до 0,02 ... 0,05 мг/л. Продолжительность фильтроцикла (до достижения сопротивления 0,08... 0,1 МПа) составляла 40... 100 ч в зависимости от скорости фильтрования. Для интенсификации процессов очистки на биофильтры подавался кислород.

Из сказанного следует, что для деманганации подземных вод наибольший интерес представляют: метод сорбции на гидроксиде железа(III), фильтрование через модифицированию загрузку и биохимический метод.

 

 

ЛИТЕРАТУРА

 

Алексеев Л. С., Гладков В. А. Улучшение качества мягких вод. М., Стройиздат, 1994 г.

Алферова Л. А., Нечаев А. П. Замкнутые системы водного хозяйства промышленных предприятий, комплексов и районов. М., 1984.

Аюкаев Р. И., Мельцер В. 3. Производство и применение фильтрующих материалов для очистки воды. Л., 1985.

Вейцер Ю. М., Мииц Д. М. Высокомоллекуляриые флокулянты в процессах очистки воды. М., 1984.

Егоров А. И. Гидравлика напорных трубчатых систем в водопроводных очистных сооружениях. М., 1984.

Журба М. Г. Очистки воды на зернистых фильтрах. Львов, 1980.

 

znakka4estva.ru

1.3 Деманганация воды. Проект системы автоматизированного управления насосными агрегатами станции II подъема комплекса обезжелезивания и деманганации

Похожие главы из других работ:

Насосы для откачивания грунтовых вод

2. Грунтовые воды

Во всем мире грунтовые воды являются важным источником для полива. Возможно, это самый надежный водный источник, который есть в нашем распоряжении, но и к использованию грунтовых вод нужно подходить с умом...

Подготовка воды для паротурбинной установки

2. Показатели качества воды

Важнейшими показателями качества воды являются: -концентрация грубодисперсных веществ, -ионный состав, -концентрация коррозионно-активных газов, -концентрация ионов водорода, -технологические показатели, в которые входят- сухой остаток...

Получение воды очищенной и воды для инъекций в промышленных условиях

2. Типы воды

Вода при производстве лекарственных средств широко используется в качестве компонента продукта, самого продукта, сырья, а также в качестве моющего агента (компонента моющего агента) для тары и оборудования...

Получение воды очищенной и воды для инъекций в промышленных условиях

8. Хранение воды очищенной и воды для инъекций

Хранение воды очищенной. Воду очищенную хранят в закрытых емкостях, изготовленных из материалов...

Получение воды очищенной и воды для инъекций в промышленных условиях

9. Системы распределения воды очищенной и воды для инъекций

Системы распределения воды очищенной и воды для инъекций предназначены для доставки воды к точке потребления при неизменном ее качестве. В систему распределения входят трубопровод, насосная система, контрольно-измерительные приборе...

Получение воды очищенной и воды для инъекций в промышленных условиях

10. Контроль систем получения, хранения и распределения воды очищенной и воды для инъекций

Для того чтобы система всегда оставалась в контролируемом состоянии, пользователю необходимо разработать соответствующую программу. Данная программа должна включать: ¦ процедуры управления системой...

Проектирование насосной станции

1. Составление таблицы и графика суточного водопотребления, подачи воды насосами и колебания воды в баке башни

Определение расчетной максимальной подачи насосной станции. Определяется расчетный расход. т.е. та подача, которая должна быть обеспечена насосной станцией: Таким образом...

Разработка автоматической системы управления водогрейным котлом КВГМ-100

1.1.3.2 Деаэрирование воды

Химочищенная вода с помощью насосов Д-320-70 подается в деаэраторы паровых котлов. Вакуумный деаэратор ДВ-100 (см. рис. 4) иначе термический деаэратор работают под давлением ниже атмосферного, что составляет -0,8 кгс/см2...

Разработка системы автоматизации хлебобулочного производства

3.2 ФИЛЬТР ВОДЫ

Фильтры, установки очистки воды и водоподготовки, системы фильтрации жидких сред с ручным и автоматическим управлением. Области применения: · предприятия общественного питания - кафе, рестораны...

Разработка системы автоматизации хлебобулочного производства

3.4 ДОЗАТОР ВОДЫ

Назначение- для дискретного (порционного) дозирования жидких (воды, растворов соли и сахара и др.)...

Расчет ректификационной установки для разделения смеси вода – уксусная кислота

1.2.1 Физические свойства воды

Вода в нормальных условиях сохраняет жидкое агрегатное состояние. Плотность: 0,9982 г/куб.см Динамическая вязкость (ст.усл.): 0,00101 Па*с (при 20°C) Кинематическая вязкость (ст.усл.): 0,01012 кв...

Расчет тепловой схемы котельной

6. Расчет теплообменника для нагрева сырой воды за счет тепла продувочной воды

Уравнение теплового баланса: Отсюда температура сырой воды tх будет равна: Плотность греющего теплоносителя определяется по средней температуре греющего теплоносителя...

Рынок бутилированной воды высокого качества в России. ООО "Компания Чистая вода"

1.5.4 Обеззараживание воды

...

Технологическая разработка участка по производству цементно-стружечных плит (ЦСП-1)

3.4 Расчет воды

Общее количество воды, находящейся в смеси, определено рецептурой. Сюда входит вода, находящаяся в древесине Вд, в растворе химической добавки Вх. и дополнительная вода...

Технология очистки сточных вод на предприятии ООО "Промводоканал"

1.5 СТОЧНЫЕ ВОДЫ

Сточные воды - это пресные воды, изменившие после использования в бытовой и производственной деятельности человека свои физико-химические свойства и требующие отведения...

prod.bobrodobro.ru

Реферат: Деманганация воды

www.yurii.ru

К настоящему времени разработаны и внедрены в практику различные методы очистки воды от марганца. Диаграмма Пурбе Е=ф(рН) дает наглядное представление о возможных способах очистки воды от марганца (см. рис. 17.1, б): увеличением окислительно-восстановительного потенциала среды путем применения сильных окислителей без корректирования значения рН воды, повышением значения рН воды при недостаточном окислительно-восстановительном потенциале в случае использования слабых окислителей; совместным применением более сильного окислителя и повышением значения рН воды.

Многие из них основаны на окислении присутствующего в воде иона марганца (II) до марганца (III) и марганца (IV), образующих гидроксиды, растворимость которых при рН>7 меньше 0,01 мг/л. Для этого применяют различные окислители: перманганат калия, озон, хлор и его производные, кислород воздуха. Кроме того, удаление марганца из воды может быть достигнуто с помощью ионного обмена (водород или натрий катионированием), при умягчении известковосодовым методом, при фильтровании воды через загрузку из марганцевого цеолита, биохимическими и другими методами.

Известные в технологии улучшения качества воды методы ее деманганации можно классифицировать на безреагентные и реагентные, на окислительные, сорбционные, ионообменные и биохимические. К числу безреагентных методов удаления марганца из воды следует отнести: глубокую аэрацию с последующим отстаиванием (вариант) и фильтрованием на скорых осветлительных фильтрах с сорбцией марганца на свежеобразованном гидроксиде железа, метод «Виредокс».

К числу реагентных методов деманганации воды прежде всего относятся окислительные с использованием хлора и его производных, озона, перманганата калия, технического кислорода. К ним относятся и методы, предусматривающие использование щелочных реагентов.

Для окисления марганца (II) в диоксид марганца должен поддерживаться определенный окислительно-восстановительный потенциал, значение которого зависит от требуемой в данном конкретном случае концентрации остаточного марганца и рН среды.

Удаление марганца методом глубокой аэрации с последующим фильтрованием предусматривает первоначальное извлечение из воды под вакуумом свободной углекислоты (рН повышается до 8 . . . 8,5), которое производится в вакуумно-эжекционном аппарате с последующим насыщением обрабатываемой воды кислородом воздуха в его эжекционной части, ее диспергирование до капельного состояния и фильтрование через зернистую загрузку. Технологическая схема состоит из скорых осветлительных фильтров, над зеркалом воды которых размещены напорные вакуумно-эжекционные аппараты. Метод применим при окисляемости исходной воды до 9,5 мг 02/л. Подобная технология позволяет успешно решать задачи не только деманганации, деферизации, но и дегазации воды.

Необходимым условием рассматриваемого метода даманганации воды является присутствие в ней железа (II), которое при окислении растворенным кислородом образует гидроксид железа, адсорбирующий на поверхности марганец (II) и каталитически влияющий на его окисление. Процесс успешно протекает при рН аэрированной воды ниже 8,5 и величине Е<0,4 В. Сорбционный характер извлечения марганца подтверждается изотермой адсорбции, построенной по результатам производств венного эксперимента, график которого адекватен изотерме Бедеккера — Фрейндлиха.

Производственные эксперименты, выполненные кафедрой водоснабжения МГСУ (Г. И. Николадзе, В. Б. Викулина и др.) на пяти артезианских водоисточниках показатели качества, воды которых характеризовались рН 7 . . . 7,4, общей жесткостью до 7 мг-экв/л, щелочностью 4 ... 6 мг-экв/л, окисляемостью до 8,1 мг 02/л, сухим остатком 0,5 ... 0,76 г/л. £=0,21 ... 0,39 В, содержанием свободной углекислоты до 6,5 мг/л, содержанием общего железа до 6,3 мг/л, а марганца (II) до 0,76 мг/л, подтвердили целесообразность использования данного метода для получения питьевой воды. Следует отметить, что соотношение концентраций железа (II) и марганца (II) в исходной воде должно быть не менее 7:1.

Результаты проведенных экспериментов позволяют следующим образом объяснить механизм явления. Величина дзета-потенциала гидроксида железа равна нулю при рН=6,7, с возрастанием рН отрицательная величина потенциала увеличивается. Положительно заряженные ионы железа (II) и марганца (II) сорбируются осадком из соединений железа (III), имеющим отрицательный потенциал при рН>7. Поскольку при повышении значения рН отрицательная величина потенциала растет, адсорбция ионов железа (II) и марганца (II) увеличивается.

При фильтровании происходят следующие процессы. Поверхность песка при рН~7 имеет малый электрический отрицательный заряд и поэтому обладает слабыми сорбционными свойствами по отношению к ионам марганца (II) и железа (II) г имеющими положительный заряд. С ростом рН эти свойства усиливаются. При фильтровании через песок сначала происходит адсорбция ионов железа (II) и марганца (II) поверхностью его зерен. Под действием растворенного в воде кислорода ион железа (II) окисляется до железа (III), который, гидролизуясь, образует на поверхности зерен загрузки качественно новый сорбент, состоящий из соединений железа, который и сорбирует ионы марганца (II). Растворимая в воде свободная углекислота также сорбируется этим сорбентом, ухудшая эффект очистки за счет понижения значения рН.

Достоинством этого метода очистки является возможность удалять марганец не только из вод, в которых он присутствует совместно с железом, но и из вод, где железо отсутствует, создавая добавления в воду железного купороса, одного из самых Дешевых реагентов.

Удаление марганца из подземных вод может быть достигнуто в пласте при условии достаточно высокого значения рН. При введении в подземный поток воды, содержащей растворенный кислород, или воздуха, технического кислорода достигается окисление железа (II) и марганца(II), их соосаждение и задержание в порах водовмещающих пород. На процесс деманганации и деферизации воды по этому методу существенное влияние оказывают железо- и марганец- бактерии. Метод экономичный, относительно простой, однако, не всегда обеспечивающий надлежащую глубину деманганации воды. Считается целесообразным его использование при содержании марганца в подземной воде до 0,5 мг/л и высоком рН.

Наиболее эффективным и технологически простым методом удаления марганца из вод поверхностных и подземных источников в настоящее время является обработка их перманганатом калия. Этот метод может быть применен на очистных комплексах любой производительности при любом качестве исходной воды; существенного изменения технологической схемы при этом не происходит. На удаление 1 мг Mn(II) расходуется 1,88 мг КМп04.

Использование катализаторов окисления марганца. Установлено, что предварительно осажденные на поверхности зерен фильтрующей загрузки оксиды марганца оказывают каталитическое влияние на процесс окисления иона марганца (П) растворенным в воде кислородом. При фильтровании аэрированной и подщелаченной (при низких (рН) воды, содержащей марганец, через песчаную загрузку по прошествии некоторого времени на поверхности зерен песка образуется слой, состоящий из отрицательно заряженного осадка гидроксида марганца Мп(ОН)4, который адсорбирует положительно заряженные ионы марганца (II). Гидролизируясь, эти ионы реагируют с осадком Мп(ОН)4, образуя хорошо окисляемый полутораоксид Мn203 по реакциям:

Мn(ОН)4+Мn (ОН) 2 → Mn203 + ЗН20,

2Мn203 + 02 + 8Н20 → Mn(ОН)4

Таким образом, в результате снова образуется гидроксид марганца (IV), который опять участвует в процессе окисления в качестве катализатора. Использование этого свойства оксидов марганца дало возможность применить в практике кондиционирования воды метод ее фильтрования через песок, зерна которого предварительно покрыты пленкой оксида марганца (так называемый «черный песок»). Для этого обычный кварцевый песок крупностью 0,5... 1,2 мм обрабатывают последовательно 0,5%-ным раствором хлорида марганца и перманганата калия.

При использовании такой загрузки фильтров окисление марганца растворенным в воде кислородом воздуха возможно осуществить при значениях рН, значительно меньших, чем обычно (рН>7,5).

В практике водоподготовки за рубежом в качестве катализатора окисления марганца кислородом воздуха или хлором получили распространение соли меди, медно-никелевые сплавы.

Деманганация воды перманганатом калия. Основана на его способности окислять марганец (II) с образованием малорастворимого оксида марганца:

вода марганец деманганация

ЗМn2+ + 2МnО4- + 2Н20 → 5Мn02 + 4Н+

Очень важным аспектом применения перманганата калия для очистки воды от марганца является образование дисперсного осадка оксида марганца Мп02, который, имея большую удельную поверхность порядка 300 м2/г, является эффективным сорбентом. При обработке воды перманганатом калия снижение привкусов и запахов происходит также вследствие частичной сорбции органических соединений образующимся мелкодисперсным хлопьевидным осадком гидроксида марганца. Кроме того, осадок оксида марганца, как это указывалось выше, обладает каталитическими свойствами по отношению к процессу окисления иона марганца (II) кислородом воздуха.

Применение перманганата калия дает возможность удалить из воды как марганец, так и железо независимо от форм их содержания в воде. В водах с повышенным содержанием органических веществ железо и марганец образуют устойчивые органические соединения (комплексы), медленно и трудно удаляемые при обычной обработке хлором и коагулянтом. Применение перманганата калия, сильного окислителя, позволяет разрушить эти комплексы с дальнейшим окислением ионов марганца (II) и железа(II) и коагуляцией продуктов окисления. Кроме того, коллоидные частицы гидроксида марганца Мп(ОН)4 в интервале рН=5...11 имеют заряд, противоположный зарядам коллоидов коагулянтов Fe(OH)3 и А1(0Н)3, поэтому добавление перманганата калия к воде интенсифицирует процесс коагуляции. Таким образом, пермангаиат калия, оказывая совокупное действие как окислителя, сорбента и вспомогательного средства коагуляции, является высокоэффективным реагентом для очистки воды от целого ряда загрязнений, в том числе и от марганца.

Эксперименты показали, что максимальное снижение концентрации марганца(II) в воде (до 97%) достигается при обработке воды перманганатом калия дозой 2 мг КМп04 на I мг марганца(II) с дальнейшим добавлением коагулянта для удаления продуктов окисления и взвешенных веществ. Остаточное содержание марганца в воде при этом не превышало 0,1 мг/л, а после фильтрования воды на песчаных фильтрах она практически не содержала ионов марганца (II), одновременно наблюдалось полное удаление железа.

В настоящее время разработана технология применения перманганата калия для удаления марганца, а также привкусов и запахов воды в промышленном производстве. Достоинством этого метода является возможность использования его на уже действующих сооружениях очистки без изменения существующей технологической схемы.

На фильтровальных комплексах очистки воды из поверхностных источников раствор перманганат калия вводится в воду до коагулирования в смеситель или на насосной станции I подъема. При удалении марганца из подземных вод для увеличения фильтроцикла одновременно с раствором КМп04 в обрабатываемую воду рекомендуется вводить активированную кремнекислоту в количестве 3...4 мг/л или флокулянт К-4. В этом случае укрупняются хлопья образующихся при окислении соединений марганца(IV), которые медленнее проникают в фильтрующую загрузку.

Деманганация воды фильтрованием через модифицированную загрузку. Метод фильтрования аэрированной воды через загрузку, обработанную оксидами марганца, имеет недостаток, заключающийся в постепенном измельчении частиц, образующих покрытие зерен загрузки, и проскоке их в фильтрат. Попытки исправить этот недостаток заключались в растворении этих частиц до того, как они обретали способность проскакивать в фильтрат, что усложняет процесс очистки воды. Другим недостатком деманганации фильтрованием через «черный песок» является значительный расход перманганата калия. Для исключения указанных недостатков в МГСУ (Г. И. Николадзе, А. И. Назаров и др.) был запатентован метод деманганации воды фильтрованием через модифицированную загрузку, приготавливаемую последовательным пропуском снизу вверх через кварцевый песок растворов железного купороса и перманганата калия, что позволяет достичь экономики последнего. Для закрепления образующей пленки из гидроксида железа и оксида марганца на зернах фильтрующей загрузки последнюю затем дополнительно обрабатывают тринатрийфосфатом или сульфитом натрия. Обрабатываемая вода фильтруется сверху вниз со скоростью 8... 10 м/ч. Производственные испытания указанного метода подтвердили его универсальность и высокие технико-экономические показатели.

Очистка воды, от марганца с использованием сильных окислителей. Скорость окисления ионов марганца (II) хлором, озоном, оксидом хлора зависит от величины рН среды. Хлор — сильный окислитель, однако эффект окисления им марганца может быть достаточно полным при значениях рН=8...8,5, что чаще всего требует подщелачивания воды. На окисление 1 мг Mn(II) в Mn(IV) требуется 1,3 мг хлора. Экспериментальные исследования показали, что хлор окисляет марганец(II) при рН=7 за 60... 90 мин всего на 50%. В отсутствии ионов Nh5+ при рН=8 окисление марганца (II) хлором за 60... 90 мин завершается полностью, остаточное содержание марганца в воде составляет 0,05... 0,1 мг/л. Остаточное содержание марганца (И) в воде, подвергнутой хлорированию и фильтрованию, через 60 мин при исходной концентрации марганца 10 мг/л составило: при рН воды — 9... 5,0 мг/л; при рН=9,45..~ ...1,3 мг/л; при рН=10 — менее 0,02 мг/л, т. е. эффект окисления хлором был намного ниже эффекта окисления кислородом воздуха в присутствии катализатора. Окисление марганца (II) озоном или оксидом хлора(IV) при рН=6,5...7,0 завершается в течение 10...15 мин, при этом расход озона составляет 1,45, а оксида хлора(^) — 1,35 мг/мг марганца(П).

Исследования А. И. Назарова показали, что слабый окислитель (кислород) в присутствии более сильного (хлора) активизируется. Это позволило разработать технологию деманганации воды, сущность которой сводится к глубокой аэрации воды, что влечет за собой повышение рН, обогащение воды кислородом воздуха, окисление железа(II) с образованием гидроксида. Затем в «водяную подушку» фильтра вводится хлор, воздействующий как окислитель и как катализатор окислительного действия растворенного кислорода. В результате в поровом пространстве фильтрующей загрузки формируется гидроксид железа (III), на поверхности которого адсорбируется, а затем окисляется марганец (II). Образующийся оксид марганца (IV) также катализирует процесс окисления марганца(II).

Как показали результаты экспериментов, для осуществления этого метода требуется соблюдение соотношения Fe2+/Mn2+ — 10. Процесс деманганации воды зависит от ее температуры, РН, окисляемости, присутствия силикатов, соотношения Fe(II)/ Mn(II).

Результаты исследований процессов окисления иона марганца (II) озоном показали, что расход последнего на I мг марганца составил: при концентрации марганца 0,4 мг/л — 2 мг и при концентрации 0,8 мг/л — 4 мг. Объяснить этот факт можно каталитическим разложением озона мелкодисперсной агрегативно-устойчивой взвесью оксидов марганца, образующихся в процессе озонирования воды. Удаление взвеси происходит эффективно после коагулирования и фильтрования. Без коагулирования (просто фильтрованием) взвесь удаляется незначительно. Обнаружено, что взвесь оксидов железа, образующаяся в первую очередь, также является катализатором распада озона. В связи с этим очистку вод, содержащих одновременно большое количество железа (И) и марганца(II), предлагается производить в две стадии (рис. 17.8): на первой осуществляется окисление железа(II) и выделение его из воды, да второй — окисление марганца(II) озоном, коагулирование, отстаивание и фильтрование. Очевидно, что известная громоздкость этой технологической схемы может быть оправдана лишь для водопроводов большой производительности, в основном при заборе воды из поверхностных источников. Несмотря на свою высокую эффективность, озон используют редко из-за высокой стоимости и сложности эксплуатации озонаторных установок.

Рис. 17.8. Установка деманганации воды озонированием.

1 — подача озона, 2 — камера озонирования, 3 — ступенчатый каскадный аэратор, 4 — поглотитель остаточного озона, 5 — подача исходной воды, 6 — двуслойный фильтр, 7 — отвод чистой воды

Оксид хлора СО2 также является сильным окислителем, однако, использование этого реагента затруднено из-за необходимости применения сложных в строительстве и эксплуатации установок, что особенно невыгодно на сооружениях очистки подземных вод небольшой производительности, которые составляют большинство.

Удаление марганца(Ц) и железа(II) из воды методом ионного обмена. Это происходит как при натрий, так и при водород-катионировании при фильтровании воды через катионитовую загрузку в ходе умягчения. Метод целесообразно применять при необходимости одновременного глубокого умягчения воды и освобождения ее от железа(II) и марганца (II).

Биохимический метод удаления марганца. Заключается в высевании на зернах загрузки фильтра марганце потребляющих бактерий типа Bacteriamanganicus, Metallogeniumpersonatum, Caulococeusmanganiferи последующем фильтровании обрабатываемой воды. Эти бактерии поглощают марганец из воды в процессе жизнедеятельности, а отмирая, образуют на зернах песка пористую массу, содержащую большое количество оксида марганца, служащего катализатором окисления марганца (II). При скорости фильтрования до 22 м/ч фильтры полностью удаляют из воды марганец.

Исследования биологических и биохимических методов очистки воды от марганца продолжаются. Т. П. Пейчевым предложен метод удаления марганца на биофильтрах и скорых обычных фильтрах. Испытывалась артезианская вода с содержанием железа 3,75... 9,0 мг/л и марганца 0,2—0,8 мг/л. Для очистки воды от железа и марганца использовались двухступенчатые биофильтры. Первая ступень предназначалась для удаления железа и состояла из двух слоев кварцевого песка: нижнего высотой 0,8 м и крупностью I ... 2 мм и верхнего высотой 1,05 м и крупностью 1,5... 2,5 мм. Вторая ступень предназначалась для удаления марганца; ее загрузка состояла из песка крупностью 1,5... 2,5 мм, высота слоя составила 1,4 м. При скорости фильтрования 16...28 м/ч достигалось стабильное снижение содержания железа до 0,1...0,2 мг/л, марганца — до 0,02 ... 0,05 мг/л. Продолжительность фильтроцикла (до достижения сопротивления 0,08... 0,1 МПа) составляла 40... 100 ч в зависимости от скорости фильтрования. Для интенсификации процессов очистки на биофильтры подавался кислород.

Из сказанного следует, что для деманганации подземных вод наибольший интерес представляют: метод сорбции на гидроксиде железа(III), фильтрование через модифицированию загрузку и биохимический метод.

ЛИТЕРАТУРА

Алексеев Л. С., Гладков В. А. Улучшение качества мягких вод. М., Стройиздат, 1994 г.

Алферова Л. А., Нечаев А. П. Замкнутые системы водного хозяйства промышленных предприятий, комплексов и районов. М., 1984.

Аюкаев Р. И., Мельцер В. 3. Производство и применение фильтрующих материалов для очистки воды. Л., 1985.

Вейцер Ю. М., Мииц Д. М. Высокомоллекуляриые флокулянты в процессах очистки воды. М., 1984.

Егоров А. И. Гидравлика напорных трубчатых систем в водопроводных очистных сооружениях. М., 1984.

Журба М. Г. Очистки воды на зернистых фильтрах. Львов, 1980.


Смотрите также